organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1844-o1845

Di­methyl (2Z)-2-[4-((1Z)-1-{2-[(2Z,5Z)-5-(2-meth­­oxy-2-oxo­ethyl­­idene)-4-oxo-3-phenyl-1,3-thia­zolidin-2-yl­­idene]hydra­zin-1-yl­­idene}eth­yl)anilino]but-2-ene­dio­ate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 22 November 2013; accepted 24 November 2013; online 30 November 2013)

The mol­ecule of the title compound, C26H24N4O7S, adopts a trans conformation about the central N—N bond, presumably to minimize steric between the substituents on these two atoms. An intra­molecular N—H⋯O hydrogen bond occurs. The phenyl ring is disordered over two sets of sites, with an occupancy ratio of 0.624 (8):0.376 (8). The azolidine ring is essentially planar [maximum deviation = 0.008 (5) Å] and makes a dihedral angle of 4.3 (2)° with the benzene ring and dihedral angles of 74.1 (3) and 69.1 (5)°, respectively, with the mean planes of the major and minor components of the disordered phenyl ring. The packing in the crystal is aided by the formation of several weak C—H⋯O and C—H⋯N inter­actions.

Related literature

For the biological activity of thia­zolidinene-containing compounds, see: Chaudhari et al. (1975[Chaudhari, S. K., Verma, M., Chaturvedi, A. K. & Parmar, S. S. (1975). J. Pharm. Sci. 64, 614-617.]); Chaudhary et al. (1976[Chaudhary, M., Parmar, S. S., Chaudhary, S. K., Chaturvedi, A. K. & Rama, S. B. V. (1976). J. Pharm. Sci. 65, 443-446.]); Babaoglu et al. (2003[Babaoglu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003). Bioorg. Med. Chem. Lett. 13, 3227-3230.]); Dwivedi et al. (1972[Dwivedi, C., Gupta, T. K. & Parmar, S. S. (1972). J. Med. Chem. 15, 553-554.]); Parmar et al. (1972[Parmar, S. S., Dwivedi, C., Chaudhari, A. & Gupta, T. K. (1972). J. Med. Chem. 15, 99-101.]); Bondock et al. (2007[Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948-954.]); Vicini et al. (2008[Vicini, P., Geronikaki, A., Incerti, M., Zani, F., Dearden, J. & Hewitt, M. (2008). Bioorg. Med. Chem. 16, 3714-3724.]); Gududuru et al. (2004[Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289-5293.]); Ottanà et al. (2005[Ottanà, R., Carotti, S., Maccari, R., Landini, I., Chiricosta, G., Caciagli, B. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 3930-3933.]); Agrawal et al. (2000[Agrawal, V. K., Sachan, S. & Khadikar, P. V. (2000). Acta Pharm. 50, 281-290.]); Diurno et al. (1999[Diurno, M. V., Mazzoni, O., Correale, G., Monterrey, I. G., Calignano, A., La Rana, G. & Bolognese, A. (1999). II Farmaco, 54, 579-583.]); Omar et al. (2010[Omar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Sokovic, M., Ciric, A. & Glamoclija, J. (2010). Bioorg. Med. Chem. 18, 426-432.]); Vigorita et al. (2003[Vigorita, M. G., Ottanà, R., Monforte, F., Maccari, R., Monforte, M. T., Trovato, A., Taviano, M. F., Miceli, N., De Luca, G., Alcaro, S. & Ortuso, F. (2003). Bioorg. Med. Chem. 11, 999-1006.]); Rawal et al. (2005[Rawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771-6776.]); Suzuki et al. (1999[Suzuki, Y., Akima, M. & Tamura, K. (1999). Gen. Pharmacol. 32, 57-63.]).

[Scheme 1]

Experimental

Crystal data
  • C26H24N4O7S

  • Mr = 536.56

  • Monoclinic, P 21 /n

  • a = 15.7027 (6) Å

  • b = 4.8543 (2) Å

  • c = 33.5974 (13) Å

  • β = 92.539 (3)°

  • V = 2558.47 (17) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.59 mm−1

  • T = 100 K

  • 0.16 × 0.03 × 0.03 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.83, Tmax = 0.95

  • 11600 measured reflections

  • 3655 independent reflections

  • 2351 reflections with I > 2σ(I)

  • Rint = 0.106

  • θmax = 59.1°

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.156

  • S = 1.03

  • 3655 reflections

  • 339 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O6 0.88 2.01 2.705 (5) 135
C1—H1B⋯O4i 0.98 2.54 3.402 (8) 147
C3—H3⋯O3ii 0.95 2.37 3.191 (6) 145
C8B—H8B⋯N2iii 0.95 2.58 3.461 (8) 155
C12B—H12B⋯O3iv 0.95 2.31 3.216 (7) 159
C14—H14A⋯O6v 0.98 2.50 3.375 (6) 148
Symmetry codes: (i) -x+1, -y+2, -z; (ii) -x+2, -y+3, -z; (iii) x, y+1, z; (iv) x, y-1, z; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 4-thiazolidinone ring system is a core structure in various synthetic compounds and an important scaffold known to be associated with several biological activities such as hypnotic activity (Chaudhari et al., 1975; Chaudhary et al., 1976), anti-tubercular (Babaoglu et al., 2003), anti-convulsant (Dwivedi et al., 1972; Parmar et al., 1972), anti-bacterial (Bondock et al., 2007; Vicini et al., 2008), anti-cancer (Gududuru et al., 2004; Ottanà et al., 2005), anti-histaminic (Agrawal et al., 2000; Diurno et al., 1999), anti-fungal (Omar et al., 2010), anti-inflammatory (Vigorita et al., 2003), anti-viral (Rawal et al., 2005) properties and cardiovascular effects (Suzuki et al., 1999). Based on such findings and further to our studies on synthesis of a series of thiazolidinones, we report herein the synthesis and crystal structure of the title compound.

The title molecule (I), (Fig. 1), adopts a trans conformation about the central N2—N3 bond, presumably to minimize contact between the substituents on these two atoms. The conformation about the N4—C21 bond is determined by the presence of an intramolecular N4—H1···O6 hydrogen bond (Fig. 1 and Table 1). The azolidine ring (S1/N1/C4–C6) is essentially planar [maximum deviation = 0.008 (5) Å for C5] and makes a dihedral angle of 4.3 (2)° with the benzene ring (C15–C20) and dihedral angles of 74.1 (3) and 69.1 (5)°, respectively, with the mean planes of the major and minor components (C7B–C12B and C7A–C12A) of the disordered phenyl ring.

In the crystal, the molecular packing is stabilized by the several weak C—H···O and C—H···N intermolecular interactions (Fig. 2 and Table 1).

Related literature top

For the biological activity of thiazolidinene-containing compounds, see: Chaudhari et al. (1975); Chaudhary et al. (1976); Babaoglu et al. (2003); Dwivedi et al. (1972); Parmar et al. (1972); Bondock et al. (2007); Vicini et al. (2008); Gududuru et al. (2004); Ottanà et al. (2005); Agrawal et al. (2000); Diurno et al. (1999); Omar et al. (2010); Vigorita et al. (2003); Rawal et al. (2005); Suzuki et al. (1999).

Experimental top

A mixture of 283 mg (1 mmol) (2E)-2-[1-(4-aminophenyl)ethylidene]-N-phenylhydrazinecarbothioamide and 284 mg (2 mmol) dimethyl but-2-ynedioate in 50 ml of ethanol was refluxed and monitored by TLC until completion of the reaction. The excess solvent was evaporated under vacuum and the solid obtained was recrystallized from ethanol to afford clear yellow crystals (M.p. 443–445 K) of X-ray quality.

IR: 3420 (NH), 1742, 1717, 1665 (CO), 1599(Ar—C=C). 1H-NMR (CDCl3) δ=2.24 (s,3H,CH3), 3.76(s,3H,OCH3), 3.78(s,3H,OCH3), 3.89(s,3H,OCH3), 6.86 (s,1H,vinyl-CH), 6.88(s,1H,vinyl-CH), 7.43–7.48 (m, 4H,Ar—H), 7.52–7.57 (m,3H,Ar—H), 7.83–7.87 (m,2H,Ar—H), 9.75 (br,1H,NH). 13C-NMR (CDCl3) δ=14.84 (CH3), 51.36, 52.52, 53.03 (OCH3), 116.02 (vinyl-CH), 119.61 (vinyl-CH), 127.44, 128.02, 128.91, 129.09, 129.93 (Ar—CH), 132.73, 141.97 (Ar—C), 142.15 (=C—NH), 146.88 (acyclic C=N), 158.27 (thiazole-C2), 164.03 (cyclic C=O), 164.61, 166.62, 169.66 (ester C=O).

Refinement top

H atoms attached to carbon were positioned geometrically while that attached to nitrogen was placed in a location derived from a difference map. All were allowed to ride on their parent atoms with N—H = 0.91 Å, C—H = 0.95 and 0.98 Å, with Uiso(H) = 1.5 Uiso(C) for CH3 H atoms and Uiso(H) = 1.2 Uiso(C,N) for the other H atoms. The phenyl ring attached to the N atom of the thiazolidine ring is disordered over two sites in a 0.624 (8):0.376 (8) ratio. The two orientations were refined as rigid groups with AFIX 66 and EADP instructions. The small proportion of reflections observed is a result of the rather poor quality of the very thin crystal specimens.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title molecule showing the intramolecular hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 50% probability level. For clarity only the major disorder component of the disordered phenyl ring is shown.
[Figure 2] Fig. 2. Packing of the title molecule view down b showing the intermolecular hydrogen bonds as dashed lines.
Dimethyl (2Z)-2-{4-[(1Z)-1-{2-[(2Z,5Z)-5-(2-methoxy-2-oxoethylidene)-4-oxo-3-phenyl-1,3-thiazolidin-2-ylidene]hydrazin-1-ylidene}ethyl]anilino}but-2-enedioate top
Crystal data top
C26H24N4O7SF(000) = 1120
Mr = 536.56Dx = 1.393 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 9855 reflections
a = 15.7027 (6) Åθ = 3.1–61.2°
b = 4.8543 (2) ŵ = 1.59 mm1
c = 33.5974 (13) ÅT = 100 K
β = 92.539 (3)°Column, yellow
V = 2558.47 (17) Å30.16 × 0.03 × 0.03 mm
Z = 4
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3655 independent reflections
Radiation source: INCOATEC IµS micro–focus source2351 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.106
Detector resolution: 10.4167 pixels mm-1θmax = 59.1°, θmin = 2.6°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 55
Tmin = 0.83, Tmax = 0.95l = 3731
11600 measured reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070H-atom parameters constrained
wR(F2) = 0.156 W = 1/[Σ2(Fo2) + (0.0309P)2 + 6.4905P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3655 reflectionsΔρmax = 0.30 e Å3
339 parametersΔρmin = 0.28 e Å3
Crystal data top
C26H24N4O7SV = 2558.47 (17) Å3
Mr = 536.56Z = 4
Monoclinic, P21/nCu Kα radiation
a = 15.7027 (6) ŵ = 1.59 mm1
b = 4.8543 (2) ÅT = 100 K
c = 33.5974 (13) Å0.16 × 0.03 × 0.03 mm
β = 92.539 (3)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2351 reflections with I > 2σ(I)
Tmin = 0.83, Tmax = 0.95Rint = 0.106
11600 measured reflectionsθmax = 59.1°
Refinement top
R[F2 > 2σ(F2)] = 0.0706 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.30 e Å3
3655 reflectionsΔρmin = 0.28 e Å3
339 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.82910 (8)0.9838 (3)0.07318 (4)0.0352 (4)
O10.7365 (2)1.5472 (9)0.02761 (10)0.0509 (14)
O20.7018 (2)1.2215 (9)0.01654 (11)0.0503 (14)
O31.0163 (2)1.4497 (8)0.04611 (11)0.0500 (14)
O40.4439 (2)0.0248 (8)0.10592 (10)0.0485 (14)
O50.5638 (2)0.2773 (7)0.10342 (10)0.0383 (12)
O60.4864 (2)0.5316 (7)0.24001 (10)0.0420 (12)
O70.3549 (2)0.6713 (8)0.22011 (10)0.0474 (14)
N10.9907 (2)1.0985 (9)0.08935 (12)0.0346 (14)
N20.9367 (3)0.7543 (9)0.12948 (12)0.0370 (16)
N30.8626 (3)0.5940 (8)0.13394 (13)0.0353 (14)
N40.5687 (2)0.2105 (8)0.18830 (12)0.0331 (14)
C10.6494 (4)1.5545 (15)0.04284 (18)0.066 (3)
C20.7544 (3)1.3729 (12)0.00233 (15)0.0383 (17)
C30.8436 (3)1.3888 (11)0.01578 (15)0.0372 (17)
C40.8772 (3)1.2395 (11)0.04549 (15)0.0338 (17)
C50.9686 (3)1.2793 (12)0.05910 (15)0.0382 (17)
C60.9255 (3)0.9273 (11)0.10114 (15)0.0366 (17)
C7B1.0773 (3)1.0893 (13)0.1080 (2)0.0320 (17)0.624 (8)
C8B1.1061 (4)1.2977 (13)0.1336 (2)0.044 (3)0.624 (8)
C9B1.1888 (4)1.2897 (13)0.1501 (2)0.046 (3)0.624 (8)
C10B1.2426 (3)1.0733 (14)0.1411 (2)0.045 (2)0.624 (8)
C11B1.2137 (4)0.8649 (12)0.1155 (2)0.051 (3)0.624 (8)
C12B1.1311 (4)0.8729 (12)0.0990 (2)0.045 (3)0.624 (8)
C130.8620 (3)0.4521 (10)0.16606 (14)0.0300 (17)
C140.9306 (3)0.4598 (11)0.19870 (15)0.0426 (17)
C150.7858 (3)0.2779 (10)0.17131 (13)0.0287 (17)
C160.7861 (3)0.0648 (10)0.19881 (14)0.0312 (17)
C170.7147 (3)0.0942 (10)0.20385 (14)0.0327 (17)
C180.6403 (3)0.0423 (10)0.18172 (14)0.0300 (17)
C190.6384 (3)0.1794 (10)0.15518 (14)0.0336 (17)
C200.7097 (3)0.3316 (10)0.14958 (14)0.0317 (17)
C210.4985 (3)0.2571 (10)0.16418 (14)0.0324 (17)
C220.4970 (3)0.1693 (11)0.12144 (15)0.0354 (17)
C230.5758 (4)0.1888 (14)0.06307 (15)0.055 (2)
C240.4309 (3)0.4101 (10)0.17585 (15)0.0345 (17)
C250.4288 (3)0.5354 (11)0.21454 (16)0.0364 (17)
C260.3515 (4)0.8178 (14)0.25707 (17)0.058 (2)
C12A1.0914 (6)1.165 (3)0.1430 (3)0.045 (3)0.376 (8)
C9A1.2206 (5)0.972 (3)0.0964 (3)0.046 (3)0.376 (8)
C7A1.0723 (5)1.075 (2)0.1044 (3)0.0320 (17)0.376 (8)
C8A1.1370 (6)0.978 (3)0.0811 (3)0.044 (3)0.376 (8)
C10A1.2397 (5)1.063 (3)0.1350 (3)0.045 (2)0.376 (8)
C11A1.1750 (7)1.159 (3)0.1583 (3)0.051 (3)0.376 (8)
H1B0.645001.674200.066300.0980*
H1A0.631001.367900.050300.0980*
H11B1.250500.716900.109400.0610*0.624 (8)
H1C0.613001.626500.022300.0980*
H30.879601.512800.002500.0450*
H40.569800.297200.211300.0400*
H8B1.069401.445700.139700.0530*0.624 (8)
H9B1.208601.432100.167600.0550*0.624 (8)
H10B1.299101.067800.152400.0540*0.624 (8)
H190.586700.224600.140900.0400*
H200.707700.476600.130600.0380*
H23A0.523800.225300.046700.0830*
H23B0.623500.290000.052200.0830*
H23C0.588100.009100.062800.0830*
H240.383500.434600.157700.0410*
H26A0.396500.957600.258600.0870*
H26B0.295800.907400.258600.0870*
H26C0.359800.688400.279300.0870*
H12B1.111300.730400.081500.0540*0.624 (8)
H14A0.940800.273100.209000.0640*
H14B0.912600.578900.220300.0640*
H14C0.983300.532300.188100.0640*
H160.836600.027800.214500.0370*
H170.716700.240500.222700.0390*
H8A1.124000.916200.054700.0530*0.376 (8)
H9A1.264800.906300.080500.0550*0.376 (8)
H10A1.296801.058900.145500.0540*0.376 (8)
H11A1.188001.221300.184700.0610*0.376 (8)
H12A1.047201.231200.158900.0540*0.376 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0316 (7)0.0325 (7)0.0414 (7)0.0036 (6)0.0005 (6)0.0001 (6)
O10.045 (2)0.059 (3)0.048 (2)0.007 (2)0.0057 (18)0.011 (2)
O20.032 (2)0.067 (3)0.052 (2)0.008 (2)0.0031 (18)0.006 (2)
O30.042 (2)0.058 (3)0.050 (2)0.015 (2)0.0031 (18)0.009 (2)
O40.037 (2)0.054 (3)0.054 (2)0.010 (2)0.0040 (18)0.014 (2)
O50.032 (2)0.042 (2)0.041 (2)0.0025 (18)0.0033 (16)0.0009 (17)
O60.040 (2)0.041 (2)0.044 (2)0.0105 (19)0.0094 (18)0.0036 (18)
O70.034 (2)0.056 (3)0.052 (2)0.0129 (19)0.0018 (18)0.014 (2)
N10.025 (2)0.039 (3)0.040 (2)0.006 (2)0.0037 (19)0.000 (2)
N20.030 (2)0.034 (3)0.047 (3)0.001 (2)0.003 (2)0.002 (2)
N30.029 (2)0.028 (2)0.049 (3)0.002 (2)0.003 (2)0.001 (2)
N40.034 (3)0.028 (2)0.037 (2)0.004 (2)0.002 (2)0.0022 (19)
C10.053 (4)0.083 (5)0.060 (4)0.020 (4)0.011 (3)0.008 (4)
C20.042 (3)0.041 (3)0.032 (3)0.003 (3)0.004 (3)0.004 (3)
C30.035 (3)0.039 (3)0.038 (3)0.006 (3)0.006 (3)0.004 (3)
C40.025 (3)0.036 (3)0.041 (3)0.006 (2)0.007 (2)0.004 (3)
C50.037 (3)0.043 (3)0.035 (3)0.005 (3)0.005 (2)0.000 (3)
C60.037 (3)0.035 (3)0.038 (3)0.002 (3)0.004 (2)0.002 (3)
C7B0.021 (3)0.033 (3)0.042 (3)0.004 (2)0.002 (2)0.005 (3)
C8B0.037 (5)0.047 (5)0.048 (5)0.005 (4)0.002 (4)0.009 (5)
C9B0.037 (5)0.056 (6)0.045 (5)0.007 (5)0.003 (4)0.018 (5)
C10B0.024 (3)0.051 (4)0.059 (4)0.002 (3)0.008 (3)0.007 (3)
C11B0.028 (5)0.063 (7)0.062 (6)0.008 (5)0.002 (4)0.026 (5)
C12B0.023 (5)0.054 (6)0.058 (6)0.001 (4)0.004 (4)0.015 (5)
C130.026 (3)0.022 (3)0.042 (3)0.006 (2)0.001 (2)0.002 (2)
C140.034 (3)0.037 (3)0.056 (3)0.001 (3)0.008 (3)0.010 (3)
C150.027 (3)0.025 (3)0.034 (3)0.001 (2)0.000 (2)0.005 (2)
C160.028 (3)0.025 (3)0.040 (3)0.001 (2)0.004 (2)0.002 (2)
C170.040 (3)0.024 (3)0.034 (3)0.002 (2)0.001 (2)0.000 (2)
C180.028 (3)0.024 (3)0.038 (3)0.006 (2)0.002 (2)0.006 (2)
C190.032 (3)0.023 (3)0.045 (3)0.004 (2)0.007 (2)0.000 (2)
C200.028 (3)0.025 (3)0.042 (3)0.000 (2)0.000 (2)0.004 (2)
C210.029 (3)0.028 (3)0.040 (3)0.007 (2)0.002 (2)0.001 (2)
C220.029 (3)0.031 (3)0.046 (3)0.000 (3)0.001 (3)0.001 (3)
C230.049 (4)0.075 (5)0.042 (3)0.009 (3)0.009 (3)0.006 (3)
C240.029 (3)0.032 (3)0.042 (3)0.004 (2)0.004 (2)0.002 (2)
C250.027 (3)0.030 (3)0.052 (3)0.002 (3)0.002 (3)0.002 (3)
C260.038 (4)0.071 (4)0.064 (4)0.019 (3)0.000 (3)0.021 (4)
C12A0.023 (5)0.054 (6)0.058 (6)0.001 (4)0.004 (4)0.015 (5)
C9A0.037 (5)0.056 (6)0.045 (5)0.007 (5)0.003 (4)0.018 (5)
C7A0.021 (3)0.033 (3)0.042 (3)0.004 (2)0.002 (2)0.005 (3)
C8A0.037 (5)0.047 (5)0.048 (5)0.005 (4)0.002 (4)0.009 (5)
C10A0.024 (3)0.051 (4)0.059 (4)0.002 (3)0.008 (3)0.007 (3)
C11A0.028 (5)0.063 (7)0.062 (6)0.008 (5)0.002 (4)0.026 (5)
Geometric parameters (Å, º) top
S1—C41.743 (5)C13—C141.503 (7)
S1—C61.767 (5)C15—C201.397 (7)
O1—C11.439 (7)C15—C161.387 (7)
O1—C21.335 (7)C16—C171.378 (7)
O2—C21.219 (6)C17—C181.380 (7)
O3—C51.210 (6)C18—C191.397 (7)
O4—C221.192 (6)C19—C201.361 (7)
O5—C221.341 (6)C21—C221.497 (7)
O5—C231.442 (6)C21—C241.367 (7)
O6—C251.217 (6)C24—C251.437 (7)
O7—C251.355 (6)C1—H1A0.9800
O7—C261.434 (7)C1—H1B0.9800
N1—C51.376 (7)C1—H1C0.9800
N1—C61.390 (6)C3—H30.9500
N1—C7B1.473 (6)C8A—H8A0.9500
N1—C7A1.361 (9)C8B—H8B0.9500
N2—N31.413 (6)C9A—H9A0.9500
N2—C61.276 (7)C9B—H9B0.9500
N3—C131.281 (6)C10A—H10A0.9500
N4—C181.415 (6)C10B—H10B0.9500
N4—C211.358 (6)C11A—H11A0.9500
N4—H40.8800C11B—H11B0.9500
C2—C31.455 (7)C12A—H12A0.9500
C3—C41.324 (7)C12B—H12B0.9500
C4—C51.499 (7)C14—H14A0.9800
C7A—C12A1.389 (15)C14—H14B0.9800
C7A—C8A1.392 (14)C14—H14C0.9800
C7B—C8B1.390 (9)C16—H160.9500
C7B—C12B1.390 (8)C17—H170.9500
C8A—C9A1.389 (13)C19—H190.9500
C8B—C9B1.390 (9)C20—H200.9500
C9A—C10A1.390 (15)C23—H23B0.9800
C9B—C10B1.390 (9)C23—H23C0.9800
C10A—C11A1.390 (15)C23—H23A0.9800
C10B—C11B1.391 (9)C24—H240.9500
C11A—C12A1.389 (14)C26—H26B0.9800
C11B—C12B1.388 (9)C26—H26C0.9800
C13—C151.482 (7)C26—H26A0.9800
C4—S1—C690.8 (2)O4—C22—O5125.4 (5)
C1—O1—C2116.7 (4)C21—C24—C25122.6 (4)
C22—O5—C23116.4 (4)O6—C25—O7121.6 (5)
C25—O7—C26115.2 (4)O6—C25—C24125.7 (5)
C5—N1—C6115.3 (4)O7—C25—C24112.7 (4)
C5—N1—C7B122.1 (4)O1—C1—H1A109.00
C5—N1—C7A122.0 (5)O1—C1—H1B109.00
C6—N1—C7B122.6 (4)O1—C1—H1C109.00
C6—N1—C7A122.5 (5)H1A—C1—H1B109.00
N3—N2—C6110.8 (4)H1A—C1—H1C110.00
N2—N3—C13115.0 (4)H1B—C1—H1C109.00
C18—N4—C21129.2 (4)C2—C3—H3118.00
C21—N4—H4115.00C4—C3—H3118.00
C18—N4—H4115.00C7A—C8A—H8A120.00
O1—C2—C3111.6 (4)C9A—C8A—H8A120.00
O2—C2—C3124.8 (5)C9B—C8B—H8B120.00
O1—C2—O2123.6 (4)C7B—C8B—H8B120.00
C2—C3—C4123.5 (5)C10A—C9A—H9A120.00
S1—C4—C5111.1 (4)C8A—C9A—H9A120.00
S1—C4—C3128.6 (4)C8B—C9B—H9B120.00
C3—C4—C5120.2 (5)C10B—C9B—H9B120.00
N1—C5—C4110.5 (4)C11A—C10A—H10A120.00
O3—C5—C4125.3 (5)C9A—C10A—H10A120.00
O3—C5—N1124.2 (4)C11B—C10B—H10B120.00
S1—C6—N1112.3 (4)C9B—C10B—H10B120.00
S1—C6—N2125.8 (4)C10A—C11A—H11A120.00
N1—C6—N2121.8 (4)C12A—C11A—H11A120.00
N1—C7A—C8A121.2 (8)C10B—C11B—H11B120.00
C8A—C7A—C12A119.9 (8)C12B—C11B—H11B120.00
N1—C7A—C12A118.8 (8)C7A—C12A—H12A120.00
N1—C7B—C12B119.3 (5)C11A—C12A—H12A120.00
C8B—C7B—C12B120.0 (5)C11B—C12B—H12B120.00
N1—C7B—C8B120.7 (5)C7B—C12B—H12B120.00
C7A—C8A—C9A120.0 (10)C13—C14—H14A110.00
C7B—C8B—C9B119.9 (6)C13—C14—H14C109.00
C8A—C9A—C10A120.0 (9)H14A—C14—H14B109.00
C8B—C9B—C10B120.0 (6)C13—C14—H14B110.00
C9A—C10A—C11A119.9 (8)H14B—C14—H14C109.00
C9B—C10B—C11B120.0 (5)H14A—C14—H14C109.00
C10A—C11A—C12A120.1 (10)C15—C16—H16119.00
C10B—C11B—C12B120.0 (5)C17—C16—H16119.00
C7A—C12A—C11A120.0 (9)C18—C17—H17120.00
C7B—C12B—C11B120.0 (6)C16—C17—H17120.00
N3—C13—C15116.3 (4)C18—C19—H19120.00
C14—C13—C15118.9 (4)C20—C19—H19120.00
N3—C13—C14124.7 (4)C15—C20—H20119.00
C13—C15—C20120.5 (4)C19—C20—H20119.00
C13—C15—C16121.7 (4)O5—C23—H23B110.00
C16—C15—C20117.7 (4)O5—C23—H23C110.00
C15—C16—C17121.4 (4)H23A—C23—H23C109.00
C16—C17—C18120.4 (4)H23B—C23—H23C110.00
C17—C18—C19118.6 (4)H23A—C23—H23B109.00
N4—C18—C17118.0 (4)O5—C23—H23A109.00
N4—C18—C19123.3 (4)C25—C24—H24119.00
C18—C19—C20120.8 (4)C21—C24—H24119.00
C15—C20—C19121.1 (4)O7—C26—H26C109.00
N4—C21—C24122.7 (4)O7—C26—H26B109.00
N4—C21—C22120.2 (4)H26B—C26—H26C109.00
C22—C21—C24116.8 (4)H26A—C26—H26B109.00
O5—C22—C21110.0 (4)H26A—C26—H26C109.00
O4—C22—C21124.6 (4)O7—C26—H26A110.00
C6—S1—C4—C3178.8 (5)S1—C4—C5—O3177.2 (5)
C6—S1—C4—C50.7 (4)C3—C4—C5—N1178.3 (5)
C4—S1—C6—N10.0 (4)C3—C4—C5—O33.2 (8)
C4—S1—C6—N2179.2 (5)S1—C4—C5—N11.3 (5)
C1—O1—C2—C3178.6 (5)N1—C7B—C12B—C11B178.3 (5)
C1—O1—C2—O21.0 (8)N1—C7B—C8B—C9B178.3 (6)
C23—O5—C22—C21174.0 (4)C8B—C7B—C12B—C11B0.1 (10)
C23—O5—C22—O46.1 (7)C12B—C7B—C8B—C9B0.2 (10)
C26—O7—C25—C24175.6 (5)C7B—C8B—C9B—C10B0.2 (10)
C26—O7—C25—O62.6 (7)C8B—C9B—C10B—C11B0.1 (10)
C5—N1—C6—N2178.4 (5)C9B—C10B—C11B—C12B0.1 (10)
C7B—N1—C5—C4179.1 (5)C10B—C11B—C12B—C7B0.1 (10)
C5—N1—C7B—C12B105.5 (7)N3—C13—C15—C16163.1 (5)
C6—N1—C5—O3177.2 (5)C14—C13—C15—C1619.2 (7)
C7B—N1—C5—O32.4 (8)C14—C13—C15—C20158.1 (4)
C6—N1—C5—C41.4 (6)N3—C13—C15—C2019.5 (7)
C5—N1—C6—S10.8 (6)C13—C15—C16—C17179.2 (4)
C5—N1—C7B—C8B72.9 (7)C20—C15—C16—C171.8 (7)
C6—N1—C7B—C8B106.6 (7)C16—C15—C20—C190.1 (7)
C7B—N1—C6—N21.2 (8)C13—C15—C20—C19177.6 (4)
C7B—N1—C6—S1179.6 (4)C15—C16—C17—C180.7 (7)
C6—N1—C7B—C12B74.9 (7)C16—C17—C18—C192.0 (7)
N3—N2—C6—N1176.3 (4)C16—C17—C18—N4179.5 (4)
N3—N2—C6—S14.6 (6)C17—C18—C19—C203.7 (7)
C6—N2—N3—C13167.4 (5)N4—C18—C19—C20179.0 (4)
N2—N3—C13—C15179.0 (4)C18—C19—C20—C152.6 (7)
N2—N3—C13—C143.5 (7)C24—C21—C22—O461.8 (7)
C18—N4—C21—C24175.0 (5)N4—C21—C22—O554.8 (6)
C21—N4—C18—C1923.3 (8)C22—C21—C24—C25172.4 (5)
C18—N4—C21—C2212.5 (7)N4—C21—C22—O4125.3 (5)
C21—N4—C18—C17159.3 (5)N4—C21—C24—C250.3 (8)
O2—C2—C3—C40.5 (9)C24—C21—C22—O5118.2 (5)
O1—C2—C3—C4179.1 (5)C21—C24—C25—O7178.4 (5)
C2—C3—C4—C5176.5 (5)C21—C24—C25—O63.5 (8)
C2—C3—C4—S14.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O60.882.012.705 (5)135
C1—H1B···O4i0.982.543.402 (8)147
C3—H3···O3ii0.952.373.191 (6)145
C8B—H8B···N2iii0.952.583.461 (8)155
C12B—H12B···O3iv0.952.313.216 (7)159
C14—H14A···O6v0.982.503.375 (6)148
C14—H14C···N20.982.332.735 (7)104
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+3, z; (iii) x, y+1, z; (iv) x, y1, z; (v) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···O60.882.012.705 (5)135
C1—H1B···O4i0.982.543.402 (8)147
C3—H3···O3ii0.952.373.191 (6)145
C8B—H8B···N2iii0.952.583.461 (8)155
C12B—H12B···O3iv0.952.313.216 (7)159
C14—H14A···O6v0.982.503.375 (6)148
Symmetry codes: (i) x+1, y+2, z; (ii) x+2, y+3, z; (iii) x, y+1, z; (iv) x, y1, z; (v) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Tulane University, Manchester Metropolitan University, Erciyes University and Minia University for supporting this study.

References

First citationAgrawal, V. K., Sachan, S. & Khadikar, P. V. (2000). Acta Pharm. 50, 281–290.  CAS
First citationBabaoglu, K., Page, M. A., Jones, V. C., McNeil, M. R., Dong, C., Naismith, J. H. & Lee, R. E. (2003). Bioorg. Med. Chem. Lett. 13, 3227–3230.  Web of Science CrossRef PubMed CAS
First citationBondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem. 42, 948–954.  Web of Science CrossRef PubMed CAS
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChaudhari, S. K., Verma, M., Chaturvedi, A. K. & Parmar, S. S. (1975). J. Pharm. Sci. 64, 614–617.  CrossRef PubMed CAS Web of Science
First citationChaudhary, M., Parmar, S. S., Chaudhary, S. K., Chaturvedi, A. K. & Rama, S. B. V. (1976). J. Pharm. Sci. 65, 443–446.  CrossRef PubMed CAS Web of Science
First citationDiurno, M. V., Mazzoni, O., Correale, G., Monterrey, I. G., Calignano, A., La Rana, G. & Bolognese, A. (1999). II Farmaco, 54, 579–583.  Web of Science CrossRef CAS
First citationDwivedi, C., Gupta, T. K. & Parmar, S. S. (1972). J. Med. Chem. 15, 553–554.  CrossRef CAS PubMed Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293.  Web of Science CrossRef PubMed CAS
First citationOmar, K., Geronikaki, A., Zoumpoulakis, P., Camoutsis, C., Sokovic, M., Ciric, A. & Glamoclija, J. (2010). Bioorg. Med. Chem. 18, 426–432.  Web of Science CrossRef PubMed CAS
First citationOttanà, R., Carotti, S., Maccari, R., Landini, I., Chiricosta, G., Caciagli, B. & Vigorita, M. G. (2005). Bioorg. Med. Chem. Lett. 15, 3930–3933.  Web of Science PubMed
First citationParmar, S. S., Dwivedi, C., Chaudhari, A. & Gupta, T. K. (1972). J. Med. Chem. 15, 99–101.  CrossRef CAS PubMed Web of Science
First citationRawal, R. K., Prabhakar, Y. S., Katti, S. B. & De Clercq, E. (2005). Bioorg. Med. Chem. 13, 6771–6776.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationSuzuki, Y., Akima, M. & Tamura, K. (1999). Gen. Pharmacol. 32, 57–63.  Web of Science CrossRef CAS PubMed
First citationVicini, P., Geronikaki, A., Incerti, M., Zani, F., Dearden, J. & Hewitt, M. (2008). Bioorg. Med. Chem. 16, 3714–3724.  Web of Science CrossRef PubMed CAS
First citationVigorita, M. G., Ottanà, R., Monforte, F., Maccari, R., Monforte, M. T., Trovato, A., Taviano, M. F., Miceli, N., De Luca, G., Alcaro, S. & Ortuso, F. (2003). Bioorg. Med. Chem. 11, 999–1006.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1844-o1845
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds