[Journal logo]

Volume 69 
Part 12 
Pages m640-m641  
December 2013  

Received 9 September 2013
Accepted 25 October 2013
Online 6 November 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.008 Å
Disorder in solvent or counterion
R = 0.055
wR = 0.131
Data-to-parameter ratio = 14.3
Details
Open access

Bis(2,2'-bipyridine)[1,9-bis(diphenylphos­phanyl)-1,2,3,4,6,7,8,9-octahydropyrim­ido[1,2-a]pyrimidin-5-ium]ruthenium(II) hexa­fluorido­phosphate dibromide di­chloro­methane disolvate monohydrate

aLaboratoire de Chimie de Coordination, UPR-CNRS 8241, 205, route de Narbonne, 31077 Toulouse cedex, France
Correspondence e-mail: laure.vendier@lcc-toulouse.fr, alain.igau@lcc-toulouse.fr

In the cation of the title complex, [Ru(C31H32N3P2)(C10H8N2)2](PF6)(Br)2·2CH2Cl2·H2O, the ruthenium ion is coordinated in a distorted octa­hedral geometry by two 2,2'-bi­pyridine (bpy) ligands and a chelating cationic N-di­phenyl­phosphino-1,3,4,6,7,8-hexa­hydro-2-pyrimido[1,2-a]pyrimidine [(PPh2)2-hpp] ligand. The tricationic charge of the complex is balanced by two bromide and one hexa­fluorido­phosphate counter-anions. The compound crystallized with two mol­ecules of di­chloro­methane (one of which is equally disordered about a Cl atom) and a water mol­ecule. In the crystal, one of the Br anions bridges two water mol­ecules via O-H...Br hydrogen bonds, forming a centrosymmetric diamond-shaped R42(8) motif. The cation and anions and the solvent mol­ecules are linked via C-H...F, C-H...Br, C-H...Cl and C-H...O hydrogen bonds, forming a three-dimensional network.

Related literature

For the synthesis of the precursor, [Ru(bpy)2(Ph2PH)2](PF6)2, see: Sullivan et al. (1978[Sullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). Inorg. Chem. 17, 3334-3341.]).

[Scheme 1]

Experimental

Crystal data
  • [Ru(C31H32N3P2)(C10H8N2)2](PF6)(Br)2·2CH2Cl2·H2O

  • Mr = 1414.63

  • Monoclinic, P 21 /n

  • a = 16.1770 (4) Å

  • b = 20.9840 (5) Å

  • c = 16.6730 (4) Å

  • [beta] = 96.654 (2)°

  • V = 5621.7 (2) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 2.04 mm-1

  • T = 100 K

  • 0.18 × 0.05 × 0.04 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.964, Tmax = 1.0

  • 44290 measured reflections

  • 10285 independent reflections

  • 7429 reflections with I > 2[sigma](I)

  • Rint = 0.079

Refinement
  • R[F2 > 2[sigma](F2)] = 0.055

  • wR(F2) = 0.131

  • S = 1.04

  • 10285 reflections

  • 718 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 1.72 e Å-3

  • [Delta][rho]min = -1.69 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1A...Br1i 0.99 (5) 2.31 (5) 3.300 (5) 173 (3)
O1-H1B...Br1ii 1.00 (4) 2.35 (4) 3.345 (5) 178 (6)
C4-H4A...Br2iii 0.99 2.90 3.651 (5) 133
C6-H6A...Cl7 0.99 2.82 3.738 (8) 155
C6-H6B...O1iv 0.99 2.52 3.358 (8) 142
C9-H9...O1v 0.95 2.40 3.208 (8) 142
C10-H10...Cl3vi 0.95 2.72 3.316 (8) 122
C100-H10A...Br1vii 0.99 2.92 3.618 (11) 128
C106-H10C...Cl1 0.99 2.65 3.54 (2) 150
C106-H10D...O1iv 0.99 2.51 3.464 (16) 162
C11-H11...F3vii 0.95 2.35 3.209 (7) 150
C17-H17...F5iii 0.95 2.25 3.056 (6) 142
C21-H21...Br1viii 0.95 2.91 3.787 (5) 154
C24-H24...Br1viii 0.95 2.91 3.835 (5) 164
C25-H25...F4ix 0.95 2.54 3.453 (6) 160
C31-H31...Cl3x 0.95 2.76 3.566 (7) 143
C42-H42...F3iii 0.95 2.41 3.319 (7) 160
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z+1; (vi) -x, -y+1, -z+2; (vii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (viii) x, y, z+1; (ix) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (x) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2644 ).


Acknowledgements

CS is grateful to the Université de Toulouse and the Région Midi-Pyrénées for a doctoral fellowship. Johnson Matthey is greatly acknowledged for a gift of RuCl3·xH2O.

References

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  [CrossRef] [IUCr Journals]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Sullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). Inorg. Chem. 17, 3334-3341.  [CrossRef] [ChemPort] [Web of Science]


Acta Cryst (2013). E69, m640-m641   [ doi:10.1107/S1600536813029462 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.