organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1766-o1767

5-Acetyl-4-(3-hy­dr­oxy­phen­yl)-6-methyl-1,2,3,4-tetra­hydro­pyrimidin-2-one–tris­­(hy­dr­oxy­meth­yl)ammonium chloride (2/1)

aPG & Research Department of Chemistry, The New College (Autonomous), Chennai 600 014, Tamilnadu, India, and bDepartment of Physics, The New College (Autonomous), Chennai 600 014, Tamilnadu, India
*Correspondence e-mail: mnizam_new@yahoo.in

(Received 28 October 2013; accepted 7 November 2013; online 13 November 2013)

The asymmetric unit of the title compound, 2C13H14N2O3·C3H10NO3+·Cl, contains two independent mol­ecules (A and B) of the title pyrimidine derivative and one ion-pair of tris­(hy­droxy­meth­yl)ammonium chloride. The pyrimidine ring in each pyrimidine derivative has a half-chair conformation. Its mean plane is inclined to the benzene ring by 87.2 (3)° in mol­ecule A and 85.7 (2)° in mol­ecule B. In the crystal, the pyrimidine derivatives are connected to each other by N—H⋯O hydrogen bonds, forming chains propagating along the b-axis direction. The chains are linked via O—H—Cl hydrogen bonds, forming corrugated sheets lying parallel to the bc plane. The sheets are linked via C—H⋯O hydrogen bonds, forming a three-dimensional framework. The tris­(hy­droxy­meth­yl)ammonium chloride mol­ecules are located in the cages of the framework. There are also further C—H⋯O hydrogen bonds and C—H⋯π inter­actions present in the three-dimensional framework structure. Both the cation and chloride anion of the tris­(hy­droxy­meth­yl)ammonium chloride ion pair are disordered over two positions, with a refined occupancy ratio of 0.418 (8):0.582 (8) for the cation and 0.71 (4):0.29 (4) for the anion.

Related literature

For the crystal structures of related pyrimidine derivatives, see: NizamMohideen et al. (2008a[Nizam Mohideen, M., Rasheeth, A., Huq, C. A. M. A. & Nizar, S. S. (2008a). Acta Cryst. E64, o1752.],b[Nizam Mohideen, M., Rasheeth, A. & Huq, C. A. M. A. (2008b). Acta Cryst. E64, o1812.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • 2C13H14N2O3·C3H10NO3+·Cl

  • Mr = 636.09

  • Orthorhombic, P n a 21

  • a = 15.7317 (7) Å

  • b = 7.2634 (12) Å

  • c = 28.8121 (3) Å

  • V = 3292.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.966

  • 27037 measured reflections

  • 5759 independent reflections

  • 4284 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.157

  • S = 0.88

  • 5759 reflections

  • 489 parameters

  • 270 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.90 (3) 2.06 (4) 2.882 (6) 151 (4)
N2—H2A⋯O2ii 0.88 (2) 1.99 (3) 2.865 (5) 170 (5)
O3—H3⋯Cl1iii 0.82 2.26 3.044 (8) 161
N3—H3A⋯O5ii 0.87 (3) 1.97 (3) 2.839 (5) 175 (3)
N4—H4A⋯O1 0.88 (3) 2.03 (3) 2.836 (6) 152 (3)
O6—H6⋯Cl1 0.82 2.27 3.090 (7) 173
C13—H13⋯O1i 0.93 2.58 3.496 (7) 171
C18—H18B⋯O1iv 0.96 2.48 3.411 (7) 164
C22—H22⋯O4i 0.93 2.56 3.485 (6) 171
C28′—H28DCg1v 0.97 2.65 3.598 (17) 166
C27—H27ACg2vi 0.97 2.73 3.444 (19) 131
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z; (iii) [-x+{\script{5\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (v) [-x+2, -y+1, z-{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing investigations of pyrimidine derivatives (NizamMohideen et al., 2008a,b), the title compound was synthesized and we report herein on its crystal structure.

In the asymmetric unit of the title compound there are two independent pyrimidine derivative molecules (A and B), and one nitrilotrimethanol hydrochloride molecule (Fig. 1). All bond lengths (Allen et al., 1987) and angles in the pyrimidine derivative are within normal ranges and comparable with those in closely related structures (NizamMohideen et al., 2008a,b). The normal probability plot analyses (International Tables for X-ray Crystallography, 1974, Vol. IV, pp. 293–309) for both bond lengths and angles show that the differences between the two symmetry independent molecules are of a statistical nature.

The dihydropyrimidine rings, (N1/N2/C1—C4) in molecule A and (N3/N4/C14—C17) in molecule B, adopt half-chair conformations. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983), are q2 = 0.282 (5) Å, ϕ = 126.3 (10)°, θ = 108.4 (10)°, ΔS(C2/N1) is 16.9 (7)° and Δ2(N2/C4) is 15.8 (7)° for molecule A, and q2 =0.292 (5) Å, ϕ = 173.7 (9)°, θ = 72.0 (9)°, ΔS(C14/C16) is 18.4 (7)° and Δ2(N4/C17) is 16.1 (7)° for molecule B.

The dihedral angle between the mean plane of the pyrimidine ring and the benzene ring is 87.2 (3) in molecule A and 85.7 (2)° in molecule B. These values are close that of 86.5 (1)° found for Ethyl 6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydropyrimidine-5-carboxylate (NizamMohideen et al., 2008a).

The crystal packing is stabilized by strong N—H···O and O—H···Cl inter- and intramolecular hydrogen bonds and week intra- and intermolecular C—H···O and C—H···Cl interaction (Fig. 2 and Table 1). In both molecules, atoms O2 and O5 act donors in strong intermolecular N—H···O hydrogen bonds via H2A and H3A with the pyrimidine ring atoms N2 and N3, respectively, of a symmetry related molecule, generating a C(6) chain (Bernstein et al., 1995). The interlinking of A and B molecules via strong N—H···O (N1—H1A···O4 and N4—H4A···O1) hydrogen bond generates infinite chains running along the a axis direction. The molecular packing is further stabilized by C—H···π interactions involving a methylene H atom of the tris(hydroxymethyl)ammonium cation and the pyrimidine ring of an adjacent molecule (Table 1). The crystal structure is further stabilized by O—H···Cl hydrogen bonds to form a three-dimensional supramolecular framework (Table 1 and Fig. 2).

The tris(hydroxymethyl)ammonium chloride molecule is disordered over two positions with refined occupancy ratios of 0.418 (8):0.528 (8) for the cation and 0.71 (4):0.29 (4) for the Cl- anion. The geometry was regularized by soft restraints.

Related literature top

For the crystal structures of related pyrimidine derivatives, see: NizamMohideen et al. (2008a,b). For standard bond lengths, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For graph-set analysis, see: Bernstein et al. (1995).

Experimental top

A mixture of urea, 3-hydroxybenzaldehyde and acetyl acetone in the molar ratio 1.5:1:1 was ground in a mortar and pestle, in the presence of a catalytic amount of phosphoric acid, for 30 minutes, and then poured into a beaker containing ice cold water. The product obtained, 6-methyl-5-acetyl-3,4-dihydro-4-(3-hydroxyphenyl)-2(1H)-pyrimidinone [I], was filtered, washed with water and dried in air. Under ice cold conditions a few drops of triethylamine (0.01 mole) were added to chloroacetyl chloride (0.01 mole). 0.01 mol of [I] was added and then the mixture was stirred well for 10 min. Ethanol (20 ml) was then added and the mixture irradiated with microwave irradiation for 30 s. On evaporation of the solvent, the title solid product was obtained. It was recrystallized from ethanol giving brown block-like crystals suitable for X-Ray diffraction analysis.

Refinement top

The tris(hydroxymethyl)ammonium chloride molecule is disordered both thermally and positionally; over two positions with refined occupancy ratios of 0.418 (8):0.528 (8) for the cation and 0.71 (4):0.29 (4) for the Cl- anion. The corresponding bond distances involving the disordered atoms were restrained to be equal. The NH H atoms of the pyrimidine derivatives were located in difference Fourier maps and refined with Uiso(H) = 1.2Ueq(N). The OH, NH(cation) and C-bound H-atoms were placed in calculated positions and treated as riding atoms: O—H = 0.82 Å, N—H = 0.91 Å, C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(C-methyl and O) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level. Only the major component of the tris(hydroxymethyl)ammonium chloride molecule is shown.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
5-Acetyl-4-(3-hydroxyphenyl)-6-methyl-1,2,3,4-tetrahydropyrimidin-2-one–tris(hydroxymethyl)ammonium chloride (2/1) top
Crystal data top
2C13H14N2O3·C3H10NO3+·ClF(000) = 1344
Mr = 636.09Dx = 1.283 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5539 reflections
a = 15.7317 (7) Åθ = 2.3–22.5°
b = 7.2634 (12) ŵ = 0.17 mm1
c = 28.8121 (3) ÅT = 293 K
V = 3292.2 (6) Å3Block, brown
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5759 independent reflections
Radiation source: fine-focus sealed tube4284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and ϕ scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1818
Tmin = 0.950, Tmax = 0.966k = 88
27037 measured reflectionsl = 3433
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.88 w = 1/[σ2(Fo2) + (0.1275P)2]
where P = (Fo2 + 2Fc2)/3
5759 reflections(Δ/σ)max = 0.001
489 parametersΔρmax = 0.21 e Å3
270 restraintsΔρmin = 0.23 e Å3
Crystal data top
2C13H14N2O3·C3H10NO3+·ClV = 3292.2 (6) Å3
Mr = 636.09Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 15.7317 (7) ŵ = 0.17 mm1
b = 7.2634 (12) ÅT = 293 K
c = 28.8121 (3) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5759 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4284 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.966Rint = 0.038
27037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047270 restraints
wR(F2) = 0.157H atoms treated by a mixture of independent and constrained refinement
S = 0.88Δρmax = 0.21 e Å3
5759 reflectionsΔρmin = 0.23 e Å3
489 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.1898 (3)0.1336 (5)0.76654 (15)0.0627 (17)
O21.0190 (3)0.5947 (4)0.81444 (19)0.0739 (16)
O31.2755 (3)0.7663 (6)0.90241 (17)0.0800 (19)
N11.1703 (3)0.1712 (6)0.77776 (16)0.0427 (14)
N21.0738 (3)0.0308 (5)0.80570 (14)0.0394 (14)
C11.1482 (3)0.0060 (5)0.78268 (17)0.0397 (16)
C21.0148 (3)0.1002 (5)0.81631 (16)0.0340 (16)
C31.0405 (3)0.2834 (6)0.81304 (18)0.0353 (16)
C41.1346 (3)0.3226 (6)0.80297 (15)0.0363 (14)
C50.9322 (4)0.0233 (7)0.8310 (2)0.0557 (19)
C60.9843 (3)0.4432 (6)0.8171 (2)0.0473 (18)
C70.8944 (4)0.4363 (7)0.8239 (3)0.080 (3)
C81.1811 (3)0.3670 (5)0.84776 (16)0.0330 (14)
C91.2002 (4)0.2298 (7)0.8808 (2)0.050 (2)
C101.2412 (5)0.2783 (10)0.9205 (2)0.067 (2)
C111.2679 (4)0.4511 (8)0.92887 (18)0.0463 (17)
C121.2508 (4)0.5852 (7)0.89731 (19)0.0483 (19)
C131.2081 (3)0.5437 (7)0.8560 (2)0.0410 (17)
O41.3085 (2)0.6328 (4)0.73448 (12)0.0469 (11)
O51.4787 (3)0.0947 (4)0.6874 (2)0.0797 (19)
O61.2233 (4)0.2696 (6)0.60050 (16)0.082 (2)
N31.4242 (3)0.5345 (5)0.69651 (15)0.0435 (14)
N41.3262 (2)0.3263 (6)0.72435 (15)0.0380 (14)
C141.3476 (3)0.4990 (6)0.71941 (16)0.0363 (16)
C151.3671 (3)0.1749 (5)0.69814 (15)0.0373 (16)
C161.4586 (3)0.2193 (5)0.68982 (18)0.0337 (16)
C171.4817 (3)0.3934 (6)0.68695 (18)0.0380 (16)
C181.5676 (3)0.4680 (6)0.67216 (19)0.0433 (16)
C191.5110 (3)0.0543 (6)0.6852 (2)0.0417 (14)
C201.6079 (3)0.0632 (7)0.6794 (3)0.063 (2)
C211.3158 (3)0.1330 (7)0.65405 (17)0.0410 (17)
C221.2883 (3)0.0439 (7)0.6458 (2)0.0437 (17)
C231.2456 (3)0.0907 (7)0.60659 (19)0.0500 (19)
C241.2280 (4)0.0445 (9)0.5741 (2)0.063 (2)
C251.2538 (4)0.2274 (7)0.5825 (2)0.0483 (19)
C261.2990 (4)0.2677 (8)0.6224 (2)0.0523 (19)
O7'1.0035 (13)0.728 (2)0.4720 (8)0.292 (8)0.582 (8)
O8'0.9692 (11)0.201 (2)0.4311 (5)0.196 (6)0.582 (8)
O9'0.9596 (13)0.263 (3)0.5715 (6)0.229 (7)0.582 (8)
N5'0.9720 (5)0.4167 (11)0.4963 (4)0.089 (3)0.582 (8)
C27'0.9651 (9)0.6189 (16)0.5113 (6)0.164 (5)0.582 (8)
C28'0.9618 (11)0.407 (2)0.4438 (5)0.155 (6)0.582 (8)
C29'0.9145 (11)0.306 (2)0.5242 (5)0.162 (6)0.582 (8)
O71.0080 (11)0.673 (2)0.5558 (6)0.173 (6)0.418 (8)
O80.9161 (16)0.214 (3)0.4526 (9)0.243 (8)0.418 (8)
O91.009 (2)0.091 (3)0.5610 (10)0.293 (9)0.418 (8)
N50.9777 (12)0.3735 (18)0.5171 (5)0.123 (5)0.418 (8)
C270.9570 (12)0.509 (2)0.5539 (7)0.127 (6)0.418 (8)
C280.9308 (18)0.416 (3)0.4721 (7)0.155 (6)0.418 (8)
C290.9450 (17)0.178 (2)0.5314 (8)0.189 (7)0.418 (8)
Cl11.1695 (4)0.3682 (5)0.5004 (2)0.0599 (13)0.71 (4)
Cl1'1.1562 (16)0.335 (4)0.5030 (8)0.105 (4)0.29 (4)
H1A1.2138 (19)0.195 (6)0.7584 (12)0.0510*
H2A1.058 (3)0.147 (3)0.8046 (17)0.0470*
H31.300500.778800.927200.0970*
H41.137400.431700.783000.0440*
H5A0.887100.100500.819800.0840*
H5B0.930000.017700.864200.0840*
H5C0.925800.098300.818400.0840*
H7A0.871800.559200.823900.1210*
H7B0.882200.378500.853100.1210*
H7C0.868700.366800.799300.1210*
H91.185000.107900.875500.0600*
H101.251100.188300.942800.0800*
H111.297700.478500.955900.0560*
H131.197900.635600.834300.0490*
H3A1.438 (3)0.650 (4)0.6926 (18)0.0520*
H4A1.2747 (15)0.298 (6)0.7333 (12)0.0460*
H61.209000.286100.573400.0980*
H151.365100.064700.717800.0450*
H18A1.561300.592700.661700.0650*
H18B1.606000.464700.698100.0650*
H18C1.589900.393700.647400.0650*
H20A1.631800.056600.684700.0940*
H20B1.621500.103300.648600.0940*
H20C1.631100.148700.701500.0940*
H221.299400.134400.667800.0520*
H241.199300.014800.546900.0750*
H251.240500.320000.561400.0580*
H261.318100.387100.627700.0630*
H5'1.025700.378900.503000.1070*0.582 (8)
H7'1.053600.698700.468800.4380*0.582 (8)
H8'0.930900.143300.443900.2940*0.582 (8)
H9'0.968800.359900.585300.3440*0.582 (8)
H27C0.906200.653400.516100.1970*0.582 (8)
H27D0.996300.639800.539900.1970*0.582 (8)
H28C1.005900.477700.428500.1860*0.582 (8)
H28D0.906900.455200.434500.1860*0.582 (8)
H29C0.901300.191600.508200.1940*0.582 (8)
H29D0.861900.371800.529600.1940*0.582 (8)
H51.034800.370800.512100.1480*0.418 (8)
H71.024900.698200.529700.2600*0.418 (8)
H80.897800.220400.426000.3640*0.418 (8)
H9A1.024300.163600.581000.4400*0.418 (8)
H27A0.898100.545200.550100.1530*0.418 (8)
H27B0.961400.446700.583700.1530*0.418 (8)
H28A0.965200.489400.451200.1870*0.418 (8)
H28B0.877300.478600.477900.1870*0.418 (8)
H29A0.891700.189300.548100.2270*0.418 (8)
H29B0.935400.104100.503900.2270*0.418 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.061 (3)0.059 (3)0.068 (3)0.0137 (19)0.012 (2)0.020 (2)
O20.053 (2)0.0307 (19)0.138 (4)0.0040 (16)0.002 (3)0.003 (2)
O30.107 (4)0.056 (3)0.077 (3)0.022 (2)0.041 (3)0.006 (2)
N10.040 (2)0.039 (2)0.049 (3)0.0013 (18)0.0200 (19)0.0030 (19)
N20.042 (2)0.0253 (19)0.051 (3)0.0083 (16)0.007 (2)0.0034 (18)
C10.042 (3)0.034 (2)0.043 (3)0.001 (2)0.002 (2)0.006 (2)
C20.042 (3)0.027 (2)0.033 (3)0.0009 (18)0.006 (2)0.0004 (19)
C30.031 (3)0.033 (2)0.042 (3)0.0068 (18)0.003 (2)0.003 (2)
C40.025 (2)0.040 (2)0.044 (3)0.0119 (18)0.008 (2)0.007 (2)
C50.042 (3)0.049 (3)0.076 (4)0.006 (2)0.012 (3)0.008 (3)
C60.054 (3)0.021 (2)0.067 (4)0.008 (2)0.007 (3)0.006 (2)
C70.053 (4)0.040 (3)0.148 (6)0.014 (2)0.004 (4)0.035 (3)
C80.026 (2)0.026 (2)0.047 (3)0.0025 (16)0.010 (2)0.005 (2)
C90.056 (4)0.028 (3)0.067 (4)0.006 (2)0.008 (3)0.008 (3)
C100.075 (4)0.077 (4)0.048 (4)0.008 (3)0.003 (3)0.009 (3)
C110.047 (3)0.054 (3)0.038 (3)0.004 (2)0.004 (2)0.004 (3)
C120.055 (4)0.045 (3)0.045 (3)0.002 (2)0.004 (3)0.009 (2)
C130.040 (3)0.038 (3)0.045 (3)0.010 (2)0.004 (2)0.002 (2)
O40.042 (2)0.0386 (19)0.060 (2)0.0107 (14)0.0150 (17)0.0007 (17)
O50.049 (2)0.0261 (19)0.164 (5)0.0039 (16)0.005 (3)0.005 (2)
O60.131 (5)0.055 (3)0.060 (3)0.037 (3)0.003 (3)0.002 (2)
N30.037 (2)0.0276 (19)0.066 (3)0.0065 (16)0.015 (2)0.002 (2)
N40.029 (2)0.040 (2)0.045 (3)0.0097 (16)0.0058 (17)0.0005 (19)
C140.028 (2)0.045 (3)0.036 (3)0.007 (2)0.009 (2)0.010 (2)
C150.043 (3)0.021 (2)0.048 (3)0.0082 (18)0.002 (2)0.0019 (19)
C160.031 (3)0.026 (2)0.044 (3)0.0033 (17)0.004 (2)0.0038 (19)
C170.023 (2)0.040 (3)0.051 (3)0.0007 (17)0.003 (2)0.001 (2)
C180.037 (3)0.030 (2)0.063 (3)0.0072 (19)0.013 (3)0.001 (2)
C190.024 (2)0.042 (2)0.059 (3)0.0027 (19)0.007 (2)0.015 (2)
C200.026 (3)0.055 (3)0.108 (5)0.003 (2)0.006 (3)0.012 (3)
C210.029 (3)0.050 (3)0.044 (3)0.002 (2)0.005 (2)0.001 (2)
C220.046 (3)0.038 (3)0.047 (3)0.001 (2)0.002 (2)0.004 (2)
C230.044 (3)0.051 (3)0.055 (4)0.019 (2)0.003 (3)0.002 (2)
C240.057 (4)0.068 (4)0.063 (4)0.002 (3)0.000 (3)0.003 (3)
C250.053 (3)0.038 (3)0.054 (4)0.004 (2)0.005 (3)0.012 (2)
C260.057 (4)0.049 (3)0.051 (3)0.014 (2)0.006 (3)0.001 (3)
O7'0.300 (15)0.273 (14)0.303 (15)0.041 (11)0.023 (11)0.032 (11)
O8'0.179 (10)0.264 (11)0.144 (9)0.084 (9)0.033 (8)0.031 (8)
O9'0.216 (12)0.293 (13)0.179 (10)0.038 (11)0.014 (9)0.013 (10)
N5'0.052 (3)0.122 (5)0.094 (7)0.026 (4)0.013 (5)0.019 (6)
C27'0.145 (8)0.169 (9)0.177 (11)0.073 (7)0.024 (8)0.055 (8)
C28'0.123 (9)0.208 (11)0.135 (10)0.047 (9)0.058 (8)0.033 (9)
C29'0.149 (10)0.202 (12)0.134 (8)0.014 (9)0.049 (7)0.004 (9)
O70.172 (11)0.180 (10)0.168 (11)0.049 (9)0.016 (9)0.031 (9)
O80.220 (14)0.271 (14)0.237 (15)0.031 (12)0.010 (12)0.036 (12)
O90.290 (16)0.301 (16)0.289 (16)0.052 (13)0.012 (13)0.013 (13)
N50.117 (8)0.156 (8)0.097 (8)0.018 (7)0.001 (7)0.011 (7)
C270.106 (9)0.138 (10)0.138 (10)0.006 (8)0.033 (8)0.028 (8)
C280.123 (11)0.207 (11)0.136 (11)0.022 (10)0.025 (10)0.021 (10)
C290.190 (12)0.213 (12)0.164 (11)0.001 (10)0.001 (10)0.021 (10)
Cl10.075 (2)0.063 (3)0.0417 (17)0.0184 (10)0.0047 (18)0.0032 (18)
Cl1'0.062 (4)0.174 (9)0.080 (5)0.046 (6)0.023 (6)0.036 (7)
Geometric parameters (Å, º) top
O1—C11.226 (6)C10—C111.345 (9)
O2—C61.231 (6)C11—C121.359 (8)
O3—C121.379 (7)C12—C131.400 (8)
O3—H30.8200C4—H40.9800
O4—C141.229 (5)C5—H5C0.9600
O5—C191.197 (6)C5—H5A0.9600
O6—C231.357 (7)C5—H5B0.9600
O6—H60.8200C7—H7B0.9600
O7'—C27'1.51 (3)C7—H7C0.9600
O8'—C28'1.55 (2)C7—H7A0.9600
O9'—C29'1.57 (2)C9—H90.9300
O7'—H7'0.8200C10—H100.9300
O8'—H8'0.8200C11—H110.9300
O9'—H9'0.8200C13—H130.9300
O7—C271.44 (2)C15—C161.495 (7)
O8—C281.59 (3)C15—C211.536 (7)
O9—C291.46 (4)C16—C171.318 (6)
O7—H70.8200C16—C191.461 (6)
O8—H80.8200C17—C181.517 (7)
O9—H9A0.8200C19—C201.535 (7)
N1—C41.433 (6)C21—C261.363 (8)
N1—C11.341 (6)C21—C221.377 (7)
N2—C11.357 (7)C22—C231.358 (8)
N2—C21.364 (6)C23—C241.385 (8)
N1—H1A0.90 (3)C24—C251.410 (8)
N2—H2A0.88 (2)C25—C261.383 (8)
N3—C141.398 (7)C15—H150.9800
N3—C171.394 (6)C18—H18C0.9600
N4—C151.481 (6)C18—H18A0.9600
N4—C141.307 (6)C18—H18B0.9600
N3—H3A0.87 (3)C20—H20B0.9600
N4—H4A0.88 (3)C20—H20A0.9600
N5'—C27'1.535 (15)C20—H20C0.9600
N5'—C29'1.453 (18)C22—H220.9300
N5'—C28'1.523 (18)C24—H240.9300
N5'—H5'0.9100C25—H250.9300
N5—C281.52 (3)C26—H260.9300
N5—C271.48 (2)C27'—H27C0.9700
N5—C291.57 (2)C27'—H27D0.9700
N5—H50.9100C28'—H28C0.9700
C2—C51.476 (8)C28'—H28D0.9700
C2—C31.394 (6)C29'—H29C0.9700
C3—C61.464 (6)C29'—H29D0.9700
C3—C41.535 (7)C27—H27A0.9700
C4—C81.518 (6)C27—H27B0.9700
C6—C71.429 (8)C28—H28A0.9700
C8—C91.411 (7)C28—H28B0.9700
C8—C131.373 (6)C29—H29A0.9700
C9—C101.360 (9)C29—H29B0.9700
C12—O3—H3109.00N3—C14—N4116.8 (4)
C23—O6—H6109.00C16—C15—C21114.6 (4)
C27'—O7'—H7'109.00N4—C15—C21109.9 (4)
C28'—O8'—H8'109.00N4—C15—C16109.9 (3)
C29'—O9'—H9'109.00C17—C16—C19128.7 (4)
C27—O7—H7109.00C15—C16—C17118.9 (4)
C28—O8—H8109.00C15—C16—C19112.4 (3)
C29—O9—H9A110.00C16—C17—C18127.3 (4)
C1—N1—C4125.6 (4)N3—C17—C18111.8 (4)
C1—N2—C2127.1 (4)N3—C17—C16120.9 (4)
C1—N1—H1A117 (3)O5—C19—C16119.8 (5)
C4—N1—H1A118 (3)O5—C19—C20117.7 (4)
C1—N2—H2A111 (3)C16—C19—C20122.4 (4)
C2—N2—H2A119 (3)C15—C21—C22119.5 (4)
C14—N3—C17121.1 (4)C22—C21—C26119.6 (5)
C14—N4—C15123.1 (4)C15—C21—C26120.9 (4)
C14—N3—H3A117 (3)C21—C22—C23122.2 (5)
C17—N3—H3A121 (3)C22—C23—C24118.9 (5)
C15—N4—H4A112 (3)O6—C23—C24122.7 (5)
C14—N4—H4A120 (3)O6—C23—C22118.4 (5)
C28'—N5'—C29'117.3 (10)C23—C24—C25119.6 (5)
C27'—N5'—C29'109.3 (10)C24—C25—C26119.3 (5)
C27'—N5'—C28'108.5 (10)C21—C26—C25120.3 (5)
C27'—N5'—H5'107.00C16—C15—H15107.00
C29'—N5'—H5'107.00C21—C15—H15107.00
C28'—N5'—H5'107.00N4—C15—H15107.00
C27—N5—C28111.6 (15)H18A—C18—H18C110.00
C27—N5—C29110.0 (14)C17—C18—H18C109.00
C28—N5—C29104.4 (16)H18A—C18—H18B109.00
C29—N5—H5110.00C17—C18—H18B109.00
C28—N5—H5110.00C17—C18—H18A109.00
C27—N5—H5110.00H18B—C18—H18C109.00
O1—C1—N2123.0 (4)H20B—C20—H20C109.00
O1—C1—N1123.2 (5)C19—C20—H20B110.00
N1—C1—N2113.8 (4)H20A—C20—H20C109.00
N2—C2—C5113.5 (4)C19—C20—H20C109.00
C3—C2—C5129.5 (4)C19—C20—H20A109.00
N2—C2—C3117.0 (4)H20A—C20—H20B110.00
C2—C3—C6125.2 (4)C23—C22—H22119.00
C4—C3—C6116.8 (4)C21—C22—H22119.00
C2—C3—C4118.0 (4)C25—C24—H24120.00
N1—C4—C3109.4 (4)C23—C24—H24120.00
N1—C4—C8113.9 (4)C26—C25—H25120.00
C3—C4—C8110.1 (4)C24—C25—H25120.00
C3—C6—C7125.5 (4)C21—C26—H26120.00
O2—C6—C3115.9 (4)C25—C26—H26120.00
O2—C6—C7118.6 (4)O7'—C27'—N5'105.3 (12)
C4—C8—C13119.7 (4)O8'—C28'—N5'105.8 (11)
C9—C8—C13118.6 (5)O9'—C29'—N5'108.0 (13)
C4—C8—C9121.8 (4)H27C—C27'—H27D109.00
C8—C9—C10119.1 (5)N5'—C27'—H27D111.00
C9—C10—C11122.7 (6)N5'—C27'—H27C111.00
C10—C11—C12119.1 (5)O7'—C27'—H27C111.00
O3—C12—C11123.8 (5)O7'—C27'—H27D111.00
C11—C12—C13120.6 (5)O8'—C28'—H28C111.00
O3—C12—C13115.5 (5)H28C—C28'—H28D109.00
C8—C13—C12119.8 (5)N5'—C28'—H28C111.00
N1—C4—H4108.00O8'—C28'—H28D111.00
C8—C4—H4108.00N5'—C28'—H28D111.00
C3—C4—H4108.00N5'—C29'—H29C110.00
C2—C5—H5C109.00N5'—C29'—H29D110.00
H5A—C5—H5C109.00O9'—C29'—H29C110.00
C2—C5—H5B110.00O9'—C29'—H29D110.00
C2—C5—H5A109.00H29C—C29'—H29D108.00
H5A—C5—H5B109.00O7—C27—N5117.1 (16)
H5B—C5—H5C110.00O8—C28—N5100.6 (16)
H7A—C7—H7B109.00O9—C29—N5108.6 (19)
C6—C7—H7B109.00O7—C27—H27A108.00
H7B—C7—H7C109.00O7—C27—H27B108.00
C6—C7—H7C110.00N5—C27—H27A108.00
C6—C7—H7A109.00N5—C27—H27B108.00
H7A—C7—H7C109.00H27A—C27—H27B107.00
C8—C9—H9120.00O8—C28—H28A112.00
C10—C9—H9120.00O8—C28—H28B112.00
C9—C10—H10119.00N5—C28—H28A112.00
C11—C10—H10119.00N5—C28—H28B112.00
C10—C11—H11120.00H28A—C28—H28B109.00
C12—C11—H11120.00O9—C29—H29A110.00
C12—C13—H13120.00O9—C29—H29B110.00
C8—C13—H13120.00N5—C29—H29A110.00
O4—C14—N3116.9 (4)N5—C29—H29B110.00
O4—C14—N4126.3 (4)H29A—C29—H29B109.00
C4—N1—C1—O1167.0 (5)C3—C4—C8—C13109.3 (5)
C4—N1—C1—N215.3 (7)C4—C8—C9—C10179.3 (5)
C1—N1—C4—C333.4 (6)C9—C8—C13—C122.3 (8)
C1—N1—C4—C890.3 (6)C4—C8—C13—C12179.8 (5)
C2—N2—C1—O1165.3 (5)C13—C8—C9—C102.9 (8)
C1—N2—C2—C5165.7 (5)C8—C9—C10—C113.0 (10)
C1—N2—C2—C315.8 (7)C9—C10—C11—C122.5 (11)
C2—N2—C1—N112.4 (7)C10—C11—C12—C131.8 (9)
C14—N3—C17—C1614.9 (7)C10—C11—C12—O3179.8 (6)
C17—N3—C14—N411.1 (7)C11—C12—C13—C81.8 (8)
