[Journal logo]

Volume 69 
Part 12 
Pages i81-i82  
December 2013  

Received 14 October 2013
Accepted 30 October 2013
Online 6 November 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](Si-Li) = 0.0007 Å
Disorder in main residue
R = 0.015
wR = 0.044
Data-to-parameter ratio = 40.5
Details
Open access

Revision of the Li13Si4 structure

aDepartment of Chemistry, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
Correspondence e-mail: thomas.faessler@lrz.tum.de

Besides Li17Si4, Li16.42Si4, and Li15Si4, another lithium-rich representative in the Li-Si system is the phase Li13Si4 (trideca­lithium tetra­silicide), the structure of which has been determined previously [Frank et al. (1975[Frank, U., Müller, W. & Schäfer, H. (1975). Z. Naturforsch. Teil B, 30, 10-13.]). Z. Naturforsch. Teil B, 30, 10-13]. A careful analysis of X-ray diffraction patterns of Li13Si4 revealed discrepancies between experimentally observed and calculated Bragg positions. Therefore, we redetermined the structure of Li13Si4 on the basis of single-crystal X-ray diffraction data. Compared to the previous structure report, decisive differences are (i) the introduction of a split position for one Li site [occupancy ratio 0.838 (7):0.162 (7)], (ii) the anisotropic refinement of atomic displacement parameters for all atoms, and (iii) a high accuracy of atom positions and unit-cell parameters. The asymmetric unit of Li13Si4 contains two Si and seven Li atoms. Except for one Li atom situated on a site with symmetry 2/m, all other atoms are on mirror planes. The structure consists of isolated Si atoms as well as Si-Si dumbbells surrounded by Li atoms. Each Si atom is either 12- or 13-coordinated. The isolated Si atoms are situated in the ab plane at z = 0 and are strictly separated from the Si-Si dumbbells at z = 0.5.

Related literature

For details of the structural description of Li13Si4, see: Frank et al. (1975[Frank, U., Müller, W. & Schäfer, H. (1975). Z. Naturforsch. Teil B, 30, 10-13.]). For structural data for Li13Si4 based on computational methods, see: Chevrier et al. (2010[Chevrier, V. L., Zwanziger, J. W. & Dahn, J. R. (2010). J. Alloys Compd, 496, 25-36.]). For details of the synthesis, thermodynamic properties and crystal structures of Li17Si4, Li16.42Si4 and Li15Si4, see: Zeilinger & Benson et al. (2013[Zeilinger, M., Benson, D., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. 25, 1960-1967.]); Zeilinger & Kurylyshyn et al. (2013[Zeilinger, M., Kurylyshyn, I. M., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. doi:10.1021/cm4029885.]); Zeilinger & Baran et al. (2013[Zeilinger, M., Baran, V., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. 25, 4113-4121.]). For further thermodynamic investigations on the Li-Si system, see: Thomas et al. (2013[Thomas, D., Abdel-Hafiez, M., Gruber, T., Huttl, R., Seidel, J., Wolter, A. U. B., Buchner, B., Kortus, J. & Mertens, F. J. (2013). J. Chem. Thermodyn. 64, 205-225.]); Wang et al. (2013[Wang, P., Kozlov, A., Thomas, D., Mertens, F. & Schmid-Fetzer, R. (2013). Intermetallics, 42, 137-145.]). The behavior of silicon as anode material upon li­thia­tion/deli­thia­tion is described by Limthongkul et al. (2003[Limthongkul, P., Jang, Y. I., Dudney, N. J. & Chiang, Y. M. (2003). Acta Mater. 51, 1103-1113.]) and Obrovac & Christensen (2004[Obrovac, M. N. & Christensen, L. (2004). Electrochem. Solid State Lett. 7, A93-A96.]). For in-situ/ex-situ solid state NMR investigations of structural changes in silicon electrodes for lithium-ion batteries, see: Key et al. (2009[Key, B., Bhattacharyya, R., Morcrette, M., Seznec, V., Tarascon, J. M. & Grey, C. P. (2009). J. Am. Chem. Soc. 131, 9239-9249.], 2011[Key, B., Morcrette, M., Tarascon, J. M. & Grey, C. P. (2011). J. Am. Chem. Soc. 133, 503-512.]).

Experimental

Crystal data
  • Li13Si4

  • Mr = 202.58

  • Orthorhombic, P b a m

  • a = 7.9488 (4) Å

  • b = 15.1248 (8) Å

  • c = 4.4661 (2) Å

  • V = 536.93 (5) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.47 mm-1

  • T = 100 K

  • 0.2 × 0.2 × 0.2 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.781, Tmax = 0.818

  • 25938 measured reflections

  • 2429 independent reflections

  • 2333 reflections with I > 2[sigma](I)

  • Rint = 0.033

Refinement
  • R[F2 > 2[sigma](F2)] = 0.015

  • wR(F2) = 0.044

  • S = 1.08

  • 2429 reflections

  • 60 parameters

  • [Delta][rho]max = 0.68 e Å-3

  • [Delta][rho]min = -0.40 e Å-3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2778 ).


Acknowledgements

This work has been funded by the Fonds der Chemischen Industrie and the SolTech (Solar Technologies go Hybrid) program of the State of Bavaria.

References

Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chevrier, V. L., Zwanziger, J. W. & Dahn, J. R. (2010). J. Alloys Compd, 496, 25-36.  [Web of Science] [CrossRef] [ChemPort]
Frank, U., Müller, W. & Schäfer, H. (1975). Z. Naturforsch. Teil B, 30, 10-13.
Key, B., Bhattacharyya, R., Morcrette, M., Seznec, V., Tarascon, J. M. & Grey, C. P. (2009). J. Am. Chem. Soc. 131, 9239-9249.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Key, B., Morcrette, M., Tarascon, J. M. & Grey, C. P. (2011). J. Am. Chem. Soc. 133, 503-512.  [Web of Science] [CrossRef] [ChemPort] [PubMed]
Limthongkul, P., Jang, Y. I., Dudney, N. J. & Chiang, Y. M. (2003). Acta Mater. 51, 1103-1113.  [Web of Science] [CrossRef] [ChemPort]
Obrovac, M. N. & Christensen, L. (2004). Electrochem. Solid State Lett. 7, A93-A96.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Thomas, D., Abdel-Hafiez, M., Gruber, T., Huttl, R., Seidel, J., Wolter, A. U. B., Buchner, B., Kortus, J. & Mertens, F. J. (2013). J. Chem. Thermodyn. 64, 205-225.  [CrossRef] [ChemPort]
Wang, P., Kozlov, A., Thomas, D., Mertens, F. & Schmid-Fetzer, R. (2013). Intermetallics, 42, 137-145.  [CrossRef] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Zeilinger, M., Baran, V., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. 25, 4113-4121.  [Web of Science] [CrossRef] [ChemPort]
Zeilinger, M., Benson, D., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. 25, 1960-1967.  [Web of Science] [CrossRef] [ChemPort]
Zeilinger, M., Kurylyshyn, I. M., Häussermann, U. & Fässler, T. F. (2013). Chem. Mater. doi:10.1021/cm4029885.


Acta Cryst (2013). E69, i81-i82   [ doi:10.1107/S1600536813029759 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.