supplementary materials


yk2100 scheme

Acta Cryst. (2013). E69, o1828    [ doi:10.1107/S1600536813031747 ]

N'-[(E)-2-Fluoro­benzyl­idene]benzo­hydrazide

P. B. Sreeja, M. Sithambaresan, N. Aiswarya and M. R. P. Kurup

Abstract top

The asymmetric unit of the title compound, C14H11FN2O, contains two independent mol­ecules, both of which adopt the E conformation with respect to the azomethine C=N bond. The mol­ecules are non-planar, with dihedral angles of 26.92 (12) and 11.36 (11)° between the benzene and phenyl rings. In the crystal, mol­ecules are linked through N-H...O=C and N-H...N hydrogen bonds into chains along [101]. C-H...O contacts link these chains into layers parallel to (001). The three-dimensional crystal packing is stabilized by [pi]-[pi] inter­actions, the shortest separation between the centroids of benzene rings being 3.884 (1) Å.

Comment top

The coordination chemistry of acyl and aroyl hydrazones have been a subject of competitive research as they are multipurpose class of ligands. Apart from exhibiting physiological and biological activities (Sreeja et al., 2004), they also function as catalysts (Heravi et al., 2007) as well as inhibitors for many enzymes (Tamasi et al., 2005).

The title compound crystallizes in monoclinic space group P21/n. The asymmetric unit contains two molecules, both of which adopt the E configuration with respect to the CN bond (Fig. 1). They exist in the amido form with a C8O1 bond length of 1.231 (2) Å and C22O2 of 1.223 (2) Å, which are very close to the reported CO bond length in closely related structure (Nair et al., 2012). Both molecules adopt the Z conformation with respect to the amido C—N bonds, with torsion angles of -7.2 (3)° and 5.5 (3)°.

There are eight intermolecular hydrogen bonding interactions, out of which three are classical and the rest of interactions are non-classical with D···A distances of 2.875 (2), 3.339 (2), 2.882 (2), 3.213 (2), 3.402 (3), 3.450 (3), 3.250 (2) and 3.312 (2) Å (Table 1). The hydrogen at the N2 atom forms bifurcated H bonds with the O2 and N3 atoms of the adjacent molecules (Fig. 2). Two ππ interactions between the rings C15—C20 & C23—C28 (shown in blue) and between the two C23—C28 rings (shown in pink) of the adjacent molecules with the intercentroid distances of 3.8840 (14) Å and 3.9145 (14) Å, respectively, also link the molecules (Fig. 3). Fig. 4 shows the packing of the molecules by means of hydrogen bonding and ππ interactions.

Related literature top

For catalytic properties of hydrazones, see: Heravi et al. (2007). For their use as inhibitors of enzymes, see: Tamasi et al. (2005) and for their biological activity, see: Sreeja et al. (2004). For the synthesis of related compounds, see: Mangalam & Kurup (2011). For a related structure, see: Nair et al. (2012).

Experimental top

The title compound was prepared by adapting a reported procedure (Mangalam & Kurup, 2011). Benzoic acid hydrazide (1 mmol, 0.136 g) was dissolved in methanol and refluxed with methanolic solution of 2-fluorobenzaldehyde (1 mmol 0.124 g), in presence of a few drops of glacial acetic acid for 6 h. On cooling the reactant media, crystals of hydrazone were separated out. The crystals were filtered and washed with minimum quantity of methanol and dried over P4O10 in vacuo. Good quality crystals suitable for X-ray analysis were obtained from methanolic solution by slow evaporation.

Refinement top

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances of 0.93 Å. H atoms were assigned Uiso(H) values of 1.2Ueq(carrier). H atoms of N2—H2' and N4—H4' bonds were located from difference maps and the bond distances are restrained to 0.88±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of N'-[(E)-(2-fluorophenyl)methylidene]benzohydrazide with 50% probability ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bonding interactions of the title compound.
[Figure 3] Fig. 3. ππ interactions in the title compound.
[Figure 4] Fig. 4. Packing diagram of the title compound along the a axis direction.
N'-[(E)-2-Fluorobenzylidene]benzohydrazide top
Crystal data top
C14H11FN2OF(000) = 1008
Mr = 242.25Dx = 1.310 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4473 reflections
a = 9.7010 (6) Åθ = 4.7–48.2°
b = 17.4114 (13) ŵ = 0.10 mm1
c = 15.002 (1) ÅT = 296 K
β = 104.126 (4)°Block, colourless
V = 2457.3 (3) Å30.35 × 0.30 × 0.25 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6111 independent reflections
Radiation source: fine-focus sealed tube3320 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω and φ scanh = 1211
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 2317
Tmin = 0.968, Tmax = 0.977l = 1919
18766 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0763P)2 + 0.4072P]
where P = (Fo2 + 2Fc2)/3
5972 reflections(Δ/σ)max = 0.001
333 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H11FN2OV = 2457.3 (3) Å3
Mr = 242.25Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.7010 (6) ŵ = 0.10 mm1
b = 17.4114 (13) ÅT = 296 K
c = 15.002 (1) Å0.35 × 0.30 × 0.25 mm
β = 104.126 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6111 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3320 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.977Rint = 0.026
18766 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.165Δρmax = 0.21 e Å3
S = 1.00Δρmin = 0.17 e Å3
5972 reflectionsAbsolute structure: ?
333 parametersAbsolute structure parameter: ?
2 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.46744 (16)0.52151 (9)0.31008 (10)0.0961 (5)
F20.04425 (16)0.24110 (10)0.23115 (9)0.0973 (5)
O10.42500 (14)0.14776 (8)0.21005 (9)0.0613 (4)
O20.28675 (14)0.15829 (9)0.13577 (9)0.0630 (4)
N10.44609 (15)0.29885 (10)0.23441 (10)0.0513 (4)
N20.54248 (16)0.24863 (9)0.28584 (10)0.0505 (4)
N30.16870 (15)0.19149 (9)0.00186 (10)0.0490 (4)
N40.30586 (16)0.16402 (10)0.01524 (11)0.0512 (4)
C10.3744 (2)0.50230 (12)0.23098 (15)0.0591 (5)
C20.2916 (3)0.55868 (13)0.18222 (19)0.0736 (6)
H20.30010.60920.20280.088*
C30.1957 (3)0.53942 (15)0.1024 (2)0.0862 (8)
H30.13820.57700.06800.103*
C40.1845 (3)0.46473 (16)0.07311 (19)0.0900 (8)
H40.11940.45170.01870.108*
C50.2685 (2)0.40901 (13)0.12344 (15)0.0706 (6)
H50.25950.35850.10260.085*
C60.36690 (19)0.42641 (11)0.20489 (13)0.0506 (5)
C70.46029 (19)0.36878 (12)0.25810 (13)0.0539 (5)
H70.53040.38320.30950.065*
C80.52872 (18)0.17362 (11)0.26640 (11)0.0464 (4)
C90.64558 (19)0.12175 (11)0.31359 (12)0.0490 (4)
C100.6233 (3)0.04460 (14)0.30166 (17)0.0771 (7)
H100.53510.02680.26890.093*
C110.7297 (3)0.00725 (16)0.33747 (19)0.0953 (9)
H110.71360.05960.32800.114*
C120.8586 (3)0.01828 (16)0.38681 (18)0.0840 (8)
H120.93030.01660.41180.101*
C130.8819 (2)0.09439 (17)0.39922 (19)0.0865 (8)
H130.96990.11190.43270.104*
C140.7759 (2)0.14642 (14)0.36265 (16)0.0711 (6)
H140.79320.19880.37140.085*
C150.0531 (2)0.24951 (13)0.15067 (14)0.0599 (5)
C160.1862 (3)0.27441 (13)0.15287 (17)0.0698 (6)
H160.20830.28540.20840.084*
C170.2853 (2)0.28265 (13)0.07180 (19)0.0710 (6)
H170.37660.29900.07180.085*
C180.2513 (2)0.26703 (13)0.00981 (16)0.0674 (6)
H180.31940.27300.06500.081*
C190.1169 (2)0.24265 (12)0.01023 (14)0.0565 (5)
H190.09480.23230.06600.068*
C200.01365 (19)0.23326 (10)0.07091 (13)0.0488 (4)
C210.1288 (2)0.20552 (11)0.07427 (13)0.0514 (5)
H210.19200.19790.13110.062*
C220.35624 (18)0.14576 (10)0.05743 (12)0.0461 (4)
C230.49959 (18)0.11042 (10)0.03891 (12)0.0476 (4)
C240.5548 (2)0.09675 (15)0.11316 (16)0.0715 (6)
H240.50390.11040.17190.086*
C250.6874 (3)0.06241 (17)0.1000 (2)0.0918 (8)
H250.72440.05240.15050.110*
C260.7637 (3)0.04326 (15)0.0146 (2)0.0873 (8)
H260.85310.02100.00670.105*
C270.7102 (2)0.05644 (14)0.05883 (18)0.0747 (7)
H270.76260.04330.11740.090*
C280.5777 (2)0.08945 (12)0.04711 (14)0.0604 (5)
H280.54060.09760.09790.073*
H4'0.3472 (19)0.1550 (11)0.0722 (7)0.060 (6)*
H2'0.6116 (18)0.2682 (12)0.3300 (12)0.077 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0962 (10)0.0799 (10)0.0961 (10)0.0050 (8)0.0077 (9)0.0251 (8)
F20.0970 (10)0.1417 (14)0.0495 (7)0.0320 (9)0.0106 (7)0.0092 (8)
O10.0577 (8)0.0644 (9)0.0510 (7)0.0008 (6)0.0076 (6)0.0029 (6)
O20.0597 (8)0.0844 (11)0.0418 (7)0.0165 (7)0.0064 (6)0.0050 (7)
N10.0475 (9)0.0575 (11)0.0449 (8)0.0057 (7)0.0036 (7)0.0017 (7)
N20.0483 (9)0.0535 (10)0.0430 (8)0.0049 (7)0.0015 (7)0.0018 (7)
N30.0430 (8)0.0565 (10)0.0446 (8)0.0079 (7)0.0054 (7)0.0006 (7)
N40.0448 (8)0.0657 (11)0.0392 (8)0.0139 (7)0.0027 (7)0.0006 (8)
C10.0513 (11)0.0597 (14)0.0664 (13)0.0037 (9)0.0146 (10)0.0060 (11)
C20.0728 (15)0.0510 (13)0.1003 (18)0.0042 (11)0.0276 (14)0.0002 (12)
C30.0769 (16)0.0693 (17)0.102 (2)0.0155 (13)0.0025 (15)0.0153 (15)
C40.0893 (18)0.0762 (18)0.0841 (17)0.0092 (14)0.0184 (14)0.0068 (14)
C50.0721 (14)0.0571 (14)0.0712 (14)0.0045 (11)0.0045 (12)0.0013 (11)
C60.0443 (10)0.0538 (12)0.0536 (11)0.0000 (8)0.0120 (8)0.0014 (9)
C70.0508 (11)0.0570 (13)0.0499 (11)0.0003 (9)0.0047 (8)0.0034 (9)
C80.0449 (10)0.0579 (12)0.0339 (9)0.0026 (8)0.0049 (7)0.0002 (8)
C90.0527 (11)0.0529 (12)0.0392 (9)0.0048 (8)0.0066 (8)0.0013 (8)
C100.0804 (16)0.0602 (15)0.0766 (15)0.0064 (11)0.0081 (13)0.0036 (12)
C110.115 (2)0.0582 (16)0.097 (2)0.0206 (14)0.0042 (17)0.0005 (14)
C120.0837 (18)0.0819 (19)0.0815 (17)0.0333 (14)0.0107 (14)0.0127 (14)
C130.0576 (13)0.091 (2)0.0985 (19)0.0129 (13)0.0052 (13)0.0154 (16)
C140.0556 (12)0.0655 (15)0.0806 (15)0.0029 (10)0.0058 (11)0.0068 (12)
C150.0647 (13)0.0636 (13)0.0505 (11)0.0088 (10)0.0124 (10)0.0022 (10)
C160.0799 (16)0.0693 (15)0.0690 (14)0.0092 (12)0.0351 (13)0.0027 (11)
C170.0558 (13)0.0658 (15)0.0957 (18)0.0097 (10)0.0266 (13)0.0038 (13)
C180.0555 (12)0.0709 (15)0.0712 (14)0.0073 (10)0.0064 (11)0.0061 (12)
C190.0539 (11)0.0628 (13)0.0524 (11)0.0068 (9)0.0123 (9)0.0023 (10)
C200.0527 (11)0.0445 (11)0.0491 (10)0.0036 (8)0.0121 (9)0.0005 (8)
C210.0500 (10)0.0604 (12)0.0407 (10)0.0085 (9)0.0052 (8)0.0004 (9)
C220.0465 (10)0.0460 (11)0.0436 (10)0.0009 (8)0.0070 (8)0.0003 (8)
C230.0442 (10)0.0446 (11)0.0535 (11)0.0015 (8)0.0108 (8)0.0041 (8)
C240.0652 (14)0.0886 (18)0.0640 (13)0.0070 (12)0.0222 (11)0.0062 (12)
C250.0751 (17)0.112 (2)0.101 (2)0.0148 (15)0.0460 (16)0.0117 (17)
C260.0539 (14)0.0893 (19)0.121 (2)0.0176 (12)0.0263 (15)0.0003 (17)
C270.0528 (12)0.0787 (16)0.0863 (17)0.0179 (11)0.0046 (12)0.0043 (13)
C280.0532 (11)0.0659 (14)0.0599 (12)0.0128 (10)0.0091 (10)0.0017 (10)
Geometric parameters (Å, º) top
F1—C11.346 (2)C11—H110.9300
F2—C151.347 (2)C12—C131.350 (4)
O1—C81.231 (2)C12—H120.9300
O2—C221.223 (2)C13—C141.380 (3)
N1—C71.266 (2)C13—H130.9300
N1—N21.372 (2)C14—H140.9300
N2—C81.338 (2)C15—C161.370 (3)
N2—H2'0.887 (9)C15—C201.372 (3)
N3—C211.263 (2)C16—C171.362 (3)
N3—N41.382 (2)C16—H160.9300
N4—C221.337 (2)C17—C181.371 (3)
N4—H4'0.865 (9)C17—H170.9300
C1—C21.363 (3)C18—C191.373 (3)
C1—C61.375 (3)C18—H180.9300
C2—C31.367 (4)C19—C201.384 (3)
C2—H20.9300C19—H190.9300
C3—C41.368 (4)C20—C211.453 (3)
C3—H30.9300C21—H210.9300
C4—C51.370 (3)C22—C231.484 (2)
C4—H40.9300C23—C241.370 (3)
C5—C61.388 (3)C23—C281.377 (3)
C5—H50.9300C24—C251.388 (3)
C6—C71.453 (3)C24—H240.9300
C7—H70.9300C25—C261.356 (4)
C8—C91.487 (2)C25—H250.9300
C9—C101.365 (3)C26—C271.347 (4)
C9—C141.368 (3)C26—H260.9300
C10—C111.378 (3)C27—C281.380 (3)
C10—H100.9300C27—H270.9300
C11—C121.363 (4)C28—H280.9300
C7—N1—N2116.26 (15)C14—C13—H13119.8
C8—N2—N1118.79 (15)C9—C14—C13120.6 (2)
C8—N2—H2'123.7 (15)C9—C14—H14119.7
N1—N2—H2'117.5 (15)C13—C14—H14119.7
C21—N3—N4115.38 (15)F2—C15—C16118.13 (19)
C22—N4—N3119.63 (14)F2—C15—C20118.40 (18)
C22—N4—H4'126.0 (13)C16—C15—C20123.5 (2)
N3—N4—H4'113.9 (13)C17—C16—C15118.4 (2)
F1—C1—C2118.3 (2)C17—C16—H16120.8
F1—C1—C6117.84 (19)C15—C16—H16120.8
C2—C1—C6123.8 (2)C16—C17—C18120.3 (2)
C1—C2—C3118.7 (2)C16—C17—H17119.8
C1—C2—H2120.7C18—C17—H17119.8
C3—C2—H2120.7C17—C18—C19120.1 (2)
C2—C3—C4119.9 (2)C17—C18—H18119.9
C2—C3—H3120.1C19—C18—H18119.9
C4—C3—H3120.1C18—C19—C20121.1 (2)
C3—C4—C5120.4 (2)C18—C19—H19119.4
C3—C4—H4119.8C20—C19—H19119.4
C5—C4—H4119.8C15—C20—C19116.53 (18)
C4—C5—C6121.3 (2)C15—C20—C21120.25 (17)
C4—C5—H5119.4C19—C20—C21123.20 (18)
C6—C5—H5119.4N3—C21—C20121.54 (16)
C1—C6—C5115.95 (18)N3—C21—H21119.2
C1—C6—C7121.65 (18)C20—C21—H21119.2
C5—C6—C7122.37 (19)O2—C22—N4121.02 (16)
N1—C7—C6119.94 (17)O2—C22—C23121.70 (17)
N1—C7—H7120.0N4—C22—C23117.27 (15)
C6—C7—H7120.0C24—C23—C28118.78 (18)
O1—C8—N2121.89 (16)C24—C23—C22117.03 (17)
O1—C8—C9120.36 (18)C28—C23—C22124.17 (18)
N2—C8—C9117.73 (15)C23—C24—C25119.5 (2)
C10—C9—C14118.38 (19)C23—C24—H24120.3
C10—C9—C8117.23 (18)C25—C24—H24120.3
C14—C9—C8124.25 (19)C26—C25—C24120.9 (3)
C9—C10—C11120.9 (2)C26—C25—H25119.6
C9—C10—H10119.5C24—C25—H25119.6
C11—C10—H10119.5C27—C26—C25120.0 (2)
C12—C11—C10119.9 (3)C27—C26—H26120.0
C12—C11—H11120.0C25—C26—H26120.0
C10—C11—H11120.0C26—C27—C28120.0 (2)
C13—C12—C11119.7 (2)C26—C27—H27120.0
C13—C12—H12120.2C28—C27—H27120.0
C11—C12—H12120.2C23—C28—C27120.8 (2)
C12—C13—C14120.5 (2)C23—C28—H28119.6
C12—C13—H13119.8C27—C28—H28119.6
C7—N1—N2—C8177.11 (17)C12—C13—C14—C90.3 (4)
C21—N3—N4—C22178.37 (18)F2—C15—C16—C17179.7 (2)
F1—C1—C2—C3179.3 (2)C20—C15—C16—C170.8 (4)
C6—C1—C2—C30.3 (4)C15—C16—C17—C180.7 (4)
C1—C2—C3—C40.0 (4)C16—C17—C18—C190.3 (4)
C2—C3—C4—C50.2 (5)C17—C18—C19—C200.1 (3)
C3—C4—C5—C60.1 (4)F2—C15—C20—C19179.99 (19)
F1—C1—C6—C5179.36 (19)C16—C15—C20—C190.5 (3)
C2—C1—C6—C50.4 (3)F2—C15—C20—C211.8 (3)
F1—C1—C6—C72.7 (3)C16—C15—C20—C21178.7 (2)
C2—C1—C6—C7178.3 (2)C18—C19—C20—C150.0 (3)
C4—C5—C6—C10.2 (3)C18—C19—C20—C21178.2 (2)
C4—C5—C6—C7178.1 (2)N4—N3—C21—C20178.78 (17)
N2—N1—C7—C6177.19 (16)C15—C20—C21—N3178.67 (19)
C1—C6—C7—N1176.73 (19)C19—C20—C21—N33.3 (3)
C5—C6—C7—N15.5 (3)N3—N4—C22—O25.5 (3)
N1—N2—C8—O17.2 (3)N3—N4—C22—C23174.97 (16)
N1—N2—C8—C9171.27 (15)O2—C22—C23—C244.0 (3)
O1—C8—C9—C109.0 (3)N4—C22—C23—C24175.59 (18)
N2—C8—C9—C10172.51 (19)O2—C22—C23—C28174.60 (19)
O1—C8—C9—C14166.5 (2)N4—C22—C23—C285.8 (3)
N2—C8—C9—C1412.0 (3)C28—C23—C24—C250.1 (3)
C14—C9—C10—C110.5 (4)C22—C23—C24—C25178.8 (2)
C8—C9—C10—C11175.3 (2)C23—C24—C25—C260.9 (4)
C9—C10—C11—C121.0 (4)C24—C25—C26—C271.0 (4)
C10—C11—C12—C130.9 (4)C25—C26—C27—C280.0 (4)
C11—C12—C13—C140.3 (4)C24—C23—C28—C271.1 (3)
C10—C9—C14—C130.1 (4)C22—C23—C28—C27179.6 (2)
C8—C9—C14—C13175.6 (2)C26—C27—C28—C231.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (1)2.09 (2)2.875 (2)147 (2)
N2—H2···N3i0.89 (1)2.60 (2)3.339 (2)142 (2)
N4—H4···O10.87 (1)2.03 (1)2.882 (2)171 (2)
C7—H7···O2i0.932.533.213 (2)131
C14—H14···O2i0.932.493.402 (3)166
C16—H16···O2ii0.932.553.450 (3)164
C21—H21···O10.932.443.250 (2)145
C28—H28···O10.932.403.312 (2)166
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2'···O2i0.887 (9)2.089 (15)2.875 (2)147 (2)
N2—H2'···N3i0.887 (9)2.599 (17)3.339 (2)141.6 (19)
N4—H4'···O10.865 (11)2.025 (10)2.882 (2)170.9 (17)
C7—H7···O2i0.932.533.213 (2)131
C14—H14···O2i0.932.493.402 (3)166
C16—H16···O2ii0.932.553.450 (3)164
C21—H21···O10.932.443.250 (2)145
C28—H28···O10.932.403.312 (2)166
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2.
Acknowledgements top

PBS is thankful to the Center for Research, Christ University, for financial assistance. NA thanks the University Grants Commission (India) for a Junior Research Fellowship. MRPK thanks the University Grants Commission, New Delhi, for a UGC–BSR one-time grant to faculty. The authors thank the Sophisticated Analytical Instruments Facility, Cochin University of S & T, for the diffraction measurements.

references
References top

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Heravi, M. M., Ranjbar, L., Derikvand, F., Oskooie, H. A. & Bamoharram, F. F. (2007). J. Mol. Catal. A Chem. 265, 186–188.

Mangalam, N. A. & Kurup, M. R. P. (2011). Spectrochim. Acta Part A, 76, 22–28.

Nair, Y., Sithambaresan, M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o2709.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sreeja, P. B., Kurup, M. R. P., Kishore, A. & Jasmin, C. (2004). Polyhedron, 23, 575–581.

Tamasi, G., Chiasserini, L., Savini, L., Sega, A. & Cini, R. (2005). J. Inorg. Biochem. 99, 1347–1359.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.