metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m680-m681

Poly[[octa­aqua-μ4-(benzene-1,2,4,5-tetra­carboxyl­ato)-dicobalt(II)] octa­hydrate]

aUniversité Assane Seck de Ziguinchor, LCPM, Groupe Matériaux Inorganiques, Chimie Douce et Cristallographie, BP 523 Ziguinchor, Senegal, bINSA, UMR 6226, Institut des Sciences Chimiques de Rennes, 35708 Rennes, France, and cInstitut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes I, Avenue du Général Leclerc, 35042 Rennes Cedex, France
*Correspondence e-mail: mcamara@univ-zig.sn

(Received 10 October 2013; accepted 19 November 2013; online 23 November 2013)

The title polymeric coordination compound, {[Co2(C10H2O8)(H2O)8]·8H2O}n, was obtained by slow diffusion of a dilute aqueous solution of CoCl2 and the sodium salt of benzene-1,2,4,5-tetracarboxylic acid (H4btec) through an agar–agar gel bridge in a U-shaped tube. The two independent Co2+ ions are each situated on an inversion centre and are coordinated in a slightly distorted octa­hedral geometry by four water O atoms and two carboxyl­ate O atoms from two btec4− ligands (-1> symmetry), forming a layer parallel to (11-1). This layer can be described as a mol­ecular two-dimensional square grid with the benzene rings at the nodes and the CoII atoms connecting the nodes. O—H⋯O hydrogen-bonding interactions involving the coordinating water molecules, the carboxylate O atoms and lattice water molecules lead to the formation of a three-dimensional network.

Related literature

For related metal-organic materials with large channels and cavities, see: Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]); Evans et al. (1999[Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536-538.]); Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J. O., Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]); Guillou et al. (2006[Guillou, O., Daiguebonne, C., Camara, M. & Kerbellec, N. (2006). Inorg. Chem. 45, 8468-8470.]). For examples of coordination polymers containing the btec4− ligand, see: Cheng et al. (2000[Cheng, D., Zheng, Y., Lin, J., Xu, D. & Xu, Y. (2000). Acta Cryst. C56, 523-524.]); Rochon & Massarweh (2000[Rochon, F. D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190-198.]); Chu et al. (2001[Chu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. 5, 1135-1137.]); Wu et al. (2002[Wu, C.-D., Lu, C.-Z., Lu, S.-F., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 171-174.]); Luo et al. (2013[Luo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882-1896.]). For related crystal-growth methods in gels, see: Henisch & Rustum (1970[Henisch, H. K. & Rustum, R. (1970). In Crystals Growth in Gels. The Pennsylvania State University Press.]); Henisch (1988[Henisch, H. K. (1988). In Crystals Growth in Gels and Liesegang Rings. Cambridge University Press.]); Daiguebonne et al. (2003[Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015-1020.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C10H2O8)(H2O)8]·8H2O

  • Mr = 656.22

  • Triclinic, [P \overline 1]

  • a = 5.4371 (1) Å

  • b = 9.8496 (3) Å

  • c = 10.2564 (3) Å

  • α = 96.445 (1)°

  • β = 91.232 (1)°

  • γ = 91.328 (1)°

  • V = 545.48 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 298 K

  • 0.10 × 0.09 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • 8487 measured reflections

  • 2456 independent reflections

  • 2092 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.153

  • S = 0.97

  • 2456 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.084 (3)
Co1—O3 2.089 (3)
Co1—O23 2.106 (2)
Co2—O2 2.101 (3)
Co2—O4 2.060 (3)
Co2—O12 2.122 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O11i 0.79 1.92 2.698 (4) 169
O4—H4⋯O14 0.82 1.89 2.636 (9) 150
O4—H4⋯O16 0.82 1.92 2.632 (10) 143
O1—H5⋯O23ii 0.89 1.87 2.746 (4) 171
O2—H6⋯O12iii 0.89 1.92 2.803 (4) 177
O1—H7⋯O22iv 0.75 1.97 2.664 (4) 154
O2—H9⋯O22 0.90 1.82 2.725 (4) 176
O3—H10⋯O14 0.73 1.95 2.682 (9) 176
O3—H10⋯O15v 0.73 2.32 2.848 (9) 130
O4—H13⋯O11vi 0.73 1.94 2.618 (5) 154
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y, -z+1; (iii) x-1, y, z; (iv) -x, -y, -z+1; (v) x+1, y, z; (vi) -x, -y-1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design of metal-organic materials with large channels and cavities has been deeply investigated, due to their intriguing structural diversity and potential functions as microporous solids for molecular adsorption, ion exchange, and heterogeneous catalysis. For related structures in this context, see: Yaghi et al., 1998; Evans et al., 1999; Eddaoudi et al., 2002; Guillou et al., 2006. The benzene-1,2,4,5-tetracarboxylate ligand (btec4-) as a multi-connecting ligand is an excellent candidate for the design of coordination polymers. Surprisingly, examples of coordination polymers involving this ligand are relatively scarce. For examples of coordination polymers with this ligand, see: Cheng et al., 2000; Chu et al., 2001; Rochon & Massarweh, 2000; Wu et al., 2002; Luo et al., 2013). We report here the synthesis and the crystal structure of the title coordination polymer.

All carboxylic groups of the organic ligand in the title compound are deprotonated and each of them adopts a monodentate coordination mode. There are two crystallographically independent CoII atoms in the structure. In both cases the CoII atoms are coordinated by two carboxylate oxygen atoms from two btec ligands and four water oxygen atoms (Fig. 1). There is no significant difference in the coordination distance between carboxyl and water oxygen atoms. The coordination Co···O distances in the title polymeric compound range from 2.067 (3) to 2.129 (3) Å. Each btec4- ligand links four CoII atoms and each CoII atom is bond to two btec4- ligands to form a two-dimensional layer. These layers can be described as a molecular two-dimensional square grid in which the phenyl rings are at the nodes and the CoII atoms connecting the nodes (Fig. 2). The area of the square cells of the grids is larger than 120 Å2 (11.3 Å x 11.5 Å). The crystal packing is enforced by a complex hydrogen bonds network that involves the crystallization water molecules located in the inter-layer space.

Related literature top

For related metal-organic materials with large channels and cavities, see: Yaghi et al. (1998); Evans et al. (1999); Eddaoudi et al. (2002); Guillou et al. (2006). For examples of coordination polymers containing the btec4- ligand, see: Cheng et al. (2000); Rochon & Massarweh (2000); Chu et al. (2001); Wu et al. (2002); Luo et al. (2013). For related crystal methods in gels, see: Henisch & Rustum (1970); Henisch (1988); Daiguebonne et al. (2003).

Experimental top

All reagents were used as obtained without further purification. Cobalt chloride was purchased from STREM Chemicals. benzene-1,2,4,5-tetracarboxylic acid was purchased from Acros Organics. Its sodium salt was prepared by addition of four equivalents of sodium hydroxide to a suspension of benzene-1,2,4,5-tetracaboxylic acid in de-ionized water until complete dissolution. Then, the solution was evaporated to dryness. The solid phase was then put in suspension in ethanol, stirred and refluxed during 1 h. After filtration and drying in a desiccator, a white powder of tetra-sodium benzene-1,2,4,5-tetracarboxylate was obtained. The yield of this synthesis is 90%.

Single crystals of the coordination polymer were obtained by slow diffusion of dilute aqueous solutions of Co(II) chloride (0.25 mmol in 20 ml) and of sodium salt of benzene-1,2,4,5-tetracarboxylic acid (0.25 mmol in 20 mL) through an agar-agar gel bridge in a U-shaped tube. The gel was purchased from Acros Organics and jellified according to established procedure. For a related procedure, see: Henisch & Rustum, 1970; Henisch, 1988; Daiguebonne et al., 2003. After several weeks, very light pink single crystals were obtained.

Refinement top

H-atoms from crystallization water molecules could not be assigned reliably and were thus not included in the refinement, but they were taken into account for the chemical formula sum, moiety, weight, as well as for the absorption coefficient and the number of electrons in the unit cell.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Extended asymetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y - 1, -z; (iii) -x + 1, -y - 1, -z + 1.]
[Figure 2] Fig. 2. View along the a axis of the molecular square grid layer of the title compound.
Poly[[octaaqua-µ4-(benzene-1,2,4,5-tetracarboxylato)-dicobalt(II)] octahydrate] top
Crystal data top
[Co2(C10H2O8)(H2O)8]·8H2OV = 545.48 (3) Å3
Mr = 656.22Z = 1
Triclinic, P1F(000) = 340
a = 5.4371 (1) ÅDx = 1.998 Mg m3
b = 9.8496 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 10.2564 (3) ŵ = 1.64 mm1
α = 96.445 (1)°T = 298 K
β = 91.232 (1)°Prism, very light pink
γ = 91.328 (1)°0.10 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII
diffractometer
2092 reflections with I > 2σ(I)
Radiation source: Fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
CCD rotation images, thin slices scansh = 67
8487 measured reflectionsk = 1212
2456 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0911P)2 + 2.3818P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2456 reflectionsΔρmax = 0.60 e Å3
166 parametersΔρmin = 0.81 e Å3
Crystal data top
[Co2(C10H2O8)(H2O)8]·8H2Oγ = 91.328 (1)°
Mr = 656.22V = 545.48 (3) Å3
Triclinic, P1Z = 1
a = 5.4371 (1) ÅMo Kα radiation
b = 9.8496 (3) ŵ = 1.64 mm1
c = 10.2564 (3) ÅT = 298 K
α = 96.445 (1)°0.10 × 0.09 × 0.06 mm
β = 91.232 (1)°
Data collection top
Bruker APEXII
diffractometer
2092 reflections with I > 2σ(I)
8487 measured reflectionsRint = 0.025
2456 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 0.97Δρmax = 0.60 e Å3
2456 reflectionsΔρmin = 0.81 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.08690.14340.30710.050*
H130.07800.28520.08070.050*
H40.21690.24600.02080.050*
H50.45490.12260.56680.050*
H60.41940.44650.14540.050*
H70.26090.17840.61940.050*
H90.19250.39720.21270.050*
H100.13810.02690.26410.050*
Co10.00000.00000.50000.0165 (2)
Co20.00000.50000.00000.0180 (2)
O220.0419 (5)0.3362 (3)0.3694 (3)0.0246 (6)
O120.2439 (5)0.5016 (3)0.1641 (3)0.0212 (6)
O230.2189 (5)0.1729 (3)0.4617 (3)0.0224 (6)
O110.0733 (6)0.6758 (3)0.2541 (3)0.0352 (8)
O10.3013 (5)0.1098 (3)0.5906 (3)0.0308 (7)
O20.2644 (6)0.4222 (4)0.1330 (3)0.0399 (8)
C10.3561 (6)0.5310 (4)0.3841 (3)0.0159 (7)
O30.0735 (7)0.0657 (3)0.3177 (3)0.0381 (8)
C30.5172 (7)0.6259 (4)0.4275 (3)0.0170 (7)
H30.52830.71090.37860.020*
C20.3387 (6)0.4025 (3)0.4587 (3)0.0150 (7)
C220.1578 (6)0.2968 (4)0.4251 (3)0.0158 (7)
C110.2111 (7)0.5719 (4)0.2586 (3)0.0180 (7)
O40.1143 (9)0.3016 (4)0.0152 (4)0.0596 (13)
O140.2936 (16)0.0732 (8)0.1144 (8)0.121 (3)
O160.5551 (16)0.1850 (8)0.0171 (9)0.121 (3)
O150.4581 (14)0.0456 (9)0.1989 (8)0.116 (2)
O170.8066 (16)0.0714 (9)0.1011 (8)0.124 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0162 (4)0.0120 (3)0.0218 (4)0.0031 (2)0.0002 (3)0.0034 (3)
Co20.0196 (4)0.0198 (4)0.0146 (3)0.0009 (3)0.0048 (2)0.0036 (3)
O220.0202 (13)0.0222 (13)0.0296 (14)0.0064 (10)0.0078 (11)0.0047 (11)
O120.0217 (13)0.0263 (14)0.0160 (12)0.0007 (11)0.0063 (10)0.0054 (10)
O230.0186 (13)0.0124 (12)0.0362 (15)0.0043 (10)0.0029 (11)0.0023 (11)
O110.051 (2)0.0243 (15)0.0307 (16)0.0129 (14)0.0227 (14)0.0108 (12)
O10.0192 (14)0.0204 (14)0.0511 (19)0.0020 (11)0.0027 (12)0.0030 (13)
O20.0224 (15)0.073 (3)0.0221 (15)0.0016 (15)0.0025 (11)0.0034 (15)
C10.0176 (16)0.0160 (16)0.0140 (15)0.0013 (13)0.0038 (12)0.0022 (13)
O30.064 (2)0.0211 (15)0.0307 (16)0.0035 (14)0.0150 (15)0.0072 (12)
C30.0207 (17)0.0121 (15)0.0175 (16)0.0027 (13)0.0029 (13)0.0011 (12)
C20.0161 (16)0.0131 (15)0.0161 (16)0.0032 (12)0.0009 (12)0.0027 (12)
C220.0155 (16)0.0162 (16)0.0157 (16)0.0032 (13)0.0000 (12)0.0014 (13)
C110.0217 (17)0.0147 (16)0.0173 (17)0.0063 (13)0.0062 (13)0.0003 (13)
O40.099 (3)0.045 (2)0.0354 (19)0.040 (2)0.038 (2)0.0205 (16)
O140.141 (7)0.106 (6)0.112 (6)0.001 (5)0.012 (5)0.009 (4)
O160.127 (6)0.106 (5)0.131 (6)0.003 (5)0.023 (5)0.025 (5)
O150.105 (5)0.146 (7)0.101 (5)0.022 (5)0.002 (4)0.022 (5)
O170.142 (7)0.127 (6)0.101 (5)0.020 (5)0.017 (5)0.004 (5)
Geometric parameters (Å, º) top
Co1—O12.084 (3)Co2—O122.122 (2)
Co1—O1i2.084 (3)O22—C221.249 (4)
Co1—O32.089 (3)O12—C111.266 (5)
Co1—O3i2.089 (3)O23—C221.270 (4)
Co1—O232.106 (2)O11—C111.250 (5)
Co1—O23i2.106 (2)C1—C31.398 (5)
Co2—O22.101 (3)C1—C21.410 (5)
Co2—O42.060 (3)C1—C111.505 (5)
Co2—O4ii2.061 (3)C3—C2iii1.390 (5)
Co2—O2ii2.101 (3)C2—C3iii1.390 (5)
Co2—O12ii2.122 (2)C2—C221.511 (5)
O1—Co1—O1i180.0O2ii—Co2—O12ii87.12 (11)
O1—Co1—O392.62 (14)O2—Co2—O12ii92.88 (11)
O1i—Co1—O387.38 (14)O4—Co2—O1288.91 (12)
O1—Co1—O3i87.38 (14)O4ii—Co2—O1291.09 (12)
O1i—Co1—O3i92.62 (14)O2ii—Co2—O1292.88 (11)
O3—Co1—O3i180.0O2—Co2—O1287.12 (11)
O1—Co1—O2390.10 (11)O12ii—Co2—O12180.0
O1i—Co1—O2389.90 (11)C11—O12—Co2124.9 (2)
O3—Co1—O2392.24 (12)C22—O23—Co1130.4 (2)
O3i—Co1—O2387.76 (12)C3—C1—C2118.8 (3)
O1—Co1—O23i89.90 (11)C3—C1—C11117.7 (3)
O1i—Co1—O23i90.10 (11)C2—C1—C11123.5 (3)
O3—Co1—O23i87.76 (12)C2iii—C3—C1122.2 (3)
O3i—Co1—O23i92.24 (12)C3iii—C2—C1119.0 (3)
O23—Co1—O23i180.0C3iii—C2—C22118.1 (3)
O4—Co2—O4ii180.0C1—C2—C22122.8 (3)
O4—Co2—O2ii91.81 (19)O22—C22—O23124.9 (3)
O4ii—Co2—O2ii88.19 (19)O22—C22—C2118.8 (3)
O4—Co2—O288.19 (19)O23—C22—C2116.2 (3)
O4ii—Co2—O291.81 (19)O11—C11—O12124.9 (3)
O2ii—Co2—O2180.0O11—C11—C1117.4 (3)
O4—Co2—O12ii91.09 (12)O12—C11—C1117.7 (3)
O4ii—Co2—O12ii88.91 (12)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O11iv0.791.922.698 (4)169
O4—H4···O140.821.892.636 (9)150
O4—H4···O160.821.922.632 (10)143
O1—H5···O23v0.891.872.746 (4)171
O2—H6···O12vi0.891.922.803 (4)177
O1—H7···O22i0.751.972.664 (4)154
O2—H9···O220.901.822.725 (4)176
O3—H10···O140.731.952.682 (9)176
O3—H10···O15vii0.732.322.848 (9)130
O4—H13···O11ii0.731.942.618 (5)154
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iv) x, y+1, z; (v) x+1, y, z+1; (vi) x1, y, z; (vii) x+1, y, z.
Selected bond lengths (Å) top
Co1—O12.084 (3)Co2—O22.101 (3)
Co1—O32.089 (3)Co2—O42.060 (3)
Co1—O232.106 (2)Co2—O122.122 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O11i0.791.922.698 (4)169
O4—H4···O140.821.892.636 (9)150
O4—H4···O160.821.922.632 (10)143
O1—H5···O23ii0.891.872.746 (4)171
O2—H6···O12iii0.891.922.803 (4)177
O1—H7···O22iv0.751.972.664 (4)154
O2—H9···O220.901.822.725 (4)176
O3—H10···O140.731.952.682 (9)176
O3—H10···O15v0.732.322.848 (9)130
O4—H13···O11vi0.731.942.618 (5)154
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y1, z.
 

Acknowledgements

The French Cooperation Agency in Senegal is acknowledged for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, D., Zheng, Y., Lin, J., Xu, D. & Xu, Y. (2000). Acta Cryst. C56, 523–524.  CrossRef CAS IUCr Journals Google Scholar
First citationChu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. 5, 1135–1137.  CrossRef Google Scholar
First citationDaiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J. O., Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEvans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536–538.  CrossRef CAS Google Scholar
First citationGuillou, O., Daiguebonne, C., Camara, M. & Kerbellec, N. (2006). Inorg. Chem. 45, 8468–8470.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHenisch, H. K. (1988). In Crystals Growth in Gels and Liesegang Rings. Cambridge University Press.  Google Scholar
First citationHenisch, H. K. & Rustum, R. (1970). In Crystals Growth in Gels. The Pennsylvania State University Press.  Google Scholar
First citationLuo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882–1896.  Web of Science CSD CrossRef CAS Google Scholar
First citationRochon, F. D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C.-D., Lu, C.-Z., Lu, S.-F., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 171–174.  Web of Science CSD CrossRef CAS Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m680-m681
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds