supplementary materials


vn2077 scheme

Acta Cryst. (2013). E69, m680-m681    [ doi:10.1107/S1600536813031577 ]

Poly[[octaaqua-[mu]4-(benzene-1,2,4,5-tetra­carboxyl­ato)-dicobalt(II)] octa­hydrate]

M. Camara, M. Tine, C. Daiguebonne, O. Guillou and T. Roisnel

Abstract top

The title polymeric coordination compound, {[Co2(C10H2O8)(H2O)8]·8H2O}n, was obtained by slow diffusion of a dilute aqueous solution of CoCl2 and the sodium salt of benzene-1,2,4,5-tetracarboxylic acid (H4btec) through an agar-agar gel bridge in a U-shaped tube. The two independent Co2+ ions are each situated on an inversion centre and are coordinated in a slightly distorted octa­hedral geometry by four water O atoms and two carboxyl­ate O atoms from two btec4- ligands (-1> symmetry), forming a layer parallel to (11-1). This layer can be described as a mol­ecular two-dimensional square grid with the benzene rings at the nodes and the CoII atoms connecting the nodes. O-H...O hydrogen-bonding interactions involving the coordinating water molecules, the carboxylate O atoms and lattice water molecules lead to the formation of a three-dimensional network.

Comment top

The design of metal-organic materials with large channels and cavities has been deeply investigated, due to their intriguing structural diversity and potential functions as microporous solids for molecular adsorption, ion exchange, and heterogeneous catalysis. For related structures in this context, see: Yaghi et al., 1998; Evans et al., 1999; Eddaoudi et al., 2002; Guillou et al., 2006. The benzene-1,2,4,5-tetracarboxylate ligand (btec4-) as a multi-connecting ligand is an excellent candidate for the design of coordination polymers. Surprisingly, examples of coordination polymers involving this ligand are relatively scarce. For examples of coordination polymers with this ligand, see: Cheng et al., 2000; Chu et al., 2001; Rochon & Massarweh, 2000; Wu et al., 2002; Luo et al., 2013). We report here the synthesis and the crystal structure of the title coordination polymer.

All carboxylic groups of the organic ligand in the title compound are deprotonated and each of them adopts a monodentate coordination mode. There are two crystallographically independent CoII atoms in the structure. In both cases the CoII atoms are coordinated by two carboxylate oxygen atoms from two btec ligands and four water oxygen atoms (Fig. 1). There is no significant difference in the coordination distance between carboxyl and water oxygen atoms. The coordination Co···O distances in the title polymeric compound range from 2.067 (3) to 2.129 (3) Å. Each btec4- ligand links four CoII atoms and each CoII atom is bond to two btec4- ligands to form a two-dimensional layer. These layers can be described as a molecular two-dimensional square grid in which the phenyl rings are at the nodes and the CoII atoms connecting the nodes (Fig. 2). The area of the square cells of the grids is larger than 120 Å2 (11.3 Å x 11.5 Å). The crystal packing is enforced by a complex hydrogen bonds network that involves the crystallization water molecules located in the inter-layer space.

Related literature top

For related metal-organic materials with large channels and cavities, see: Yaghi et al. (1998); Evans et al. (1999); Eddaoudi et al. (2002); Guillou et al. (2006). For examples of coordination polymers containing the btec4- ligand, see: Cheng et al. (2000); Rochon & Massarweh (2000); Chu et al. (2001); Wu et al. (2002); Luo et al. (2013). For related crystal methods in gels, see: Henisch & Rustum (1970); Henisch (1988); Daiguebonne et al. (2003).

Experimental top

All reagents were used as obtained without further purification. Cobalt chloride was purchased from STREM Chemicals. benzene-1,2,4,5-tetracarboxylic acid was purchased from Acros Organics. Its sodium salt was prepared by addition of four equivalents of sodium hydroxide to a suspension of benzene-1,2,4,5-tetracaboxylic acid in de-ionized water until complete dissolution. Then, the solution was evaporated to dryness. The solid phase was then put in suspension in ethanol, stirred and refluxed during 1 h. After filtration and drying in a desiccator, a white powder of tetra-sodium benzene-1,2,4,5-tetracarboxylate was obtained. The yield of this synthesis is 90%.

Single crystals of the coordination polymer were obtained by slow diffusion of dilute aqueous solutions of Co(II) chloride (0.25 mmol in 20 ml) and of sodium salt of benzene-1,2,4,5-tetracarboxylic acid (0.25 mmol in 20 mL) through an agar-agar gel bridge in a U-shaped tube. The gel was purchased from Acros Organics and jellified according to established procedure. For a related procedure, see: Henisch & Rustum, 1970; Henisch, 1988; Daiguebonne et al., 2003. After several weeks, very light pink single crystals were obtained.

Refinement top

H-atoms from crystallization water molecules could not be assigned reliably and were thus not included in the refinement, but they were taken into account for the chemical formula sum, moiety, weight, as well as for the absorption coefficient and the number of electrons in the unit cell.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Extended asymetric unit of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y - 1, -z; (iii) -x + 1, -y - 1, -z + 1.]
[Figure 2] Fig. 2. View along the a axis of the molecular square grid layer of the title compound.
Poly[[octaaqua-µ4-(benzene-1,2,4,5-tetracarboxylato)-dicobalt(II)] octahydrate] top
Crystal data top
[Co2(C10H2O8)(H2O)8]·8H2OV = 545.48 (3) Å3
Mr = 656.22Z = 1
Triclinic, P1F(000) = 340
a = 5.4371 (1) ÅDx = 1.998 Mg m3
b = 9.8496 (3) ÅMo Kα radiation, λ = 0.71073 Å
c = 10.2564 (3) ŵ = 1.64 mm1
α = 96.445 (1)°T = 298 K
β = 91.232 (1)°Prism, very light pink
γ = 91.328 (1)°0.10 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII
diffractometer
2092 reflections with I > 2σ(I)
Radiation source: Fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
CCD rotation images, thin slices scansh = 67
8487 measured reflectionsk = 1212
2456 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0911P)2 + 2.3818P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2456 reflectionsΔρmax = 0.60 e Å3
166 parametersΔρmin = 0.81 e Å3
Crystal data top
[Co2(C10H2O8)(H2O)8]·8H2Oγ = 91.328 (1)°
Mr = 656.22V = 545.48 (3) Å3
Triclinic, P1Z = 1
a = 5.4371 (1) ÅMo Kα radiation
b = 9.8496 (3) ŵ = 1.64 mm1
c = 10.2564 (3) ÅT = 298 K
α = 96.445 (1)°0.10 × 0.09 × 0.06 mm
β = 91.232 (1)°
Data collection top
Bruker APEXII
diffractometer
Rint = 0.025
8487 measured reflectionsθmax = 27.5°
2456 independent reflectionsStandard reflections: ?
2092 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.153Δρmax = 0.60 e Å3
S = 0.97Δρmin = 0.81 e Å3
2456 reflectionsAbsolute structure: ?
166 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.08690.14340.30710.050*
H130.07800.28520.08070.050*
H40.21690.24600.02080.050*
H50.45490.12260.56680.050*
H60.41940.44650.14540.050*
H70.26090.17840.61940.050*
H90.19250.39720.21270.050*
H100.13810.02690.26410.050*
Co10.00000.00000.50000.0165 (2)
Co20.00000.50000.00000.0180 (2)
O220.0419 (5)0.3362 (3)0.3694 (3)0.0246 (6)
O120.2439 (5)0.5016 (3)0.1641 (3)0.0212 (6)
O230.2189 (5)0.1729 (3)0.4617 (3)0.0224 (6)
O110.0733 (6)0.6758 (3)0.2541 (3)0.0352 (8)
O10.3013 (5)0.1098 (3)0.5906 (3)0.0308 (7)
O20.2644 (6)0.4222 (4)0.1330 (3)0.0399 (8)
C10.3561 (6)0.5310 (4)0.3841 (3)0.0159 (7)
O30.0735 (7)0.0657 (3)0.3177 (3)0.0381 (8)
C30.5172 (7)0.6259 (4)0.4275 (3)0.0170 (7)
H30.52830.71090.37860.020*
C20.3387 (6)0.4025 (3)0.4587 (3)0.0150 (7)
C220.1578 (6)0.2968 (4)0.4251 (3)0.0158 (7)
C110.2111 (7)0.5719 (4)0.2586 (3)0.0180 (7)
O40.1143 (9)0.3016 (4)0.0152 (4)0.0596 (13)
O140.2936 (16)0.0732 (8)0.1144 (8)0.121 (3)
O160.5551 (16)0.1850 (8)0.0171 (9)0.121 (3)
O150.4581 (14)0.0456 (9)0.1989 (8)0.116 (2)
O170.8066 (16)0.0714 (9)0.1011 (8)0.124 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0162 (4)0.0120 (3)0.0218 (4)0.0031 (2)0.0002 (3)0.0034 (3)
Co20.0196 (4)0.0198 (4)0.0146 (3)0.0009 (3)0.0048 (2)0.0036 (3)
O220.0202 (13)0.0222 (13)0.0296 (14)0.0064 (10)0.0078 (11)0.0047 (11)
O120.0217 (13)0.0263 (14)0.0160 (12)0.0007 (11)0.0063 (10)0.0054 (10)
O230.0186 (13)0.0124 (12)0.0362 (15)0.0043 (10)0.0029 (11)0.0023 (11)
O110.051 (2)0.0243 (15)0.0307 (16)0.0129 (14)0.0227 (14)0.0108 (12)
O10.0192 (14)0.0204 (14)0.0511 (19)0.0020 (11)0.0027 (12)0.0030 (13)
O20.0224 (15)0.073 (3)0.0221 (15)0.0016 (15)0.0025 (11)0.0034 (15)
C10.0176 (16)0.0160 (16)0.0140 (15)0.0013 (13)0.0038 (12)0.0022 (13)
O30.064 (2)0.0211 (15)0.0307 (16)0.0035 (14)0.0150 (15)0.0072 (12)
C30.0207 (17)0.0121 (15)0.0175 (16)0.0027 (13)0.0029 (13)0.0011 (12)
C20.0161 (16)0.0131 (15)0.0161 (16)0.0032 (12)0.0009 (12)0.0027 (12)
C220.0155 (16)0.0162 (16)0.0157 (16)0.0032 (13)0.0000 (12)0.0014 (13)
C110.0217 (17)0.0147 (16)0.0173 (17)0.0063 (13)0.0062 (13)0.0003 (13)
O40.099 (3)0.045 (2)0.0354 (19)0.040 (2)0.038 (2)0.0205 (16)
O140.141 (7)0.106 (6)0.112 (6)0.001 (5)0.012 (5)0.009 (4)
O160.127 (6)0.106 (5)0.131 (6)0.003 (5)0.023 (5)0.025 (5)
O150.105 (5)0.146 (7)0.101 (5)0.022 (5)0.002 (4)0.022 (5)
O170.142 (7)0.127 (6)0.101 (5)0.020 (5)0.017 (5)0.004 (5)
Geometric parameters (Å, º) top
Co1—O12.084 (3)Co2—O122.122 (2)
Co1—O1i2.084 (3)O22—C221.249 (4)
Co1—O32.089 (3)O12—C111.266 (5)
Co1—O3i2.089 (3)O23—C221.270 (4)
Co1—O232.106 (2)O11—C111.250 (5)
Co1—O23i2.106 (2)C1—C31.398 (5)
Co2—O22.101 (3)C1—C21.410 (5)
Co2—O42.060 (3)C1—C111.505 (5)
Co2—O4ii2.061 (3)C3—C2iii1.390 (5)
Co2—O2ii2.101 (3)C2—C3iii1.390 (5)
Co2—O12ii2.122 (2)C2—C221.511 (5)
O1—Co1—O1i180.0O2ii—Co2—O12ii87.12 (11)
O1—Co1—O392.62 (14)O2—Co2—O12ii92.88 (11)
O1i—Co1—O387.38 (14)O4—Co2—O1288.91 (12)
O1—Co1—O3i87.38 (14)O4ii—Co2—O1291.09 (12)
O1i—Co1—O3i92.62 (14)O2ii—Co2—O1292.88 (11)
O3—Co1—O3i180.0O2—Co2—O1287.12 (11)
O1—Co1—O2390.10 (11)O12ii—Co2—O12180.0
O1i—Co1—O2389.90 (11)C11—O12—Co2124.9 (2)
O3—Co1—O2392.24 (12)C22—O23—Co1130.4 (2)
O3i—Co1—O2387.76 (12)C3—C1—C2118.8 (3)
O1—Co1—O23i89.90 (11)C3—C1—C11117.7 (3)
O1i—Co1—O23i90.10 (11)C2—C1—C11123.5 (3)
O3—Co1—O23i87.76 (12)C2iii—C3—C1122.2 (3)
O3i—Co1—O23i92.24 (12)C3iii—C2—C1119.0 (3)
O23—Co1—O23i180.0C3iii—C2—C22118.1 (3)
O4—Co2—O4ii180.0C1—C2—C22122.8 (3)
O4—Co2—O2ii91.81 (19)O22—C22—O23124.9 (3)
O4ii—Co2—O2ii88.19 (19)O22—C22—C2118.8 (3)
O4—Co2—O288.19 (19)O23—C22—C2116.2 (3)
O4ii—Co2—O291.81 (19)O11—C11—O12124.9 (3)
O2ii—Co2—O2180.0O11—C11—C1117.4 (3)
O4—Co2—O12ii91.09 (12)O12—C11—C1117.7 (3)
O4ii—Co2—O12ii88.91 (12)
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x+1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O11iv0.791.922.698 (4)169
O4—H4···O140.821.892.636 (9)150
O4—H4···O160.821.922.632 (10)143
O1—H5···O23v0.891.872.746 (4)171
O2—H6···O12vi0.891.922.803 (4)177
O1—H7···O22i0.751.972.664 (4)154
O2—H9···O220.901.822.725 (4)176
O3—H10···O140.731.952.682 (9)176
O3—H10···O15vii0.732.322.848 (9)130
O4—H13···O11ii0.731.942.618 (5)154
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iv) x, y+1, z; (v) x+1, y, z+1; (vi) x1, y, z; (vii) x+1, y, z.
Selected bond lengths (Å) top
Co1—O12.084 (3)Co2—O22.101 (3)
Co1—O32.089 (3)Co2—O42.060 (3)
Co1—O232.106 (2)Co2—O122.122 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O11i0.791.922.698 (4)169
O4—H4···O140.821.892.636 (9)150
O4—H4···O160.821.922.632 (10)143
O1—H5···O23ii0.891.872.746 (4)171
O2—H6···O12iii0.891.922.803 (4)177
O1—H7···O22iv0.751.972.664 (4)154
O2—H9···O220.901.822.725 (4)176
O3—H10···O140.731.952.682 (9)176
O3—H10···O15v0.732.322.848 (9)130
O4—H13···O11vi0.731.942.618 (5)154
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x1, y, z; (iv) x, y, z+1; (v) x+1, y, z; (vi) x, y1, z.
Acknowledgements top

The French Cooperation Agency in Senegal is acknowledged for financial support.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheng, D.-P., Zheng, Y., Lin, J., Xu, D. & Xu, Y. (2000). Acta Cryst. C56, 523–524.

Chu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. 5, 1135–1137.

Daiguebonne, C., Deluzet, A., Camara, M., Boubekeur, K., Audebrand, N., Gérault, Y., Baux, C. & Guillou, O. (2003). Cryst. Growth Des. 3, 1015–1020.

Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J. O., Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.

Evans, O. R., Xiong, R., Wang, Z., Wong, G. K. & Lin, W. (1999). Angew. Chem. Int. Ed. 38, 536–538.

Guillou, O., Daiguebonne, C., Camara, M. & Kerbellec, N. (2006). Inorg. Chem. 45, 8468–8470.

Henisch, H. K. (1988). In Crystals Growth in Gels and Liesegang Rings. Cambridge University Press.

Henisch, H. K. & Rustum, R. (1970). In Crystals Growth in Gels. The Pennsylvania State University Press.

Luo, Y., Bernot, K., Calvez, G., Freslon, S., Daiguebonne, C., Guillou, O., Kerbellec, N. & Roisnel, T. (2013). CrystEngComm, 15, 1882–1896.

Rochon, F. D. & Massarweh, G. (2000). Inorg. Chim. Acta, 304, 190–198.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Wu, C.-D., Lu, C.-Z., Lu, S.-F., Zhuang, H.-H. & Huang, J.-S. (2002). Inorg. Chem. Commun. 5, 171–174.

Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.