metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Hexa­thio­metadiphosphato-bis­­[(1,4,7,10,13,16-hexa­oxa­cyclo­octa­decane-κ6O)rubidium] aceto­nitrile disolvate

aInstitute of Inorganic and Analytical Chemistry, Clausthal University of Technology, Paul-Ernst-Strasse 4, D-38678 Clausthal-Zellerfeld, Germany, and bChemistry Department, University of Vlora, Sheshi Pavaresia, 9401 Vlore, Albania
*Correspondence e-mail: mimoza.gjikaj@tu-clausthal.de

(Received 20 November 2013; accepted 25 November 2013; online 30 November 2013)

The asymmetric unit of the title compound, [Rb2(P2S6)(C12H24O6)2]·2CH3CN, contains one half of an [Rb(18-crown-6)2]2[P2S6] unit and one aceto­nitrile solvent mol­ecule. The [Rb(18-crown-6)]2[P2S6] unit is completed by inversion symmetry. Its Rb+ ion is situated near the centre of the macrocyclic cavity, but is displaced by 0.8972 (1) Å from the O atoms of the crown in the direction of the [P2S6]2− moiety. The overall coordination number of the cation is eight, defined by the six crown ether O atoms and by two terminal S atoms of the [P2S6]2− anion. The hexa­thio­metadiphosphate anion is built up from two tetra­hedral PS4 units joined together by a common edge. The crystal structure is characterized by alternating layers of [Rb(18-crown-6)]2[P2S6] and aceto­nitrile solvent mol­ecules stacked along [010].

Related literature

For the synthesis of hexa­thio­metadiphosphates, see: Thilo & Ladwig (1962[Thilo, E. & Ladwig, G. (1962). Monatsber. Dtsch Akad. Wiss. Berlin, 4, 720-724.]). For the crystal structures of hexa­thio­metadiphosphates, see: Toffoli et al. (1978[Toffoli, P., Khodadad, P. & Rodier, N. (1978). Acta Cryst. B34, 3561-3564.]); Brockner et al. (1985[Brockner, W., Becker, R., Eisenmann, B. & Schäfer, H. (1985). Z. Anorg. Allg. Chem. 520, 51-58.]). For the crystal structures of alkali crown ether hexa­thio­metadiphosphates, see: Gjikaj et al. (2005[Gjikaj, M., Adam, A., Duewel, M. & Brockner, W. (2005). Z. Kristallogr. New Cryst. Struct. 220, 67.], 2006[Gjikaj, M., Adam, A. & Brockner, W. (2006). Z. Anorg. Allg. Chem. 632, 279-283.]).

[Scheme 1]

Experimental

Crystal data
  • [Rb2(P2S6)(C12H24O6)2]·2C2H3N

  • Mr = 1035.98

  • Monoclinic, P 21 /c

  • a = 8.2261 (9) Å

  • b = 17.1054 (15) Å

  • c = 16.5895 (18) Å

  • β = 95.520 (9)°

  • V = 2323.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.50 mm−1

  • T = 223 K

  • 0.29 × 0.26 × 0.22 mm

Data collection
  • Stoe IPDSII diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED; Stoe & Cie, 1999[Stoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.], 2001[Stoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.]) Tmin = 0.490, Tmax = 0.577

  • 26056 measured reflections

  • 4400 independent reflections

  • 3450 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.074

  • S = 1.15

  • 4400 reflections

  • 343 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The first thio­phosphates with empirical formula MPS3 (M = Na, Ag and Tl), were described by Thilo & Ladwig (1962). However, the crystal structure determination of Ag2P2S6 proved the presence of isolated P2S62- anions (Toffoli et al., 1978). The first alkali metal hexa­thio­metadiphosphate structures, M2P2S6 (M = K and Cs), were determined by Brockner et al. (1985). By using crown ether as complexing agent, alkali hexa­thio­metadiphosphates, M2P2S6 (M = Na and K), can be dissolved in CH3CN. Such crown-ether-stabilized thio­phosphates were obtained in crystalline form by Gjikaj et al. (2005, 2006).

The structure of the title compound, [Rb(18-crown-6)]2[P2S6].2CH3CN, is isotypic with [K(18-crown-6)]2[P2S6].2CH3CN (Gjikaj et al., 2005) and is characterized by alternating layers of [Rb(18-crown-6)]2[P2S6] and aceto­nitrile molecules stacked along [010]. The asymmetric unit consists of one half of an [Rb(18-crown-6)]2[P2S6] unit, which is located on a centre of inversion, and is completed by one aceto­nitrile molecule. The eightfold coordination environment of rubidium is defined by the six crown ether oxygen atoms and by two terminal sulfur atoms of the hexa­thio­metadiphosphate anion (Fig. 2). The hexa­thio­metadiphosphate anion is built up by two edge-sharing PS4 units, each with a tetra­hedral arrangement. The P–S bond lengths are ranging from 1.9630 (13) to 2.1419 (13) Å. All bond lengths and angles are comparable to those found for [K(18-crown-6)]2[P2S6].2CH3CN (Gjikaj et al., 2005).

Experimental top

Rubidium hexa­thio­metadiphosphate was prepared by high-temperature element synthesis using the procedure reported by Brockner et al. (1985). A solution of bis­[(1,4,7,10,13,16-hexaoxa­cyclo­octa­decane-κ6O)rubidium] hexa­thio­metadiphosphate was obtained by adding rubidium hexa­thio­metadiphosphate to a solution of 18-crown-6 in dry aceto­nitrile.

Refinement top

All hydrogen atoms were located in a difference Fourier map and were refined isotropically with no restraints.

Related literature top

For the synthesis of hexathiometadiphosphates, see: Thilo & Ladwig (1962). For the crystal structures of hexathiometadiphosphates, see: Toffoli et al. (1978); Brockner et al. (1985). For the crystal structures of alkali crown ether hexathiometadiphosphates, see: Gjikaj et al. (2005, 2006).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The crystal structure of the title compound. Displacement ellipsoids at the 50% probability level. The Rb—O and Rb—S bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. The Rb—O and Rb—S bonds are shown as dashed lines. [Symmetry codes: (i) -x, -y + 1, -z - 1.]
µ-Hexathiometadiphosphato-bis[(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O)rubidium] acetonitrile disolvate top
Crystal data top
[Rb2(P2S6)(C12H24O6)2]·2C2H3NF(000) = 1064
Mr = 1035.98block, yellow
Monoclinic, P21/cDx = 1.481 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.2261 (9) ÅCell parameters from 41621 reflections
b = 17.1054 (15) Åθ = 2.4–25.7°
c = 16.5895 (18) ŵ = 2.50 mm1
β = 95.520 (9)°T = 223 K
V = 2323.5 (4) Å3Block, yellow
Z = 20.29 × 0.26 × 0.22 mm
Data collection top
Stoe IPDSII
diffractometer
4400 independent reflections
Radiation source: fine-focus sealed tube3450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ω–scansθmax = 25.7°, θmin = 2.4°
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 1999, 2001)
h = 109
Tmin = 0.490, Tmax = 0.577k = 2020
26056 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074All H-atom parameters refined
S = 1.15 w = 1/[σ2(Fo2) + (0.0188P)2 + 1.1961P]
where P = (Fo2 + 2Fc2)/3
4400 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
[Rb2(P2S6)(C12H24O6)2]·2C2H3NV = 2323.5 (4) Å3
Mr = 1035.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.2261 (9) ŵ = 2.50 mm1
b = 17.1054 (15) ÅT = 223 K
c = 16.5895 (18) Å0.29 × 0.26 × 0.22 mm
β = 95.520 (9)°
Data collection top
Stoe IPDSII
diffractometer
4400 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED; Stoe & Cie, 1999, 2001)
3450 reflections with I > 2σ(I)
Tmin = 0.490, Tmax = 0.577Rint = 0.092
26056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.074All H-atom parameters refined
S = 1.15Δρmax = 0.50 e Å3
4400 reflectionsΔρmin = 0.28 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb0.01688 (5)0.43425 (2)0.19589 (2)0.03401 (10)
S10.01382 (16)0.35946 (6)0.38945 (6)0.0451 (3)
S20.20728 (13)0.51995 (6)0.36048 (6)0.0374 (2)
S30.14602 (13)0.53670 (6)0.44812 (5)0.0348 (2)
P0.05739 (12)0.46416 (5)0.42619 (5)0.0290 (2)
O10.2674 (4)0.54136 (15)0.23640 (16)0.0410 (6)
O20.0200 (4)0.60293 (16)0.14890 (16)0.0415 (7)
O30.2169 (4)0.50147 (15)0.09188 (15)0.0406 (6)
O40.1161 (3)0.34506 (15)0.06497 (16)0.0394 (6)
O50.1325 (4)0.27789 (15)0.14684 (15)0.0412 (7)
O60.3663 (4)0.38439 (16)0.19993 (16)0.0416 (7)
C10.2628 (7)0.6212 (3)0.2123 (3)0.0509 (12)
C20.0893 (7)0.6461 (3)0.2104 (3)0.0482 (11)
C30.1428 (7)0.6269 (3)0.1389 (3)0.0499 (11)
C40.2044 (7)0.5824 (3)0.0707 (3)0.0479 (11)
C50.2661 (7)0.4551 (3)0.0274 (3)0.0525 (12)
C60.2744 (6)0.3710 (3)0.0527 (3)0.0540 (12)
C70.1060 (6)0.2626 (2)0.0796 (3)0.0473 (11)
C80.0674 (6)0.2404 (2)0.0800 (3)0.0435 (10)
C90.3003 (6)0.2593 (3)0.1507 (3)0.0457 (10)
C100.3625 (7)0.3033 (3)0.2188 (3)0.0476 (11)
C110.4266 (6)0.4296 (3)0.2630 (3)0.0499 (11)
C120.4300 (6)0.5138 (3)0.2389 (3)0.0513 (11)
N130.5159 (6)0.2422 (3)0.4116 (3)0.0750 (13)
C140.5164 (6)0.3022 (3)0.4407 (3)0.0478 (10)
C150.5201 (8)0.3788 (3)0.4778 (4)0.0580 (13)
H1A0.324 (6)0.633 (3)0.160 (3)0.054 (13)*
H1B0.323 (7)0.652 (3)0.252 (3)0.073 (16)*
H2A0.026 (5)0.639 (2)0.261 (3)0.044 (12)*
H2B0.098 (6)0.702 (3)0.197 (3)0.062 (14)*
H3A0.146 (6)0.683 (3)0.125 (3)0.065 (14)*
H3B0.212 (6)0.618 (2)0.192 (3)0.050 (13)*
H4A0.303 (6)0.603 (3)0.056 (3)0.054 (13)*
H4B0.129 (6)0.590 (3)0.018 (3)0.056 (13)*
H5A0.373 (7)0.473 (3)0.016 (3)0.077 (17)*
H5B0.179 (6)0.463 (2)0.019 (3)0.052 (13)*
H6A0.308 (5)0.342 (2)0.008 (3)0.047 (12)*
H6B0.341 (6)0.367 (3)0.106 (3)0.062 (15)*
H7A0.143 (5)0.237 (2)0.036 (2)0.041 (11)*
H7B0.179 (7)0.253 (3)0.132 (3)0.077 (17)*
H8A0.078 (5)0.189 (3)0.083 (2)0.041 (11)*
H8B0.137 (5)0.259 (2)0.027 (3)0.050 (12)*
H9A0.319 (6)0.204 (3)0.158 (3)0.056 (13)*
H9B0.364 (5)0.271 (2)0.097 (3)0.046 (12)*
H10A0.300 (6)0.296 (3)0.267 (3)0.050 (13)*
H10B0.470 (6)0.287 (3)0.229 (3)0.054 (13)*
H11A0.537 (6)0.413 (3)0.269 (3)0.054 (13)*
H11B0.353 (6)0.420 (3)0.314 (3)0.061 (14)*
H12A0.485 (6)0.520 (3)0.186 (3)0.052 (13)*
H12B0.480 (6)0.543 (2)0.282 (3)0.051 (13)*
H15A0.451 (8)0.411 (4)0.446 (4)0.09 (2)*
H15B0.493 (7)0.374 (3)0.531 (4)0.083 (18)*
H15C0.630 (9)0.396 (4)0.485 (4)0.11 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb0.0386 (2)0.03336 (18)0.03045 (17)0.00168 (18)0.00526 (13)0.00247 (16)
S10.0684 (8)0.0288 (5)0.0373 (5)0.0062 (5)0.0010 (5)0.0021 (4)
S20.0354 (6)0.0432 (5)0.0349 (5)0.0033 (4)0.0099 (4)0.0027 (4)
S30.0333 (5)0.0429 (5)0.0282 (4)0.0058 (4)0.0022 (4)0.0005 (4)
P0.0323 (6)0.0286 (4)0.0263 (4)0.0002 (4)0.0043 (4)0.0010 (4)
O10.0347 (16)0.0398 (15)0.0487 (15)0.0043 (12)0.0055 (12)0.0030 (12)
O20.0426 (18)0.0380 (15)0.0440 (15)0.0020 (13)0.0046 (13)0.0031 (12)
O30.0415 (17)0.0390 (15)0.0412 (15)0.0022 (13)0.0036 (12)0.0018 (12)
O40.0361 (17)0.0375 (15)0.0453 (15)0.0053 (12)0.0072 (12)0.0027 (12)
O50.0460 (18)0.0349 (14)0.0427 (15)0.0005 (13)0.0048 (13)0.0079 (11)
O60.0401 (17)0.0418 (15)0.0433 (15)0.0003 (13)0.0063 (13)0.0048 (12)
C10.058 (3)0.038 (2)0.058 (3)0.017 (2)0.013 (2)0.002 (2)
C20.063 (3)0.034 (2)0.048 (3)0.003 (2)0.008 (2)0.0046 (19)
C30.056 (3)0.034 (2)0.059 (3)0.005 (2)0.003 (2)0.001 (2)
C40.045 (3)0.047 (3)0.053 (3)0.005 (2)0.008 (2)0.0113 (19)
C50.045 (3)0.059 (3)0.057 (3)0.011 (2)0.023 (2)0.011 (2)
C60.036 (3)0.060 (3)0.068 (3)0.004 (2)0.016 (2)0.019 (3)
C70.059 (3)0.033 (2)0.050 (3)0.010 (2)0.007 (2)0.0054 (19)
C80.058 (3)0.027 (2)0.046 (2)0.002 (2)0.009 (2)0.0046 (17)
C90.047 (3)0.040 (2)0.050 (3)0.011 (2)0.002 (2)0.0071 (19)
C100.052 (3)0.042 (2)0.050 (3)0.010 (2)0.009 (2)0.0009 (19)
C110.037 (3)0.057 (3)0.057 (3)0.004 (2)0.014 (2)0.015 (2)
C120.035 (3)0.056 (3)0.064 (3)0.008 (2)0.009 (2)0.014 (2)
N130.086 (4)0.058 (3)0.081 (3)0.012 (3)0.011 (3)0.009 (2)
C140.043 (3)0.054 (3)0.046 (2)0.006 (2)0.003 (2)0.008 (2)
C150.065 (4)0.050 (3)0.058 (3)0.010 (3)0.002 (3)0.003 (2)
Geometric parameters (Å, º) top
Rb—O12.885 (3)C3—C41.491 (7)
Rb—O52.928 (3)C3—H3A0.98 (5)
Rb—O32.939 (3)C3—H3B1.01 (5)
Rb—O42.949 (3)C4—H4A0.93 (5)
Rb—O22.988 (3)C4—H4B1.02 (5)
Rb—O63.005 (3)C5—C61.499 (7)
Rb—S13.4544 (11)C5—H5A0.97 (6)
Rb—S23.4692 (11)C5—H5B1.01 (5)
S1—P1.9630 (13)C6—H6A0.96 (4)
S2—P1.9692 (13)C6—H6B1.00 (5)
S3—Pi2.1418 (13)C7—C81.477 (7)
S3—P2.1421 (14)C7—H7A0.92 (4)
P—S3i2.1419 (13)C7—H7B1.02 (5)
O1—C121.423 (6)C8—H8A0.89 (4)
O1—C11.424 (5)C8—H8B1.05 (4)
O2—C21.422 (5)C9—C101.489 (6)
O2—C31.425 (6)C9—H9A0.97 (5)
O3—C51.421 (5)C9—H9B1.01 (4)
O3—C41.430 (5)C10—H10A0.91 (5)
O4—C61.409 (5)C10—H10B0.96 (5)
O4—C71.435 (5)C11—C121.495 (7)
O5—C91.423 (5)C11—H11A0.97 (5)
O5—C81.428 (5)C11—H11B1.01 (5)
O6—C101.422 (5)C12—H12A0.95 (5)
O6—C111.428 (5)C12—H12B1.00 (4)
C1—C21.493 (7)N13—C141.135 (6)
C1—H1A0.98 (5)C14—C151.446 (7)
C1—H1B1.01 (5)C15—H15A0.92 (7)
C2—H2A0.96 (4)C15—H15B0.93 (6)
C2—H2B0.97 (5)C15—H15C0.95 (7)
O1—Rb—O5115.13 (8)C4—C3—H3A108 (3)
O1—Rb—O3114.25 (8)Rb—C3—H3A160 (3)
O5—Rb—O3114.06 (7)O2—C3—H3B108 (3)
O1—Rb—O4145.48 (8)C4—C3—H3B113 (3)
O5—Rb—O457.07 (8)Rb—C3—H3B80 (2)
O3—Rb—O457.31 (7)H3A—C3—H3B108 (4)
O1—Rb—O257.26 (8)O3—C4—C3109.2 (4)
O5—Rb—O2144.60 (8)O3—C4—H4A112 (3)
O3—Rb—O257.22 (8)C3—C4—H4A112 (3)
O4—Rb—O2107.56 (7)O3—C4—H4B111 (3)
O1—Rb—O657.92 (8)C3—C4—H4B111 (3)
O5—Rb—O657.38 (8)H4A—C4—H4B102 (4)
O3—Rb—O6143.65 (8)O3—C5—C6109.5 (4)
O4—Rb—O6107.03 (7)O3—C5—H5A108 (3)
O2—Rb—O6107.20 (8)C6—C5—H5A110 (3)
O1—Rb—S187.72 (6)O3—C5—H5B105 (3)
O5—Rb—S183.87 (5)C6—C5—H5B111 (3)
O3—Rb—S1138.08 (6)H5A—C5—H5B113 (4)
O4—Rb—S1121.53 (6)O4—C6—C5109.0 (4)
O2—Rb—S1126.82 (5)O4—C6—H6A107 (3)
O6—Rb—S178.21 (6)C5—C6—H6A107 (3)
O1—Rb—S283.44 (6)Rb—C6—H6A155 (3)
O5—Rb—S2137.62 (6)O4—C6—H6B107 (3)
O3—Rb—S288.20 (6)C5—C6—H6B109 (3)
O4—Rb—S2126.26 (6)Rb—C6—H6B78 (3)
O2—Rb—S277.75 (6)H6A—C6—H6B118 (4)
O6—Rb—S2122.65 (5)O4—C7—C8108.9 (4)
S1—Rb—S257.93 (3)O4—C7—H7A108 (3)
P—S1—Rb85.75 (4)C8—C7—H7A106 (3)
P—S2—Rb85.25 (4)Rb—C7—H7A156 (3)
Pi—S3—P87.88 (5)O4—C7—H7B105 (3)
S1—P—S2117.02 (6)C8—C7—H7B116 (3)
S1—P—S3i111.07 (6)Rb—C7—H7B82 (3)
S2—P—S3i111.69 (6)H7A—C7—H7B112 (4)
S1—P—S3111.50 (7)O5—C8—C7108.9 (4)
S2—P—S3110.75 (6)O5—C8—H8A111 (3)
S3i—P—S392.12 (5)C7—C8—H8A111 (3)
S1—P—Rb63.64 (4)O5—C8—H8B108 (2)
S2—P—Rb64.06 (4)C7—C8—H8B111 (2)
S3i—P—Rb166.70 (5)H8A—C8—H8B107 (3)
S3—P—Rb101.17 (4)O5—C9—C10109.1 (4)
C12—O1—C1112.1 (4)O5—C9—H9A113 (3)
C12—O1—Rb119.4 (2)C10—C9—H9A110 (3)
C1—O1—Rb120.3 (3)O5—C9—H9B110 (2)
C2—O2—C3112.3 (3)C10—C9—H9B112 (2)
C2—O2—Rb108.0 (2)H9A—C9—H9B103 (4)
C3—O2—Rb108.9 (2)O6—C10—C9109.1 (4)
C5—O3—C4112.0 (3)O6—C10—H10A109 (3)
C5—O3—Rb118.3 (2)C9—C10—H10A113 (3)
C4—O3—Rb119.2 (2)Rb—C10—H10A78 (3)
C6—O4—C7113.8 (3)O6—C10—H10B109 (3)
C6—O4—Rb110.9 (2)C9—C10—H10B112 (3)
C7—O4—Rb110.6 (2)Rb—C10—H10B160 (3)
C9—O5—C8111.9 (3)H10A—C10—H10B105 (4)
C9—O5—Rb118.8 (2)O6—C11—C12108.9 (4)
C8—O5—Rb119.3 (2)O6—C11—H11A108 (3)
C10—O6—C11111.6 (3)C12—C11—H11A109 (3)
C10—O6—Rb106.3 (3)Rb—C11—H11A160 (3)
C11—O6—Rb105.3 (2)O6—C11—H11B108 (3)
O1—C1—C2109.4 (4)C12—C11—H11B112 (3)
O1—C1—H1A115 (3)Rb—C11—H11B76 (3)
C2—C1—H1A109 (3)H11A—C11—H11B111 (4)
O1—C1—H1B107 (3)O1—C12—C11109.5 (4)
C2—C1—H1B113 (3)O1—C12—H12A108 (3)
H1A—C1—H1B103 (4)C11—C12—H12A110 (3)
O2—C2—C1108.5 (4)O1—C12—H12B108 (3)
O2—C2—H2A110 (3)C11—C12—H12B107 (2)
C1—C2—H2A113 (3)H12A—C12—H12B115 (4)
Rb—C2—H2A82 (2)N13—C14—C15179.0 (6)
O2—C2—H2B112 (3)C14—C15—H15A108 (4)
C1—C2—H2B103 (3)C14—C15—H15B109 (4)
Rb—C2—H2B162 (3)H15A—C15—H15B114 (5)
H2A—C2—H2B110 (4)C14—C15—H15C109 (4)
O2—C3—C4109.5 (4)H15A—C15—H15C115 (6)
O2—C3—H3A111 (3)H15B—C15—H15C102 (5)
Symmetry code: (i) x, y+1, z1.

Experimental details

Crystal data
Chemical formula[Rb2(P2S6)(C12H24O6)2]·2C2H3N
Mr1035.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)223
a, b, c (Å)8.2261 (9), 17.1054 (15), 16.5895 (18)
β (°) 95.520 (9)
V3)2323.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.50
Crystal size (mm)0.29 × 0.26 × 0.22
Data collection
DiffractometerStoe IPDSII
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED; Stoe & Cie, 1999, 2001)
Tmin, Tmax0.490, 0.577
No. of measured, independent and
observed [I > 2σ(I)] reflections
26056, 4400, 3450
Rint0.092
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.074, 1.15
No. of reflections4400
No. of parameters343
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.50, 0.28

Computer programs: X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

 

References

First citationBrockner, W., Becker, R., Eisenmann, B. & Schäfer, H. (1985). Z. Anorg. Allg. Chem. 520, 51–58.  CrossRef CAS Web of Science
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationGjikaj, M., Adam, A. & Brockner, W. (2006). Z. Anorg. Allg. Chem. 632, 279–283.  Web of Science CSD CrossRef CAS
First citationGjikaj, M., Adam, A., Duewel, M. & Brockner, W. (2005). Z. Kristallogr. New Cryst. Struct. 220, 67.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationStoe & Cie (1999). X-SHAPE. Stoe & Cie GmbH, Darmstadt, Germany.
First citationStoe & Cie (2001). X-RED. Stoe & Cie GmbH, Darmstadt, Germany.
First citationStoe & Cie (2002). X-AREA. Stoe & Cie GmbH, Darmstadt, Germany.
First citationThilo, E. & Ladwig, G. (1962). Monatsber. Dtsch Akad. Wiss. Berlin, 4, 720–724.  CAS
First citationToffoli, P., Khodadad, P. & Rodier, N. (1978). Acta Cryst. B34, 3561–3564.  CrossRef CAS IUCr Journals Web of Science
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds