supplementary materials


xu5748 scheme

Acta Cryst. (2013). E69, o1748    [ doi:10.1107/S1600536813029887 ]

1-(3-Oxo-3-phenyl­prop­yl)piperidinium chloride

V. Anuradha, S. Madan Kumar, B. P. Siddaraju, N. K. Lokanath and P. Nagendra

Abstract top

In the title salt, C14H20NO+·Cl-, the piperidine ring adopts a chair conformation. In the crystal, the cations and anions are linked by classical N-H...Cl hydrogen bond and weak C-H...Cl and C-H...O hydrogen bonds; the C-H...O hydrogen bonds exhibit R22(14) ring motifs while the C-H...Cl hydrogen bonds link the mol­ecules into chains along the a-axis direction. [pi]-[pi] stacking is observed between parallel phenyl rings of adjacent cations, the centroid-centroid distance being 3.8164 (15) Å.

Comment top

The piperidine hydrochloride is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide which is a synthetic piperidine derivative, is an effective drug against diarrhea resulting from gastroenteritis or inflammatory bowel disease (Vartanyan et al., 1984).

The piperidine ring (N1/C10—C14) of the title compound (Fig. 1) adopts chair conformation. The puckering parameters of the piperdine ring are Q = 0.571 (2) Å, θ = 180.0 (2)° and φ = 19 (10)° (Cremer & Pople, 1975). The bond lengths and angles are in normal ranges (Allen et al., 1987).

The molecules are packed along a axis with inter molecular hydrogen bonds are shown in Figure 2. Bond lengths and angles of intermolecular hydrogen bonds (N1—H11···Cl1, C14—H14B···O1 and C4—H4···Cl1) are listed in table 1. Also, N···Cl intercontacts with a distance of 3.084 Å is observed. The C14—H14B···O1, exhibits R22(14) ring motifs (Bernstein et al., 1995). The molecules are connected by infinite one dimensional chains along a axis by C4—H4···Cl1 hydrogen bonds. In addition, π···π interactions exists between phenyl rings Cg2···Cg2 with a distance of 3.8164 (15) Å, where Cg2 is C1/C2/C3/C4/C5/C6. Overall crystal structure of the title molecule exhibits three dimensional architecture.

Related literature top

For the synthesis and biological activity of piperidine derivatives, see: Vartanyan (1984). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

Single crystals (block) were obtained from slow evaporation of a solution of ethylacetate (m.p.:410–413 K).

Refinement top

The H11 atom is located in a difference Fourier map and refined isotropically. Other H atoms were fixed geometrically (C—H= 0.93–0.96 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.5Ueq for methyl H atom and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound with 50% probability ellipsoids.
[Figure 2] Fig. 2. Packing diagram of molecule, viewed along the crystallographic a axis. Dotted lines indicate hydrogen bonds and short contacts involved.
1-(3-Oxo-3-phenylpropyl)piperidinium chloride top
Crystal data top
C14H20NO+·ClF(000) = 544
Mr = 253.76Dx = 1.227 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 2217 reflections
a = 11.2936 (13) Åθ = 4.3–64.4°
b = 12.0531 (15) ŵ = 2.33 mm1
c = 10.9650 (13) ÅT = 296 K
β = 112.971 (5)°Block, colourless
V = 1374.2 (3) Å30.23 × 0.22 × 0.21 mm
Z = 4
Data collection top
Bruker X8 Proteum
diffractometer
2217 independent reflections
Radiation source: Bruker MicroStar microfocus rotating anode1833 reflections with I > 2σ(I)
Helios multilayer optics monochromatorRint = 0.057
Detector resolution: 10.7 pixels mm-1θmax = 64.4°, θmin = 4.3°
φ and ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1014
Tmin = 0.558, Tmax = 0.614l = 1012
7001 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 W = 1/[Σ2(FO2) + (0.0762P)2 + 0.2853P]
where P = (FO2 + 2FC2)/3
wR(F2) = 0.130(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.31 e Å3
2217 reflectionsΔρmin = 0.50 e Å3
159 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), FC*=KFC[1+0.001XFC2Λ3/SIN(2Θ)]-1/4
0 restraintsExtinction coefficient: 0.173 (7)
Crystal data top
C14H20NO+·ClV = 1374.2 (3) Å3
Mr = 253.76Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.2936 (13) ŵ = 2.33 mm1
b = 12.0531 (15) ÅT = 296 K
c = 10.9650 (13) Å0.23 × 0.22 × 0.21 mm
β = 112.971 (5)°
Data collection top
Bruker X8 Proteum
diffractometer
2217 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1833 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.614Rint = 0.057
7001 measured reflectionsθmax = 64.4°
Refinement top
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130Δρmax = 0.31 e Å3
S = 1.09Δρmin = 0.50 e Å3
2217 reflectionsAbsolute structure: ?
159 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28618 (16)0.3894 (2)0.17351 (15)0.0736 (8)
N10.05732 (13)0.45578 (15)0.22047 (13)0.0286 (5)
C10.43665 (19)0.3624 (2)0.5286 (2)0.0438 (7)
C20.5574 (2)0.3438 (2)0.6274 (2)0.0533 (8)
C30.6620 (2)0.3275 (2)0.5943 (3)0.0592 (9)
C40.6478 (2)0.3307 (2)0.4642 (3)0.0586 (9)
C50.5288 (2)0.3513 (2)0.3656 (2)0.0464 (8)
C60.42153 (17)0.36703 (19)0.39763 (18)0.0353 (6)
C70.29561 (18)0.3890 (2)0.28717 (18)0.0381 (7)
C80.17901 (16)0.41077 (19)0.31941 (17)0.0353 (6)
C90.06310 (17)0.44018 (19)0.19508 (17)0.0344 (6)
C100.05276 (19)0.55864 (19)0.29863 (19)0.0378 (6)
C110.1784 (2)0.5746 (2)0.3175 (2)0.0457 (8)
C120.2928 (2)0.5773 (2)0.1862 (2)0.0521 (8)
C130.29567 (18)0.4721 (2)0.1097 (2)0.0500 (8)
C140.17059 (17)0.4572 (2)0.09057 (18)0.0404 (7)
Cl10.05845 (4)0.24029 (5)0.09932 (4)0.0406 (2)
H10.365800.371800.550800.0530*
H20.567600.342300.715800.0640*
H30.742600.314300.660400.0710*
H40.718600.319000.442400.0700*
H50.519800.354800.277700.0560*
H8A0.197300.471300.382400.0420*
H8B0.160000.345300.359900.0420*
H9A0.081100.508000.157900.0410*
H9B0.049000.381700.130200.0410*
H10A0.037500.622400.252800.0450*
H10B0.017900.553400.384500.0450*
H110.066 (2)0.393 (2)0.268 (2)0.041 (6)*
H11A0.189000.514600.371200.0550*
H11B0.174700.643600.364400.0550*
H12A0.371600.583500.201400.0620*
H12B0.286700.641200.135300.0620*
H13A0.366700.475500.023900.0600*
H13B0.309300.408900.157400.0600*
H14A0.173600.388000.044200.0480*
H14B0.160800.517200.036400.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (9)0.138 (2)0.0387 (8)0.0265 (11)0.0239 (7)0.0115 (10)
N10.0294 (8)0.0315 (10)0.0248 (7)0.0022 (6)0.0104 (6)0.0011 (7)
C10.0371 (10)0.0478 (15)0.0450 (11)0.0014 (9)0.0144 (8)0.0064 (10)
C20.0506 (13)0.0500 (17)0.0470 (11)0.0009 (11)0.0057 (9)0.0092 (12)
C30.0373 (11)0.0412 (16)0.0810 (17)0.0043 (10)0.0034 (11)0.0122 (13)
C40.0343 (11)0.0499 (17)0.0903 (18)0.0076 (11)0.0230 (11)0.0031 (15)
C50.0403 (11)0.0440 (15)0.0596 (13)0.0058 (10)0.0245 (9)0.0010 (11)
C60.0337 (10)0.0307 (12)0.0427 (11)0.0001 (8)0.0163 (8)0.0014 (9)
C70.0355 (10)0.0450 (14)0.0365 (10)0.0033 (9)0.0171 (8)0.0022 (10)
C80.0311 (9)0.0435 (14)0.0329 (9)0.0010 (8)0.0144 (7)0.0013 (9)
C90.0324 (9)0.0444 (13)0.0293 (9)0.0020 (8)0.0153 (7)0.0007 (9)
C100.0408 (10)0.0381 (13)0.0369 (10)0.0035 (9)0.0177 (8)0.0087 (9)
C110.0490 (12)0.0481 (16)0.0450 (11)0.0047 (10)0.0239 (9)0.0090 (11)
C120.0430 (12)0.0569 (18)0.0565 (13)0.0150 (11)0.0197 (10)0.0001 (12)
C130.0321 (10)0.0650 (18)0.0467 (11)0.0061 (10)0.0086 (8)0.0066 (11)
C140.0349 (10)0.0547 (15)0.0263 (9)0.0078 (9)0.0063 (7)0.0054 (9)
Cl10.0444 (4)0.0417 (4)0.0369 (4)0.0004 (2)0.0171 (2)0.0073 (2)
Geometric parameters (Å, º) top
O1—C71.209 (2)C2—H20.9300
N1—C91.503 (3)C3—H30.9300
N1—C101.497 (3)C4—H40.9300
N1—C141.498 (2)C5—H50.9300
N1—H110.95 (2)C8—H8A0.9700
C1—C61.380 (3)C8—H8B0.9700
C1—C21.389 (3)C9—H9A0.9700
C2—C31.379 (4)C9—H9B0.9700
C3—C41.373 (4)C10—H10A0.9700
C4—C51.379 (4)C10—H10B0.9700
C5—C61.400 (3)C11—H11A0.9700
C6—C71.488 (3)C11—H11B0.9700
C7—C81.514 (3)C12—H12A0.9700
C8—C91.518 (3)C12—H12B0.9700
C10—C111.524 (3)C13—H13A0.9700
C11—C121.514 (3)C13—H13B0.9700
C12—C131.514 (3)C14—H14A0.9700
C13—C141.518 (3)C14—H14B0.9700
C1—H10.9300
C9—N1—C10112.23 (16)C7—C8—H8B110.00
C9—N1—C14108.91 (13)C9—C8—H8A109.00
C10—N1—C14111.15 (16)C9—C8—H8B109.00
C9—N1—H11107.3 (15)H8A—C8—H8B108.00
C10—N1—H11109.6 (14)N1—C9—H9A109.00
C14—N1—H11107.4 (13)N1—C9—H9B109.00
C2—C1—C6120.2 (2)C8—C9—H9A109.00
C1—C2—C3119.9 (2)C8—C9—H9B109.00
C2—C3—C4120.3 (2)H9A—C9—H9B108.00
C3—C4—C5120.2 (2)N1—C10—H10A109.00
C4—C5—C6120.1 (2)N1—C10—H10B109.00
C5—C6—C7117.75 (17)C11—C10—H10A109.00
C1—C6—C7123.03 (19)C11—C10—H10B109.00
C1—C6—C5119.22 (19)H10A—C10—H10B108.00
O1—C7—C6120.8 (2)C10—C11—H11A109.00
O1—C7—C8120.36 (19)C10—C11—H11B109.00
C6—C7—C8118.87 (16)C12—C11—H11A109.00
C7—C8—C9110.77 (15)C12—C11—H11B109.00
N1—C9—C8112.86 (14)H11A—C11—H11B108.00
N1—C10—C11110.89 (18)C11—C12—H12A110.00
C10—C11—C12111.59 (17)C11—C12—H12B110.00
C11—C12—C13109.56 (19)C13—C12—H12A110.00
C12—C13—C14110.85 (19)C13—C12—H12B110.00
N1—C14—C13111.44 (15)H12A—C12—H12B108.00
C2—C1—H1120.00C12—C13—H13A109.00
C6—C1—H1120.00C12—C13—H13B109.00
C1—C2—H2120.00C14—C13—H13A109.00
C3—C2—H2120.00C14—C13—H13B110.00
C2—C3—H3120.00H13A—C13—H13B108.00
C4—C3—H3120.00N1—C14—H14A109.00
C3—C4—H4120.00N1—C14—H14B109.00
C5—C4—H4120.00C13—C14—H14A109.00
C4—C5—H5120.00C13—C14—H14B109.00
C6—C5—H5120.00H14A—C14—H14B108.00
C7—C8—H8A110.00
C10—N1—C9—C869.9 (2)C4—C5—C6—C7180.0 (2)
C14—N1—C9—C8166.55 (18)C1—C6—C7—O1178.0 (2)
C9—N1—C10—C11177.56 (15)C1—C6—C7—C81.9 (3)
C14—N1—C10—C1155.3 (2)C5—C6—C7—O12.4 (4)
C9—N1—C14—C13179.67 (18)C5—C6—C7—C8177.6 (2)
C10—N1—C14—C1356.2 (2)O1—C7—C8—C94.6 (3)
C6—C1—C2—C31.4 (4)C6—C7—C8—C9175.5 (2)
C2—C1—C6—C50.9 (4)C7—C8—C9—N1176.49 (18)
C2—C1—C6—C7178.7 (2)N1—C10—C11—C1256.2 (2)
C1—C2—C3—C40.7 (4)C10—C11—C12—C1356.4 (2)
C2—C3—C4—C50.6 (4)C11—C12—C13—C1456.6 (2)
C3—C4—C5—C61.2 (4)C12—C13—C14—N157.1 (2)
C4—C5—C6—C10.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl1i0.95 (2)2.15 (2)3.0837 (18)171 (2)
C4—H4···Cl1ii0.932.823.745 (3)172
C14—H14B···O1iii0.972.453.249 (3)139
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···Cl1i0.95 (2)2.15 (2)3.0837 (18)171 (2)
C4—H4···Cl1ii0.932.823.745 (3)172
C14—H14B···O1iii0.972.453.249 (3)139
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y+1/2, z1/2; (iii) x, y+1, z.
Acknowledgements top

The authors are thankful to the IOE, University of Mysore, for providing the single-crystal X-ray diffraction facility. PN thanks the BET Academy of Higher Education for research facilities.

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Vartanyan, R. S. (1984). Pharm. Chem. J. 18, 736–749.