[Journal logo]

Volume 69 
Part 12 
Pages o1773-o1774  
December 2013  

Received 29 October 2013
Accepted 5 November 2013
Online 13 November 2013

Key indicators
Single-crystal X-ray study
T = 173 K
Mean [sigma](C-C) = 0.003 Å
R = 0.048
wR = 0.147
Data-to-parameter ratio = 14.8
Details
Open access

(E)-2-[2-(4-Carb­oxy­phen­yl)ethen­yl]-8-hydroxy­quinolin-1-ium chloride ethanol monosolvate

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany
Correspondence e-mail: edwin.weber@chemie-tu.freiberg.de

In the title compound, C18H14NO3+·Cl-·CH3CH2OH, the dihedral angle formed by the mean planes of the quinolinium and benzene rings is 3.4 (1)°, while the carb­oxy substituent is tilted at an angle of 4.8 (1)° with respect to the benzene ring. There is a short N-H...O contact in the cation. In the crystal, due to the planar mol­ecular geometry, two-dimensional aggregates are formed parallel to (221) via C-H...O, C-H...Cl, O-H...Cl and N-H...Cl hydrogen bonds. Inter­layer association is accomplished by O-Hethanol...Cl and O-H...Oethanol hydrogen bonds and [pi]-[pi] stacking inter­actions [centroid-centroid distances vary from 3.6477 (12) to 3.8381 (11) Å]. A supra­molecular three-dimensional architecture results from a stacked arrangement of layers comprising the ionic and hydrogen-bonded components.

Related literature

For metal-organic framework construction, see: MacGillivray (2010[MacGillivray, L. R. (2010). Editor. Metal-Organic Frameworks. Hoboken: Wiley.]); Noro & Kitagawa (2010[Noro, S. & Kitagawa, S. (2010). The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, edited by K. Rurack & R. Martínez-Máñez, pp. 235-269. Hoboken: Wiley.]). For complexation of quinolin-8-ol and its derivatives, see: Albrecht et al. (2008[Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812-824.]); Weber & Vögtle (1975[Weber, E. & Vögtle, F. (1975). Tetrahedron Lett. pp. 2415-2418.]). For coordination behavior of carb­oxy­lic groups, see: Kitagawa et al. (2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]); Böhle et al. (2011[Böhle, T., Eissmann, F., Weber, E. & Mertens, F. O. R. L. (2011). Acta Cryst. C67, m5-m8.]). For the preparative method used for the synthesis of the title compound, see: Yuan et al. (2012[Yuan, G.-Z., Rong, L.-L., Huo, Y.-P., Nie, X.-L. & Fang, X.-M. (2012). Inorg. Chem. Commun. 23, 90-94.]). For related structures of quinolinol derivatives, see: Tan (2007[Tan, T. (2007). J. Mol. Struct. 840, 6-13.]); Zinczuk et al. (2008[Zinczuk, J., Piro, O. E., Castellano, E. E. & Baran, E. J. (2008). J. Mol. Struct. 892, 216-219.]). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.]). For [pi]-[pi] stacking inter­actions, see: James (2004[James, S. L. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 1093-1099. Boca Raton: CRC Press.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14NO3+·Cl-·C2H6O

  • Mr = 373.82

  • Triclinic, [P \overline 1]

  • a = 9.6841 (2) Å

  • b = 9.7030 (2) Å

  • c = 10.8456 (3) Å

  • [alpha] = 67.516 (1)°

  • [beta] = 74.957 (1)°

  • [gamma] = 86.249 (1)°

  • V = 908.72 (4) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.24 mm-1

  • T = 173 K

  • 0.28 × 0.19 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.937, Tmax = 0.988

  • 19296 measured reflections

  • 3596 independent reflections

  • 2790 reflections with I > 2[sigma](I)

  • Rint = 0.022

Refinement
  • R[F2 > 2[sigma](F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.10

  • 3596 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.43 e Å-3

  • [Delta][rho]min = -0.32 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1A...O1 0.91 (2) 2.27 (2) 2.678 (2) 107 (2)
O1-H1...Cl1i 0.82 2.26 3.0780 (16) 173
N1-H1A...Cl1ii 0.91 (2) 2.38 (2) 3.2087 (18) 151 (2)
O1G-H1G...Cl1 0.82 2.26 3.076 (3) 179
O2-H2A...O1Giii 0.82 1.85 2.634 (3) 159
C4-H4...O3iv 0.93 2.46 3.295 (3) 150
C10-H10...Cl1ii 0.93 2.69 3.446 (2) 138
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2663 ).


Acknowledgements

The authors thank the German Research Foundation within the priority programme Porous Metal-Organic Frameworks (SPP 1362, MOFs).

References

Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812-824.  [Web of Science] [CrossRef] [ChemPort]
Böhle, T., Eissmann, F., Weber, E. & Mertens, F. O. R. L. (2011). Acta Cryst. C67, m5-m8.  [CSD] [CrossRef] [IUCr Journals]
Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
James, S. L. (2004). Encyclopedia of Supramolecular Chemistry, edited by J. L. Atwood & J. W. Steed, pp. 1093-1099. Boca Raton: CRC Press.
Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.  [Web of Science] [CrossRef] [ChemPort]
MacGillivray, L. R. (2010). Editor. Metal-Organic Frameworks. Hoboken: Wiley.
Noro, S. & Kitagawa, S. (2010). The Supramolecular Chemistry of Organic-Inorganic Hybrid Materials, edited by K. Rurack & R. Martínez-Máñez, pp. 235-269. Hoboken: Wiley.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Tan, T. (2007). J. Mol. Struct. 840, 6-13.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Weber, E. & Vögtle, F. (1975). Tetrahedron Lett. pp. 2415-2418.  [CrossRef]
Yuan, G.-Z., Rong, L.-L., Huo, Y.-P., Nie, X.-L. & Fang, X.-M. (2012). Inorg. Chem. Commun. 23, 90-94.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Zinczuk, J., Piro, O. E., Castellano, E. E. & Baran, E. J. (2008). J. Mol. Struct. 892, 216-219.  [Web of Science] [CSD] [CrossRef] [ChemPort]


Acta Cryst (2013). E69, o1773-o1774   [ doi:10.1107/S1600536813030274 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.