C17—N3—C14—O4166.2 (4)O3—C12—C13—C8179.9 (5)
C14—N3—C17—C18167.0 (4)N4—C15—C21—C22125.6 (5)
C14—N4—C15—C2193.6 (5)N4—C15—C21—C2656.0 (6)
C14—N4—C15—C1633.4 (6)C21—C15—C16—C1983.2 (5)
C15—N4—C14—O4168.3 (4)C21—C15—C16—C1795.9 (5)
C15—N4—C14—N314.6 (6)N4—C15—C16—C19152.5 (4)
C27'—N5'—C29'—O9'82.1 (14)C16—C15—C21—C22110.1 (5)
C27'—N5'—C28'—O8'179.9 (11)C16—C15—C21—C2668.3 (6)
C29'—N5'—C27'—O7'162.5 (13)N4—C15—C16—C1728.4 (6)
C28'—N5'—C29'—O9'154.1 (12)C15—C16—C19—O51.3 (8)
C29'—N5'—C28'—O8'55.6 (16)C15—C16—C17—C18170.8 (5)
C28'—N5'—C27'—O7'33.6 (15)C15—C16—C17—N37.0 (8)
C5—C2—C3—C610.1 (9)C17—C16—C19—O5177.7 (6)
C5—C2—C3—C4171.8 (5)C17—C16—C19—C204.8 (9)
N2—C2—C3—C6171.7 (5)C15—C16—C19—C20176.3 (5)
N2—C2—C3—C46.4 (7)C19—C16—C17—C188.2 (9)
C2—C3—C6—C71.6 (9)C19—C16—C17—N3174.1 (5)
C2—C3—C6—O2178.2 (5)C15—C21—C26—C25179.0 (5)
C4—C3—C6—C7176.5 (6)C26—C21—C22—C231.0 (8)
C4—C3—C6—O23.7 (7)C15—C21—C22—C23177.4 (5)
C6—C3—C4—N1151.0 (4)C22—C21—C26—C250.7 (8)
C6—C3—C4—C883.2 (5)C21—C22—C23—C241.0 (8)
C2—C3—C4—N127.3 (6)C21—C22—C23—O6177.8 (5)
C2—C3—C4—C898.6 (5)O6—C23—C24—C25179.4 (6)
N1—C4—C8—C950.3 (6)C22—C23—C24—C250.7 (8)
N1—C4—C8—C13127.5 (5)C23—C24—C25—C262.3 (9)
C3—C4—C8—C973.0 (6)C24—C25—C26—C212.3 (9)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.90 (3)2.06 (4)2.882 (6)151 (4)
N2—H2A···O2ii0.88 (2)1.99 (3)2.865 (5)170 (5)
O3—H3···Cl1iii0.822.263.044 (8)161
N3—H3A···O5ii0.87 (3)1.97 (3)2.839 (5)175 (3)
N4—H4A···O10.88 (3)2.03 (3)2.836 (6)152 (3)
O6—H6···Cl10.822.273.090 (7)173
C13—H13···O1i0.932.583.496 (7)171
C18—H18B···O1iv0.962.483.411 (7)164
C22—H22···O4i0.932.563.485 (6)171
C28—H28D···Cg1v0.972.653.598 (17)166
C27—H27A···Cg2vi0.972.733.444 (19)131
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+5/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x+2, y+1, z1/2; (vi) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C8–C13 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.90 (3)2.06 (4)2.882 (6)151 (4)
N2—H2A···O2ii0.88 (2)1.99 (3)2.865 (5)170 (5)
O3—H3···Cl1iii0.822.263.044 (8)161
N3—H3A···O5ii0.87 (3)1.97 (3)2.839 (5)175 (3)
N4—H4A···O10.88 (3)2.03 (3)2.836 (6)152 (3)
O6—H6···Cl10.822.273.090 (7)173
C13—H13···O1i0.932.583.496 (7)171
C18—H18B···O1iv0.962.483.411 (7)164
C22—H22···O4i0.932.563.485 (6)171
C28'—H28D···Cg1v0.972.653.598 (17)166
C27—H27A···Cg2vi0.972.733.444 (19)131
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+5/2, y+1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x+2, y+1, z1/2; (vi) x1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to the SAIF, IIT Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNizam Mohideen, M., Rasheeth, A. & Huq, C. A. M. A. (2008b). Acta Cryst. E64, o1812.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNizam Mohideen, M., Rasheeth, A., Huq, C. A. M. A. & Nizar, S. S. (2008a). Acta Cryst. E64, o1752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1766-o1767
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds