organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-3-(tri­methyl­sil­yl)phenyl­boronic acid

aPhysical Chemistry Department, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
*Correspondence e-mail: serek@ch.pw.edu.pl

(Received 12 November 2013; accepted 20 November 2013; online 23 November 2013)

The mol­ecular structure of the title compound, C10H17BO3Si, features an intra­molecular O—H⋯O hydrogen bond; the boronic group group has an exoendo conformation. In the crystal, the mol­ecules inter­act with each other by O—H⋯O hydrogen bonds, producing centrosymmetric dimers that are linked by weak ππ stacking inter­actions featuring specific short B⋯C contacts [e.g. 3.372 (2) Å], forming an infinite columnar structure aligned along the a-axis direction.

Related literature

For structures of related ortho-alk­oxy aryl­boronic acids, see: Cyrański et al. (2012[Cyrański, M. K., Klimentowska, P., Rydzewska, A., Serwatowski, J., Sporzyński, A. & Stępień, D. K. (2012). CrystEngComm, 14, 6282-6294.]). For binding energies of other boronic acid dimers, see: Cyrański et al. (2008[Cyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472-482.]); Durka et al. (2012[Durka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720-3734.]). For the PIXEL program, see Gavezzotti (2003[Gavezzotti, A. (2003). CrystEngComm, 5, 429-438.]). For the synthesis, see: Durka et al. (2010[Durka, K., Górka, J., Kurach, P., Luliński, S. & Serwatowski, J. (2010). J. Organomet. Chem. 695, 2635-2643.]).

[Scheme 1]

Experimental

Crystal data
  • C10H17BO3Si

  • Mr = 224.14

  • Monoclinic, P 21 /n

  • a = 9.1832 (11) Å

  • b = 9.7082 (10) Å

  • c = 14.1415 (16) Å

  • β = 104.26 (1)°

  • V = 1221.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.16 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.744, Tmax = 0.780

  • 11175 measured reflections

  • 2939 independent reflections

  • 2154 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.02

  • 2939 reflections

  • 136 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 2.04 2.7532 (14) 142
O3—H3⋯O2i 0.84 1.97 2.8051 (14) 175
Symmetry code: (i) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SORTAV (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Experimental top

Synthesis and crystallization top

The preparation of the title compound (I) was described previously (Durka et al., 2010). Crystals suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of an acetone solution of (I).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All hydrogen atoms were placed in calculated positions with C—H distances of 0.95 Å (phenyl) and 0.98 Å (methyl), and an O—H distance of 0.84 Å, and with Uiso(phenyl-H) = 1.2Ueq(C), Uiso(methyl-H) = 1.5Ueq(C) and Uiso(hydroxyl-H)=1.5Ueq(O).

Results and discussion top

The ability of aryl­boronic acids to form supra­molecular structures via hydrogen-bonding inter­actions of B(OH)2 groups is well known. The molecular structure of (I) is shown in Fig. 1. The boronic group is only slightly twisted with respect to the benzene ring whereas the meth­oxy group is twisted almost perpendicularly. The tri­methyl­silyl group is slightly bent with respect to the aromatic ring. The boronic group has an exo-endo conformation. The endo-oriented OH group is engaged into the intra­molecular O—H···O bond with the meth­oxy O atom to form a six-membered ring typical of structures of related ortho-alk­oxy­aryl­boronic acids (Cyrański et al., 2012). The molecules of (I) are linked via almost linear O—H···O bridges to give centrosymmetric dimers. The periodic calculations performed in PIXEL programme (Gavezzotti, 2003) show that the dimer inter­action energy is equal to -58.5 kJ/mol, which is comparable to the binding energies of other boronic acids dimers reported in the literature (Cyrański et al., 2008; Durka et al., 2012). The supra­molecular architecture in (I) extends through ππ stacking inter­actions of aromatic rings in the parallel-displaced fashion. The boron atoms are also engaged in these mutual inter­actions, which is manifested by a relatively short B1···C2 contact of 3.372 (2) Å. Short B1···C2 inter­actions were described in more detail for the structures of fluorinated 1,4-phenyl­enediboronic acids (Durka et al., 2012). Thus, another centrosymmetric motif can be distinguished. The inter­action energy of such dimers amounts to -33.5 kJ/mol. As a result of H-bonding and ππ inter­actions, a specific columnar network is formed in the a axis direction (Figs 2 & 3). The total cohesive energy calculated for asymmetric unit equals to -111.7 kJ/mol. In conclusion, hydrogen-bonding inter­actions of boronic groups are operative to form centrosymmetric dimeric structure of (I). The extended supra­molecular assembly is due to ππ stacking inter­actions of aromatic rings additionally involving the boron atoms.

Related literature top

For structures of related ortho-alkoxy arylboronic acids, see: Cyrański et al. (2012). For the PIXEL program, see Gavezzotti (2003). For the synthesis, see: Durka et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010) and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing formation of a column along the [100] direction. The O–H···O, C–H···O and C(π)···B interactions are depicted as red and blue dashed lines, respectively.
[Figure 3] Fig. 3. Packing diagram viewed along the a axis, indicating the columns of O—H···O and C(π)···B interacting molecules of (I).
2-Methoxy-3-(trimethylsilyl)phenylboronic acid top
Crystal data top
C10H17BO3SiDx = 1.218 Mg m3
Mr = 224.14Melting point: 353 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.1832 (11) ÅCell parameters from 1540 reflections
b = 9.7082 (10) Åθ = 2.7–28.7°
c = 14.1415 (16) ŵ = 0.18 mm1
β = 104.26 (1)°T = 100 K
V = 1221.9 (2) Å3Unshaped, colourless
Z = 40.16 × 0.12 × 0.10 mm
F(000) = 480
Data collection top
Bruker APEXII
diffractometer
2939 independent reflections
Radiation source: TXS rotating anode2154 reflections with I > 2σ(I)
Multi-layer optics monochromatorRint = 0.029
ω scansθmax = 28.6°, θmin = 3.0°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1110
Tmin = 0.744, Tmax = 0.780k = 1312
11175 measured reflectionsl = 1818
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0567P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2939 reflectionsΔρmax = 0.36 e Å3
136 parametersΔρmin = 0.30 e Å3
Crystal data top
C10H17BO3SiV = 1221.9 (2) Å3
Mr = 224.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1832 (11) ŵ = 0.18 mm1
b = 9.7082 (10) ÅT = 100 K
c = 14.1415 (16) Å0.16 × 0.12 × 0.10 mm
β = 104.26 (1)°
Data collection top
Bruker APEXII
diffractometer
2939 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2154 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.780Rint = 0.029
11175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
2939 reflectionsΔρmin = 0.30 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.39406 (5)0.65611 (4)0.15682 (3)0.01408 (12)
O10.70378 (11)0.73383 (10)0.12400 (7)0.0157 (2)
O30.81381 (12)0.97690 (11)0.10209 (7)0.0183 (2)
H30.90241.00670.08790.027*
O20.89567 (11)0.91160 (11)0.06290 (8)0.0181 (2)
H20.86360.87030.10590.027*
C50.62375 (16)0.85346 (14)0.02981 (11)0.0135 (3)
C10.44068 (16)0.73526 (14)0.04527 (11)0.0137 (3)
C90.47875 (18)0.48146 (15)0.18637 (11)0.0178 (3)
H9A0.58840.48840.20020.027*
H9B0.44230.41980.13070.027*
H9C0.44990.44470.24370.027*
C30.35918 (16)0.84434 (16)0.11483 (11)0.0156 (3)
H3A0.28100.86430.17100.019*
C60.58695 (16)0.77454 (15)0.04402 (11)0.0129 (3)
C40.50551 (17)0.88657 (15)0.11005 (11)0.0152 (3)
H40.52570.93890.16220.018*
C20.32783 (16)0.77273 (15)0.03699 (11)0.0153 (3)
H2A0.22670.74840.03960.018*
C70.77696 (18)0.60998 (17)0.10250 (12)0.0212 (4)
H7A0.85740.58450.15930.032*
H7B0.81970.62650.04650.032*
H7C0.70340.53500.08710.032*
C80.45625 (19)0.77761 (16)0.26146 (12)0.0201 (3)
H8A0.41010.86800.24370.030*
H8B0.56590.78660.27730.030*
H8C0.42540.74190.31840.030*
C100.18585 (17)0.63586 (17)0.13142 (13)0.0212 (4)
H10A0.13770.72590.11560.032*
H10B0.15920.59800.18920.032*
H10C0.15140.57310.07620.032*
B10.78433 (19)0.91554 (17)0.02287 (13)0.0147 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0142 (2)0.0130 (2)0.0156 (2)0.00051 (17)0.00465 (16)0.00139 (17)
O10.0130 (5)0.0178 (5)0.0149 (5)0.0014 (4)0.0006 (4)0.0013 (4)
O30.0152 (5)0.0225 (6)0.0175 (6)0.0043 (4)0.0045 (4)0.0013 (5)
O20.0151 (5)0.0229 (6)0.0163 (5)0.0054 (5)0.0036 (4)0.0018 (5)
C50.0145 (7)0.0115 (7)0.0148 (7)0.0002 (6)0.0044 (6)0.0022 (6)
C10.0144 (7)0.0112 (7)0.0158 (7)0.0001 (6)0.0045 (6)0.0018 (6)
C90.0205 (8)0.0158 (7)0.0172 (8)0.0011 (6)0.0046 (6)0.0007 (6)
C30.0138 (7)0.0159 (7)0.0152 (7)0.0009 (6)0.0001 (6)0.0010 (6)
C60.0129 (7)0.0120 (7)0.0127 (7)0.0009 (6)0.0010 (6)0.0019 (6)
C40.0189 (8)0.0134 (7)0.0137 (7)0.0008 (6)0.0048 (6)0.0009 (6)
C20.0120 (7)0.0146 (7)0.0189 (8)0.0007 (6)0.0032 (6)0.0018 (6)
C70.0189 (8)0.0213 (8)0.0235 (9)0.0057 (6)0.0054 (7)0.0040 (7)
C80.0259 (9)0.0175 (8)0.0182 (8)0.0007 (7)0.0080 (7)0.0000 (7)
C100.0174 (8)0.0217 (8)0.0262 (9)0.0011 (6)0.0084 (7)0.0035 (7)
B10.0154 (8)0.0128 (8)0.0168 (9)0.0006 (7)0.0055 (7)0.0025 (7)
Geometric parameters (Å, º) top
Si1—C101.8668 (16)C9—H9B0.9800
Si1—C81.8684 (16)C9—H9C0.9800
Si1—C91.8693 (16)C3—C21.391 (2)
Si1—C11.8960 (15)C3—C41.390 (2)
O1—C61.4103 (17)C3—H3A0.9500
O1—C71.4458 (18)C4—H40.9500
O3—B11.354 (2)C2—H2A0.9500
O3—H30.8400C7—H7A0.9800
O2—B11.381 (2)C7—H7B0.9800
O2—H20.8400C7—H7C0.9800
C5—C61.402 (2)C8—H8A0.9800
C5—C41.401 (2)C8—H8B0.9800
C5—B11.574 (2)C8—H8C0.9800
C1—C21.402 (2)C10—H10A0.9800
C1—C61.401 (2)C10—H10B0.9800
C9—H9A0.9800C10—H10C0.9800
C10—Si1—C8108.52 (8)C3—C4—C5121.24 (14)
C10—Si1—C9107.31 (7)C3—C4—H4119.4
C8—Si1—C9111.49 (7)C5—C4—H4119.4
C10—Si1—C1108.24 (7)C3—C2—C1122.12 (14)
C8—Si1—C1108.39 (7)C3—C2—H2A118.9
C9—Si1—C1112.76 (7)C1—C2—H2A118.9
C6—O1—C7111.44 (11)O1—C7—H7A109.5
B1—O3—H3109.5O1—C7—H7B109.5
B1—O2—H2109.5H7A—C7—H7B109.5
C6—C5—C4116.59 (13)O1—C7—H7C109.5
C6—C5—B1123.85 (13)H7A—C7—H7C109.5
C4—C5—B1119.35 (13)H7B—C7—H7C109.5
C2—C1—C6115.73 (13)Si1—C8—H8A109.5
C2—C1—Si1121.55 (11)Si1—C8—H8B109.5
C6—C1—Si1122.32 (11)H8A—C8—H8B109.5
Si1—C9—H9A109.5Si1—C8—H8C109.5
Si1—C9—H9B109.5H8A—C8—H8C109.5
H9A—C9—H9B109.5H8B—C8—H8C109.5
Si1—C9—H9C109.5Si1—C10—H10A109.5
H9A—C9—H9C109.5Si1—C10—H10B109.5
H9B—C9—H9C109.5H10A—C10—H10B109.5
C2—C3—C4119.67 (14)Si1—C10—H10C109.5
C2—C3—H3A120.2H10A—C10—H10C109.5
C4—C3—H3A120.2H10B—C10—H10C109.5
C5—C6—C1124.48 (14)O3—B1—O2118.90 (14)
C5—C6—O1118.37 (12)O3—B1—C5119.49 (14)
C1—C6—O1117.14 (13)O2—B1—C5121.60 (14)
C10—Si1—C1—C22.07 (14)Si1—C1—C6—O19.56 (18)
C8—Si1—C1—C2115.45 (13)C7—O1—C6—C583.99 (16)
C9—Si1—C1—C2120.62 (12)C7—O1—C6—C197.38 (15)
C10—Si1—C1—C6174.45 (12)C2—C3—C4—C52.7 (2)
C8—Si1—C1—C656.93 (14)C6—C5—C4—C30.8 (2)
C9—Si1—C1—C667.00 (14)B1—C5—C4—C3174.09 (14)
C4—C5—C6—C14.2 (2)C4—C3—C2—C13.1 (2)
B1—C5—C6—C1170.43 (14)C6—C1—C2—C30.0 (2)
C4—C5—C6—O1177.24 (12)Si1—C1—C2—C3172.85 (11)
B1—C5—C6—O18.1 (2)C6—C5—B1—O3172.48 (14)
C2—C1—C6—C53.8 (2)C4—C5—B1—O313.0 (2)
Si1—C1—C6—C5168.98 (11)C6—C5—B1—O28.9 (2)
C2—C1—C6—O1177.64 (12)C4—C5—B1—O2165.67 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.842.042.7532 (14)142
O3—H3···O2i0.841.972.8051 (14)175
Symmetry code: (i) x+2, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.842.042.7532 (14)142
O3—H3···O2i0.841.972.8051 (14)175
Symmetry code: (i) x+2, y+2, z.
 

Acknowledgements

The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw. This work was supported by the Warsaw University of Technology. The support by Aldrich Chemical Co., Milwaukee, WI, USA, through continuous donation of chemicals and equipment is gratefully acknowledged.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472–482.
First citationCyrański, M. K., Klimentowska, P., Rydzewska, A., Serwatowski, J., Sporzyński, A. & Stępień, D. K. (2012). CrystEngComm, 14, 6282–6294.
First citationDurka, K., Górka, J., Kurach, P., Luliński, S. & Serwatowski, J. (2010). J. Organomet. Chem. 695, 2635–2643.  Web of Science CSD CrossRef CAS
First citationDurka, K., Jarzembska, K. N., Kamiński, R., Luliński, S., Serwatowski, J. & Woźniak, K. (2012). Cryst. Growth Des. 12, 3720–3734.  Web of Science CSD CrossRef CAS
First citationGavezzotti, A. (2003). CrystEngComm, 5, 429–438.  Web of Science CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds