[Journal logo]

Volume 69 
Part 12 
Page o1810  
December 2013  

Received 13 November 2013
Accepted 19 November 2013
Online 23 November 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.005 Å
R = 0.051
wR = 0.133
Data-to-parameter ratio = 20.5
Details
Open access

Methyl N-(3-cyano­picolino­yl)-L-tryptophanate

aKyiv National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01601 Kyiv, Ukraine,bLaboratoire de Chimie Physique Macromoleculaire, UMR 7568, ENSIC, BP 451, 54001 Nancy, France, and cSTC "Institute for Single Crystals", National Academy of Science of Ukraine, Lenina ave. 60, 61001, Khar'kov, Ukraine
Correspondence e-mail: vmedvedev@xray.isc.kharkov.com

In the title compound, C19H16N4O3, the stereocenter has an L configuration; L-tryptophan methyl ester hydro­chloride being used as a starting material. The indole ring system and the pyridine ring are inclined to one another by 13.55 (14)°. In the crystal, adjacent mol­ecules are linked via N-H...O hydrogen bonds, forming chains propagating along the c-axis direction.

Related literature

Cyano-substituted compounds, like the title compound, are useful as inter­mediates in the synthesis of N-hy­droxy­benzamidines, see: Peterlin-Masic & Kikelj (2001[Peterlin-Masic, L. & Kikelj, D. (2001). Tetrahedron, 57, 7073-7105.]). For the synthesis of the title compound, see: Devillers et al. (2002[Devillers, I., Arrault, A., Olive, G. & Marchand-Brynaert, J. (2002). Tetrahedron Lett. 43, 3161-3164.]). For the biological activity of 1,2,4-oxa­diazole derivatives, see: Kundu et al. (2012[Kundu, M., Singh, J., Singh, B., Ghosh, T., Maiti, B. C. & Maity, T. K. (2012). Indian J. Chem. Sect. B, 51, 493-497.]); Sakamoto et al. (2007[Sakamoto, T., Cullen, M. D., Hartman, T. L., Watson, K. M., Buckheit, R. W., Pannecouque, C., DeClercq, E. & Cushman, M. (2007). J. Med. Chem. 50, 3314-3319.]); Tyrkov & Sukhenko (2004[Tyrkov, A. G. & Sukhenko, L. T. (2004). Pharm. Chem. J. 38, 30-38.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N4O3

  • Mr = 348.36

  • Monoclinic, P 21

  • a = 7.473 (2) Å

  • b = 11.977 (4) Å

  • c = 9.661 (3) Å

  • [beta] = 91.01 (2)°

  • V = 864.6 (4) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.09 mm-1

  • T = 293 K

  • 0.34 × 0.29 × 0.21 mm

Data collection
  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarton, England.]) Tmin = 0.753, Tmax = 1.000

  • 9857 measured reflections

  • 4832 independent reflections

  • 2596 reflections with I > 2[sigma](I)

  • Rint = 0.047

Refinement
  • R[F2 > 2[sigma](F2)] = 0.051

  • wR(F2) = 0.133

  • S = 0.93

  • 4832 reflections

  • 236 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 0.20 e Å-3

  • [Delta][rho]min = -0.14 e Å-3

  • Absolute structure: Flack parameter determined using 855 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: -0.001 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N4-H4...O1i 0.86 2.29 2.987 (3) 138
Symmetry code: (i) x, y, z-1.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2666 ).


References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarton, England.
Devillers, I., Arrault, A., Olive, G. & Marchand-Brynaert, J. (2002). Tetrahedron Lett. 43, 3161-3164.  [Web of Science] [CrossRef] [ChemPort]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Kundu, M., Singh, J., Singh, B., Ghosh, T., Maiti, B. C. & Maity, T. K. (2012). Indian J. Chem. Sect. B, 51, 493-497.
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.  [CrossRef] [ChemPort] [IUCr Journals]
Peterlin-Masic, L. & Kikelj, D. (2001). Tetrahedron, 57, 7073-7105.
Sakamoto, T., Cullen, M. D., Hartman, T. L., Watson, K. M., Buckheit, R. W., Pannecouque, C., DeClercq, E. & Cushman, M. (2007). J. Med. Chem. 50, 3314-3319.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Tyrkov, A. G. & Sukhenko, L. T. (2004). Pharm. Chem. J. 38, 30-38.  [CrossRef]


Acta Cryst (2013). E69, o1810  [ doi:10.1107/S160053681303153X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.