supplementary materials


xu5753 scheme

Acta Cryst. (2013). E69, m682    [ doi:10.1107/S1600536813031814 ]

Bis[[mu]-N-(pyridin-2-yl)methane­sulfon­amido-[kappa]2N:N']silver(I)

H.-L. Hu and C.-W. Yeh

Abstract top

In the title compound, [Ag2(C6H7N2O2S)2], the AgI atom is coordinated by two N atoms from two N-(pyridin-2-yl)methane­sulfonamidate anions in a slightly bent linear geometry [N-Ag-N = 166.03 (7)°]. The AgI atoms are bridged by the N-(pyridin-2-yl)methane­sulfonamidate anions, forming a centrosymmetric dinuclear mol­ecule, in which the Ag...Ag distance is 2.7072 (4) Å.

Synthesis and crystallization top

An aqueous solution (5.0 ml) of AgNO3 (1.0 mmol) was layered carefully over a methano­lic solution (5.0 ml) of N-(pyridin-2-yl)methansulfonamide (1.0 mmol) in a tube and kept it in the dark. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 78.6% yield.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C—H = 0.93 or 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Results and discussion top

A series of complexes with the symmetric di(pyridyl/pyrimidyl)amide ligands (Hu et al., 2004; Hsu et al., 2008; Yeh et al., 2008; Tsai et al., 2010) and the asymmetric methyl-4-(pyridin-/pyrimidin-2-ylcarbamoyl)benzoate (Wu et al., 2011; Hsiao et al., 2012) or phosphinic amide (Yeh & Chen, 2011; Yeh et al., 2012) ligands that exhibit inter­esting structural types have been synthesized and structurally characterized. These pyridyl/pyrimidyl amide ligands coordinate to the metal centers through their pyridyl/pyrimidyl nitro­gen atoms and/or amide oxygen atoms and inter­act with each other through hydrogen bonds involving the amide groups. These inter­actions are important for molecular recognition and constructing supra­molecular arrays. .

In the title compound, [Ag(C6H7N2SO2)]2, the Ag+ cations are coordinated with one pyridyl N and one amido N atoms from twoN-(pyridin-2-yl)methane­sulfonamido (L-) anions forming a slightly bent geometry (Fig. 1). The Ag···Ag distance separated by the bridging L- group is 2.7072 (4) Å.

Related literature top

For related di(pyridyl/pyrimidyl)amide structures, see: Hu et al. (2004); Hsu et al. (2008); Yeh et al. (2008); Tsai et al. (2010). For related methyl-4-(pyridin-pyrimidin-2-ylcarbamoyl)benzoate structures, see: Wu et al. (2011); Hsiao et al. (2012). For related phosphinic amide structures, see: Yeh & Chen (2011); Yeh et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at 30% probability level. [Symmetry codes: (i) -x,-y + 1,-z + 1.]
Bis[µ-N-(pyridin-2-yl)methanesulfonamido-κ2N:N']silver(I) top
Crystal data top
[Ag2(C6H7N2O2S)2]F(000) = 544
Mr = 558.13Dx = 2.323 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6474 reflections
a = 6.4406 (2) Åθ = 2.6–35.3°
b = 15.4580 (5) ŵ = 2.74 mm1
c = 8.0789 (2) ÅT = 296 K
β = 97.143 (2)°Column, colourless
V = 798.08 (4) Å30.20 × 0.10 × 0.10 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3569 independent reflections
Radiation source: fine-focus sealed tube2732 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
phi and ω scansθmax = 35.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 108
Tmin = 0.636, Tmax = 0.747k = 2522
12917 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.3136P]
where P = (Fo2 + 2Fc2)/3
3569 reflections(Δ/σ)max = 0.001
110 parametersΔρmax = 1.32 e Å3
0 restraintsΔρmin = 1.22 e Å3
Crystal data top
[Ag2(C6H7N2O2S)2]V = 798.08 (4) Å3
Mr = 558.13Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.4406 (2) ŵ = 2.74 mm1
b = 15.4580 (5) ÅT = 296 K
c = 8.0789 (2) Å0.20 × 0.10 × 0.10 mm
β = 97.143 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3569 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2732 reflections with I > 2σ(I)
Tmin = 0.636, Tmax = 0.747Rint = 0.048
12917 measured reflectionsθmax = 35.4°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.092Δρmax = 1.32 e Å3
S = 1.05Δρmin = 1.22 e Å3
3569 reflectionsAbsolute structure: ?
110 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.13566 (3)0.475803 (15)0.63351 (2)0.03999 (8)
S0.07511 (10)0.64837 (4)0.14689 (7)0.02803 (12)
C10.5244 (4)0.58574 (16)0.6741 (3)0.0306 (4)
H1A0.54100.55530.77420.037*
C20.6811 (4)0.64120 (18)0.6425 (3)0.0354 (5)
H2A0.80110.64830.71810.043*
C30.6530 (4)0.68622 (16)0.4931 (3)0.0357 (5)
H3A0.75600.72410.46640.043*
C40.4738 (4)0.67511 (16)0.3846 (3)0.0318 (5)
H4A0.45470.70600.28510.038*
C50.3186 (3)0.61698 (14)0.4237 (3)0.0245 (4)
C60.2438 (5)0.6112 (2)0.0057 (3)0.0422 (6)
H6A0.20900.63930.10010.063*
H6B0.22810.54980.00830.063*
H6C0.38600.62430.04870.063*
N10.3482 (3)0.57273 (12)0.5690 (2)0.0255 (3)
N20.1362 (3)0.59867 (13)0.3207 (2)0.0274 (4)
O10.1324 (3)0.61682 (13)0.0849 (2)0.0406 (4)
O20.1003 (3)0.74049 (12)0.1604 (3)0.0402 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.03197 (12)0.05057 (14)0.03650 (11)0.01463 (8)0.00059 (8)0.01295 (8)
S0.0278 (3)0.0277 (3)0.0283 (3)0.0004 (2)0.00232 (19)0.00570 (19)
C10.0274 (11)0.0352 (12)0.0286 (10)0.0003 (9)0.0011 (8)0.0004 (8)
C20.0271 (12)0.0397 (13)0.0381 (13)0.0043 (10)0.0016 (9)0.0069 (10)
C30.0319 (12)0.0328 (11)0.0426 (13)0.0105 (10)0.0054 (10)0.0031 (10)
C40.0300 (12)0.0317 (11)0.0337 (11)0.0076 (9)0.0040 (9)0.0033 (9)
C50.0227 (10)0.0246 (9)0.0267 (9)0.0013 (7)0.0047 (7)0.0011 (7)
C60.0492 (17)0.0462 (15)0.0330 (12)0.0013 (12)0.0125 (11)0.0002 (10)
N10.0251 (9)0.0272 (9)0.0245 (8)0.0005 (7)0.0041 (6)0.0009 (6)
N20.0242 (9)0.0306 (9)0.0272 (8)0.0035 (7)0.0017 (7)0.0060 (7)
O10.0325 (10)0.0472 (11)0.0388 (10)0.0050 (8)0.0082 (8)0.0109 (8)
O20.0416 (11)0.0275 (8)0.0506 (11)0.0033 (7)0.0028 (9)0.0078 (7)
Geometric parameters (Å, º) top
Ag—N12.1373 (19)C2—H2A0.9300
Ag—N2i2.1654 (19)C3—C41.370 (4)
Ag—Agi2.7072 (4)C3—H3A0.9300
S—O21.4359 (19)C4—C51.409 (3)
S—O11.452 (2)C4—H4A0.9300
S—N21.6061 (19)C5—N11.351 (3)
S—C61.766 (3)C5—N21.382 (3)
C1—N11.345 (3)C6—H6A0.9600
C1—C21.372 (4)C6—H6B0.9600
C1—H1A0.9300C6—H6C0.9600
C2—C31.385 (4)N2—Agi2.1654 (19)
N1—Ag—N2i166.03 (7)C3—C4—C5120.1 (2)
N1—Ag—Agi88.95 (5)C3—C4—H4A120.0
N2i—Ag—Agi80.07 (5)C5—C4—H4A120.0
O2—S—O1116.73 (12)N1—C5—N2115.93 (19)
O2—S—N2113.24 (11)N1—C5—C4119.3 (2)
O1—S—N2104.81 (11)N2—C5—C4124.7 (2)
O2—S—C6107.40 (13)S—C6—H6A109.5
O1—S—C6106.38 (14)S—C6—H6B109.5
N2—S—C6107.79 (13)H6A—C6—H6B109.5
N1—C1—C2123.9 (2)S—C6—H6C109.5
N1—C1—H1A118.0H6A—C6—H6C109.5
C2—C1—H1A118.0H6B—C6—H6C109.5
C1—C2—C3117.2 (2)C1—N1—C5119.3 (2)
C1—C2—H2A121.4C1—N1—Ag117.82 (15)
C3—C2—H2A121.4C5—N1—Ag122.74 (15)
C4—C3—C2120.2 (2)C5—N2—S121.75 (15)
C4—C3—H3A119.9C5—N2—Agi130.60 (14)
C2—C3—H3A119.9S—N2—Agi106.75 (10)
Symmetry code: (i) x, y+1, z+1.
Selected bond lengths (Å) top
Ag—N12.1373 (19)Ag—N2i2.1654 (19)
Symmetry code: (i) x, y+1, z+1.
Acknowledgements top

We are grateful to the Taoyuan Innovation Institute of Technology and the National Science Council of Taiwan for support.

references
References top

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Hsiao, H.-L., Wu, C.-J., Hsu, W., Yeh, C.-W., Xie, M.-Y., Huang, W.-J. & Chen, J.-D. (2012). CrystEngComm, 14, 8143–8152.

Hsu, Y.-F., Lin, C.-H., Chen, J.-D. & Wang, J.-C. (2008). Cryst. Growth Des. 8, 1094–1096.

Hu, H.-L., Yeh, C.-W. & Chen, J.-D. (2004). Eur. J. Inorg. Chem. pp. 4696–4701.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Tsai, T.-P., Huang, Y.-T., Ray, U., Chang, Y.-J., Cheng, P.-C., Wu, C.-J., Chen, J.-D. & Wang, J.-C. (2010). Polyhedron, 29, 3081–3088.

Wu, C.-J., Sie, M.-J., Hsiao, H.-L. & Chen, J.-D. (2011). CrystEngComm, 13, 4121–4130.

Yeh, C.-W., Chang, K.-H., Hu, C.-Y., Hsu, W. & Chen, J.-D. (2012). Polyhedron, 31, 657–664.

Yeh, C.-W. & Chen, J.-D. (2011). Inorg. Chem. Commun. 14, 1212–1216.

Yeh, C.-W., Chen, J.-D. & Wang, J.-C. (2008). Polyhedron, 27, 3611–3618.