supplementary materials


zl2570 scheme

Acta Cryst. (2013). E69, m686-m687    [ doi:10.1107/S1600536813032133 ]

Di-[mu]-oxido-bis­[bis­(diiso­propyl­aceta­midinato)-[kappa]N;[kappa]2N,N'-germanium(IV)]

R. Syre, N. Frenzel, C. G. Hrib, E. P. Burte, P. G. Jones and F. T. Edelmann

Abstract top

The title compound, [Ge2(C8H17N2)4O2], crystallizes with imposed twofold symmetry, which allows the monodentate amidinate ligands to be arranged in a cisoid fashion. The independent Ge-O distances within the central Ge2O2 ring, which is essentially planar (r.m.s. deviation = 0.039 Å), are 1.7797 (8) and 1.8568 (8) Å. The germanium centres adopt a distorted trigonal-bipyramidal geometry, being coordinated by the two O atoms and by one bidentate and one monodentate amidinate ligand (three N atoms). One N-isopropyl group is disordered over two positions; these are mutually exclusive because of `collisions' between symmetry-equivalent methyl groups and thus each has 0.5 occupancy.

Comment top

Amidinate and guanidinate anions have been widely employed as versatile chelating ligands that form complexes with virtually every metallic element across the Periodic Table (Edelmann 2008, 2013). Among these, germanium compounds comprising amidinate or guanidinate ligands are currently under active investigation as precursors for the deposition of Ge—Sb—Te (= GST) chalcogenide alloys via CVD and ALD processes to be used in next generation non-volatile Phase Change Random Access Memory (PRAM) devices (Chen et al., 2007, 2009, 2010; Lee et al., 2007). The first fully characterized amidinate complexes of germanium were [MeC(NCy)2]2Ge and [tBuC(NCy)2]2Ge, which were both prepared by metathetical reactions between GeCl2(dioxane) and the respective lithium amidinates, Li[MeC(NCy)2] and Li[tBuC(NCy)2]. The coordination geometry around germanium was found to be distorted tetrahedral, with one of the vertices being occupied by a lone pair of electrons. Both molecules exhibit one chelating and one monodentate ("dangling") amidinate ligand. Mixed amidinato-amido analogues such as [MeC(NCy)2]GeN(SiMe3)2 (R = Me, tBu) were prepared in a similar manner (Kühl, 2004; Foley et al., 1997, 2000). In contrast, a bis(chelate) structure was found for the closely related germylene [MeC(NPri)2]2Ge, which was also made from GeCl2(dioxane) and two equivalents of the corresponding lithium amidinate (colorless crystals, 81%). The same synthetic approach was used to make bis(amidinato) germanium(IV) dichlorides in high yields (83–95%) (Karsch et al., 1998).

In recent years, amidinate- and guanidinate-stabilized germylenes have become versatile building blocks for novel inorganic ring systems (Cabeza et al., 2013; Matioszek et al., 2012; Yeong et al., 2012), coordination compounds (Jones et al., 2008; Brück et al., 2012), and MOCVD precursors for GST thin-layer deposition (Chen et al., 2007, 2009, 2010). Different reaction products have been isolated from germanium amidinates and chalcogens or chalcogen atom sources. For example, rapid oxidative addition of styrene sulfide or elemental selenium to the germylene derivatives resulted in a series of rare terminal chalcogenido complexes with the formulas [RC(NCy)2]2GeE (R = Me, tBu; E = S, Se). In a similar manner the amidinato-amido analogues [RC(NCy)2][N(SiMe3)2]GeSe (R = Me, But) have been obtained. An X-ray structure determination of the acetamidinate derivative [MeC(NCy)2][N(SiMe3)2]GeSe confirmed the presence of a terminal GeSe bond (Foley et al., 1997, 2000). More recently the synthesis and characterization of the amidinate-stabilized bis(germylene) oxide and sulfide LGe—E—GeL (E = O, S; L = tBuC(NAr)2, Ar = 2,6-iPr2C6H3) have been described. The bis(germylene) oxide was prepared by the reaction of 2 equiv. of LGeCl with Me3NO and 2 equiv. of KC8 in THF. It has been proposed that the reaction proceeds through an LGeI intermediate, which then reacts with Me3NO to form LGe—O—GeL. Similarly, the reaction of two equivalents of LGeCl with elemental sulfur and two equivalents of KC8 in THF afforded LGe—S—GeL (Zhang et al., 2011).

To the best of our knowledge, dimeric bis(amidinato)germanium(IV) oxides have not yet been reported in the literature. Such a compound has now been serendipitously obtained in the course of our ongoing investigation of the use of germanium amidinates and guanidinates as new precursors for GST thin-layer deposition. The X-ray crystal structure determination revealed the presence of a C2-symmetric dimer of the composition [(µ-O)Ge{k1N-N,N'-MeC(NiPr)(=NiPr)}{k2N,N'-N,N' –MeC(NiPr)2}]2 comprising an almost planar (r.m.s.d. 0.039 Å) central four-membered Ge2O2 ring (Fig. 1). The independent Ge—O distances are 1.7797 (8) and 1.8568 (8) Å, with an average of 1.8183 Å lying between the Ge—O bond lengths of 1.733 (4) and 1.766 (5) Å in LGe—O—GeL (L = tBuC(NAr)2, Ar = 2,6-iPr2C6H3) (Zhang et al., 2011) and that in (Mamx)GeOiPr (Mamx = methylaminomethyl-m-xylyl) of 1.856 (2) Å (Jutzi et al., 1999). In contrast to the germylene precursor [MeC(NiPr)2]2Ge, in which both amidinate ligands are N,N'-chelating, each Ge atom in the title compound contains one N,N'-chelating and one k1-coordinated ("dangling") amidinate ligand. The overall C2 symmetry of the dimeric molecule allows the monodentate amidinate ligands to be arranged in a cisoid fashion. The germanium centres adopt a distorted trigonal-bipyramidal geometry, with a bridging oxygen and one N atom of the chelating amidinate arranged in the axial positions (N2—Ge1—O1i 157.00 (3)°). The angle sum around Ge in the equatorial plane (O1, N1, N3) is 358.2 (5)°. The chelating amidinate shows a small bite angle N1—Ge—N2 of 64.80 (4)°, which is typical of this type of heteroallylic ligand (Edelmann 2008, 2013). The C—N bond lengths in the chelating amidinate (C1—N2 1.3038 (15) Å, C1—N1 1.3512 (14) Å) lie approximately between the values for CN double bonds and C—N(sp2) single bonds. In the monodentate amidinate ligand, the difference between the formal CN double bond (N4 disordered: C9—N4 1.281 (12), 1.299 (12) Å) and the C—N(sp2) single bond (C9—N3 1.3816 (14) Å) is more significant.

Related literature top

For comprehensive reviews on metal amidinates and guanidinates, see: Edelmann (2008, 2013). For information on germanium precursors for CVD or ALD production of GST thin layers, see: Chen et al. (2007, 2009, 2010); Lee et al. (2007). For previous literature on related germanium amidinates, see: Brück et al. (2012); Cabeza et al. (2013); Foley et al. (1997, 2000); Jones et al. (2008); Jutzi et al. (1999); Karsch et al. (1998); Kühl (2004); Matioszek et al. (2012); Yeong et al. (2012); Zhang & So (2011).

Experimental top

The bis(chelated) germylene derivative [MeC(NiPr)2]2Ge was prepared according to the published procedure by treatment of GeCl2(dioxane) with two equivalents of (THF)Li[MeC(NiPr)2] (Karsch et al., 1998). Subsequent recrystallization from n-pentane afforded a small amount of well formed, colorless, plate-like single crystals, which were shown by X-ray diffraction to be the title compound. Its formation can only be explained by oxygen contamination during the recrystallization process.

Refinement top

Ordered methyls were refined as idealized rigid groups (C—H 0.98 Å, H—C—H 109.5°) allowed to rotate but not tip; starting positions for the hydrogen sites were taken from a difference synthesis. The methyl group at C2 is rotationally disordered and was refined as above, but with an idealized hexagon of partially occupied alternative hydrogen sites. Other hydrogen atoms were placed in calculated positions and refined using a riding model with C—Hmethine 1.00 Å; the hydrogen U values were fixed at 1.5 × U(eq) of the parent atom for methyl H and 1.2 × U(eq) of the parent atom for other H.

The N-isopropyl group N4, C14–16 is disordered over two positions. These are mutually exclusive because of "collisions" between symmetry-equivalent C16 methyl groups and thus each have occupancies of 0.5. Appropriate similarity restraints were employed to improve stability of refinement. Methyl groups of disordered atoms (C15, C16) were refined using a riding model starting from ideally staggered positions.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound in the crystal. Thermal ellipsoids represent 50% probability levels. Only one component of the disordered group N4, C14–16 is shown.
Di-µ-oxido-bis[bis(diisopropylacetamidinato)-κN;κ2N,N'-germanium(IV)] top
Crystal data top
[Ge2(C8H17N2)4O2]F(000) = 1584
Mr = 742.12Dx = 1.224 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 20.1934 (2) ÅCell parameters from 28247 reflections
b = 12.7424 (1) Åθ = 4.1–75.7°
c = 15.9008 (1) ŵ = 2.11 mm1
β = 100.038 (1)°T = 100 K
V = 4028.84 (6) Å3Plate, colourless
Z = 40.08 × 0.08 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur (Atlas, Nova)
diffractometer
4173 independent reflections
Radiation source: Nova (Cu) X-ray Source4014 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 10.3543 pixels mm-1θmax = 75.9°, θmin = 4.1°
ω scanh = 2425
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1615
Tmin = 0.837, Tmax = 1.000l = 1919
35712 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0296P)2 + 2.8972P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
4173 reflectionsΔρmax = 0.27 e Å3
245 parametersΔρmin = 0.29 e Å3
28 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.000087 (13)
Crystal data top
[Ge2(C8H17N2)4O2]V = 4028.84 (6) Å3
Mr = 742.12Z = 4
Monoclinic, C2/cCu Kα radiation
a = 20.1934 (2) ŵ = 2.11 mm1
b = 12.7424 (1) ÅT = 100 K
c = 15.9008 (1) Å0.08 × 0.08 × 0.04 mm
β = 100.038 (1)°
Data collection top
Oxford Diffraction Xcalibur (Atlas, Nova)
diffractometer
4173 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4014 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 1.000Rint = 0.021
35712 measured reflectionsθmax = 75.9°
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.057Δρmax = 0.27 e Å3
S = 1.08Δρmin = 0.29 e Å3
4173 reflectionsAbsolute structure: ?
245 parametersAbsolute structure parameter: ?
28 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ge10.439398 (6)0.244195 (9)0.200846 (8)0.01509 (6)
O10.52408 (4)0.25038 (5)0.18371 (5)0.01763 (17)
N10.37824 (5)0.35942 (7)0.19850 (6)0.01908 (19)
N20.39972 (5)0.30266 (8)0.07745 (6)0.01980 (19)
N30.39391 (5)0.11656 (7)0.19497 (6)0.01919 (19)
C10.36719 (5)0.37371 (9)0.11299 (7)0.0202 (2)
C20.32297 (7)0.45872 (10)0.06893 (8)0.0308 (3)
H2A0.31740.44900.00700.046*0.680 (18)
H2B0.34370.52720.08430.046*0.680 (18)
H2C0.27890.45560.08670.046*0.680 (18)
H2D0.30930.50550.11170.046*0.320 (18)
H2E0.28300.42730.03430.046*0.320 (18)
H2F0.34770.49890.03200.046*0.320 (18)
C30.36233 (6)0.43549 (9)0.26152 (7)0.0231 (2)
H30.32360.47910.23310.028*
C40.42119 (7)0.50889 (11)0.29111 (9)0.0340 (3)
H4A0.45950.46840.32080.051*
H4B0.40810.56150.33010.051*
H4C0.43390.54410.24150.051*
C50.34071 (7)0.37987 (11)0.33699 (8)0.0321 (3)
H5A0.30030.33800.31690.048*
H5B0.33090.43200.37840.048*
H5C0.37700.33370.36430.048*
C60.39731 (7)0.28663 (11)0.01370 (8)0.0301 (3)
H60.37400.34820.04480.036*
C70.46850 (10)0.28230 (19)0.03182 (10)0.0619 (6)
H7A0.49110.34920.01570.093*
H7B0.46730.26950.09280.093*
H7C0.49310.22540.00140.093*
C80.35668 (12)0.18830 (13)0.04264 (10)0.0604 (6)
H8A0.37920.12690.01350.091*
H8B0.35320.17990.10450.091*
H8C0.31150.19490.02850.091*
C90.40646 (6)0.02753 (9)0.15071 (7)0.0216 (2)
C100.47448 (6)0.02267 (9)0.12292 (8)0.0266 (3)
H10A0.50420.02440.16100.040*
H10B0.49420.09310.12550.040*
H10C0.46900.00390.06430.040*
C110.33400 (6)0.12089 (9)0.23715 (8)0.0236 (2)
H110.33880.18680.27180.028*
C120.33045 (7)0.03191 (13)0.30052 (9)0.0370 (3)
H12A0.31820.03350.26920.055*
H12B0.29650.04850.33560.055*
H12C0.37440.02360.33740.055*
C130.26852 (6)0.13273 (11)0.17384 (9)0.0320 (3)
H13A0.27200.19280.13640.048*
H13B0.23140.14420.20500.048*
H13C0.26010.06880.13940.048*
N40.3607 (6)0.0436 (7)0.1284 (5)0.0219 (13)0.50
C140.3734 (4)0.1437 (6)0.0885 (4)0.0274 (15)0.50
H140.41040.13430.05480.033*0.50
C150.3947 (3)0.2241 (3)0.1584 (3)0.0514 (9)0.50
H15A0.43480.19870.19690.077*0.50
H15B0.40510.29070.13270.077*0.50
H15C0.35810.23470.19060.077*0.50
C160.30970 (18)0.1764 (3)0.0291 (2)0.0430 (8)0.50
H16A0.29690.12190.01420.064*0.50
H16B0.27340.18600.06200.064*0.50
H16C0.31760.24260.00090.064*0.50
N4'0.3645 (7)0.0479 (7)0.1505 (5)0.0255 (15)0.50
C14'0.3827 (5)0.1470 (7)0.1139 (5)0.0335 (16)0.50
H14'0.43260.15150.11880.040*0.50
C15'0.3495 (3)0.1540 (3)0.0203 (3)0.0619 (11)0.50
H15D0.36890.10080.01260.093*0.50
H15E0.30110.14190.01530.093*0.50
H15F0.35730.22390.00180.093*0.50
C16'0.3578 (3)0.2357 (3)0.1644 (3)0.0570 (12)0.50
H16D0.38180.23370.22360.086*0.50
H16E0.36600.30320.13860.086*0.50
H16F0.30940.22730.16380.086*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.01334 (8)0.01533 (8)0.01667 (8)0.00042 (4)0.00282 (5)0.00043 (4)
O10.0150 (4)0.0206 (4)0.0175 (4)0.0007 (3)0.0031 (3)0.0003 (3)
N10.0190 (4)0.0190 (4)0.0191 (4)0.0041 (4)0.0028 (3)0.0008 (4)
N20.0208 (5)0.0214 (5)0.0169 (4)0.0033 (4)0.0023 (3)0.0011 (3)
N30.0160 (4)0.0183 (4)0.0241 (5)0.0020 (3)0.0058 (3)0.0019 (4)
C10.0183 (5)0.0196 (5)0.0220 (5)0.0004 (4)0.0020 (4)0.0006 (4)
C20.0372 (7)0.0278 (6)0.0257 (6)0.0132 (5)0.0012 (5)0.0028 (5)
C30.0237 (6)0.0218 (5)0.0242 (6)0.0063 (4)0.0058 (4)0.0031 (4)
C40.0377 (7)0.0273 (6)0.0374 (7)0.0013 (5)0.0074 (6)0.0128 (5)
C50.0388 (7)0.0322 (7)0.0292 (6)0.0091 (6)0.0164 (5)0.0014 (5)
C60.0408 (7)0.0322 (7)0.0171 (6)0.0140 (6)0.0041 (5)0.0013 (5)
C70.0561 (11)0.1062 (15)0.0287 (8)0.0446 (11)0.0226 (7)0.0206 (9)
C80.1093 (16)0.0335 (8)0.0285 (7)0.0050 (9)0.0156 (9)0.0068 (6)
C90.0202 (5)0.0178 (5)0.0275 (6)0.0012 (4)0.0060 (4)0.0006 (4)
C100.0236 (6)0.0221 (6)0.0362 (7)0.0009 (5)0.0115 (5)0.0049 (5)
C110.0190 (5)0.0241 (6)0.0295 (6)0.0041 (4)0.0092 (4)0.0043 (5)
C120.0257 (6)0.0545 (9)0.0320 (7)0.0064 (6)0.0087 (5)0.0118 (6)
C130.0184 (6)0.0322 (7)0.0458 (8)0.0016 (5)0.0067 (5)0.0079 (6)
N40.0254 (19)0.0206 (16)0.023 (3)0.0030 (12)0.012 (3)0.005 (2)
C140.032 (3)0.0166 (16)0.037 (4)0.0058 (15)0.015 (3)0.012 (2)
C150.066 (3)0.0216 (16)0.069 (3)0.0049 (18)0.021 (2)0.0015 (16)
C160.0405 (18)0.0405 (18)0.0509 (18)0.0121 (14)0.0162 (15)0.0264 (14)
N4'0.034 (2)0.0169 (16)0.029 (4)0.0040 (12)0.014 (3)0.006 (2)
C14'0.035 (3)0.028 (2)0.040 (4)0.0088 (17)0.013 (3)0.016 (2)
C15'0.072 (3)0.045 (2)0.064 (3)0.003 (2)0.002 (2)0.0315 (19)
C16'0.074 (3)0.0186 (15)0.088 (3)0.0006 (18)0.041 (3)0.0027 (15)
Geometric parameters (Å, º) top
Ge1—O11.7797 (8)C8—H8C0.9800
Ge1—O1i1.8568 (8)C9—N4'1.281 (12)
Ge1—N31.8621 (9)C9—N41.299 (12)
Ge1—N11.9148 (9)C9—C101.5157 (15)
Ge1—N22.1211 (9)C10—H10A0.9800
O1—Ge1i1.8568 (8)C10—H10B0.9800
N1—C11.3512 (14)C10—H10C0.9800
N1—C31.4694 (14)C11—C131.5234 (17)
N2—C11.3038 (15)C11—C121.5268 (18)
N2—C61.4560 (14)C11—H111.0000
N3—C91.3816 (14)C12—H12A0.9800
N3—C111.4831 (14)C12—H12B0.9800
C1—C21.4978 (16)C12—H12C0.9800
C2—H2A0.9800C13—H13A0.9800
C2—H2B0.9800C13—H13B0.9800
C2—H2C0.9800C13—H13C0.9800
C2—H2D0.9800N4—C141.467 (9)
C2—H2E0.9800C14—C161.516 (7)
C2—H2F0.9800C14—C151.517 (7)
C3—C41.5211 (17)C14—H141.0000
C3—C51.5218 (17)C15—H15A0.9800
C3—H31.0000C15—H15B0.9800
C4—H4A0.9800C15—H15C0.9800
C4—H4B0.9800C16—H16A0.9800
C4—H4C0.9800C16—H16B0.9800
C5—H5A0.9800C16—H16C0.9800
C5—H5B0.9800N4'—C14'1.463 (9)
C5—H5C0.9800C14'—C16'1.522 (9)
C6—C71.516 (2)C14'—C15'1.524 (7)
C6—C81.524 (2)C14'—H14'1.0000
C6—H61.0000C15'—H15D0.9800
C7—H7A0.9800C15'—H15E0.9800
C7—H7B0.9800C15'—H15F0.9800
C7—H7C0.9800C16'—H16D0.9800
C8—H8A0.9800C16'—H16E0.9800
C8—H8B0.9800C16'—H16F0.9800
O1—Ge1—O1i85.57 (4)H7A—C7—H7C109.5
O1—Ge1—N3120.65 (4)H7B—C7—H7C109.5
O1i—Ge1—N3101.19 (4)C6—C8—H8A109.5
O1—Ge1—N1126.64 (4)C6—C8—H8B109.5
O1i—Ge1—N197.49 (4)H8A—C8—H8B109.5
N3—Ge1—N1110.97 (4)C6—C8—H8C109.5
O1—Ge1—N293.50 (4)H8A—C8—H8C109.5
O1i—Ge1—N2157.00 (3)H8B—C8—H8C109.5
N3—Ge1—N299.02 (4)N4'—C9—N3116.0 (5)
N1—Ge1—N264.80 (4)N4—C9—N3121.8 (5)
Ge1—O1—Ge1i94.21 (4)N4'—C9—C10126.9 (5)
C1—N1—C3125.44 (9)N4—C9—C10122.0 (5)
C1—N1—Ge196.65 (7)N3—C9—C10115.98 (10)
C3—N1—Ge1135.19 (7)C9—C10—H10A109.5
C1—N2—C6126.65 (10)C9—C10—H10B109.5
C1—N2—Ge188.89 (7)H10A—C10—H10B109.5
C6—N2—Ge1144.41 (8)C9—C10—H10C109.5
C9—N3—C11119.83 (9)H10A—C10—H10C109.5
C9—N3—Ge1127.60 (8)H10B—C10—H10C109.5
C11—N3—Ge1112.27 (7)N3—C11—C13112.79 (10)
N2—C1—N1109.59 (10)N3—C11—C12114.00 (10)
N2—C1—C2127.14 (11)C13—C11—C12112.00 (10)
N1—C1—C2123.27 (10)N3—C11—H11105.7
N2—C1—Ge159.23 (6)C13—C11—H11105.7
N1—C1—Ge150.41 (5)C12—C11—H11105.7
C2—C1—Ge1173.51 (9)C11—C12—H12A109.5
C1—C2—H2A109.5C11—C12—H12B109.5
C1—C2—H2B109.5H12A—C12—H12B109.5
H2A—C2—H2B109.5C11—C12—H12C109.5
C1—C2—H2C109.5H12A—C12—H12C109.5
H2A—C2—H2C109.5H12B—C12—H12C109.5
H2B—C2—H2C109.5C11—C13—H13A109.5
C1—C2—H2D109.5C11—C13—H13B109.5
H2A—C2—H2D141.1H13A—C13—H13B109.5
H2B—C2—H2D56.3C11—C13—H13C109.5
H2C—C2—H2D56.3H13A—C13—H13C109.5
C1—C2—H2E109.5H13B—C13—H13C109.5
H2A—C2—H2E56.3C9—N4—C14123.7 (9)
H2B—C2—H2E141.1N4—C14—C16108.3 (7)
H2C—C2—H2E56.3N4—C14—C15108.6 (6)
H2D—C2—H2E109.5C16—C14—C15111.9 (6)
C1—C2—H2F109.5N4—C14—H14109.3
H2A—C2—H2F56.3C16—C14—H14109.3
H2B—C2—H2F56.3C15—C14—H14109.3
H2C—C2—H2F141.1C14—C15—H15A109.5
H2D—C2—H2F109.5C14—C15—H15B109.5
H2E—C2—H2F109.5H15A—C15—H15B109.5
N1—C3—C4111.39 (10)C14—C15—H15C109.5
N1—C3—C5110.94 (10)H15A—C15—H15C109.5
C4—C3—C5111.01 (11)H15B—C15—H15C109.5
N1—C3—H3107.8C14—C16—H16A109.5
C4—C3—H3107.8C14—C16—H16B109.5
C5—C3—H3107.8H16A—C16—H16B109.5
C3—C4—H4A109.5C14—C16—H16C109.5
C3—C4—H4B109.5H16A—C16—H16C109.5
H4A—C4—H4B109.5H16B—C16—H16C109.5
C3—C4—H4C109.5C9—N4'—C14'115.9 (10)
H4A—C4—H4C109.5N4'—C14'—C16'107.6 (7)
H4B—C4—H4C109.5N4'—C14'—C15'109.9 (6)
C3—C5—H5A109.5C16'—C14'—C15'110.0 (6)
C3—C5—H5B109.5N4'—C14'—H14'109.8
H5A—C5—H5B109.5C16'—C14'—H14'109.8
C3—C5—H5C109.5C15'—C14'—H14'109.8
H5A—C5—H5C109.5C14'—C15'—H15D109.5
H5B—C5—H5C109.5C14'—C15'—H15E109.5
N2—C6—C7109.03 (11)H15D—C15'—H15E109.5
N2—C6—C8109.80 (12)C14'—C15'—H15F109.5
C7—C6—C8113.02 (15)H15D—C15'—H15F109.5
N2—C6—H6108.3H15E—C15'—H15F109.5
C7—C6—H6108.3C14'—C16'—H16D109.5
C8—C6—H6108.3C14'—C16'—H16E109.5
C6—C7—H7A109.5H16D—C16'—H16E109.5
C6—C7—H7B109.5C14'—C16'—H16F109.5
H7A—C7—H7B109.5H16D—C16'—H16F109.5
C6—C7—H7C109.5H16E—C16'—H16F109.5
O1i—Ge1—O1—Ge1i4.88 (4)C3—N1—C1—Ge1163.67 (13)
N3—Ge1—O1—Ge1i95.52 (4)O1—Ge1—C1—N258.62 (7)
N1—Ge1—O1—Ge1i100.93 (4)O1i—Ge1—C1—N2161.01 (6)
N2—Ge1—O1—Ge1i161.84 (3)N3—Ge1—C1—N276.93 (7)
O1—Ge1—N1—C172.88 (8)N1—Ge1—C1—N2177.09 (11)
O1i—Ge1—N1—C1162.93 (7)O1—Ge1—C1—N1124.28 (7)
N3—Ge1—N1—C192.00 (7)O1i—Ge1—C1—N121.89 (9)
N2—Ge1—N1—C11.70 (6)N3—Ge1—C1—N1100.16 (7)
O1—Ge1—N1—C388.15 (11)N2—Ge1—C1—N1177.09 (11)
O1i—Ge1—N1—C31.89 (11)C1—N1—C3—C489.99 (14)
N3—Ge1—N1—C3106.97 (11)Ge1—N1—C3—C466.67 (14)
N2—Ge1—N1—C3162.73 (12)C1—N1—C3—C5145.80 (11)
O1—Ge1—N2—C1127.45 (7)Ge1—N1—C3—C557.54 (14)
O1i—Ge1—N2—C140.55 (12)C1—N2—C6—C7129.19 (15)
N3—Ge1—N2—C1110.76 (7)Ge1—N2—C6—C754.4 (2)
N1—Ge1—N2—C11.75 (7)C1—N2—C6—C8106.49 (15)
O1—Ge1—N2—C655.45 (15)Ge1—N2—C6—C869.89 (19)
O1i—Ge1—N2—C6142.36 (14)C11—N3—C9—N4'1.0 (5)
N3—Ge1—N2—C666.34 (15)Ge1—N3—C9—N4'174.2 (5)
N1—Ge1—N2—C6175.35 (16)C11—N3—C9—N415.5 (5)
O1—Ge1—N3—C924.75 (11)Ge1—N3—C9—N4157.6 (4)
O1i—Ge1—N3—C9116.23 (10)C11—N3—C9—C10169.85 (10)
N1—Ge1—N3—C9141.17 (9)Ge1—N3—C9—C1017.01 (15)
N2—Ge1—N3—C974.80 (10)C9—N3—C11—C1373.08 (14)
O1—Ge1—N3—C11161.68 (7)Ge1—N3—C11—C13101.05 (10)
O1i—Ge1—N3—C1170.20 (8)C9—N3—C11—C1256.10 (15)
N1—Ge1—N3—C1132.40 (9)Ge1—N3—C11—C12129.76 (9)
N2—Ge1—N3—C1198.78 (8)N4'—C9—N4—C14102 (4)
C6—N2—C1—N1175.52 (11)N3—C9—N4—C14174.1 (5)
Ge1—N2—C1—N12.38 (9)C10—C9—N4—C1411.6 (9)
C6—N2—C1—C23.6 (2)C9—N4—C14—C16148.6 (7)
Ge1—N2—C1—C2178.47 (12)C9—N4—C14—C1589.7 (9)
C6—N2—C1—Ge1177.89 (13)N4—C9—N4'—C14'72 (3)
C3—N1—C1—N2166.32 (10)N3—C9—N4'—C14'171.9 (5)
Ge1—N1—C1—N22.65 (10)C10—C9—N4'—C14'4.5 (9)
C3—N1—C1—C214.48 (18)C9—N4'—C14'—C16'145.1 (7)
Ge1—N1—C1—C2178.16 (10)C9—N4'—C14'—C15'95.1 (9)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ge2(C8H17N2)4O2]
Mr742.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)20.1934 (2), 12.7424 (1), 15.9008 (1)
β (°) 100.038 (1)
V3)4028.84 (6)
Z4
Radiation typeCu Kα
µ (mm1)2.11
Crystal size (mm)0.08 × 0.08 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur (Atlas, Nova)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.837, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
35712, 4173, 4014
Rint0.021
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.057, 1.08
No. of reflections4173
No. of parameters245
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994), publCIF (Westrip, 2010).

Acknowledgements top

Financial support of this work by the Deutsche Forschungsgemeinschaft (DFG), Grants No. ED 29/22–1 and BU 978/50–1, is gratefully acknowledged.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.

Brück, A., Gallego, D., Wang, W., Irran, E., Driess, M. & Hartwig, J. F. (2012). Angew. Chem. Int. Ed. 51, 11478–11482.

Cabeza, J. A., García-Álvarez, P. & Polo, D. (2013). Dalton Trans. 42, 1329–1332.

Chen, T., Hunks, W., Chen, P. S., Stauf, G. T., Cameron, T. M., Xu, C., DiPasquale, A. G. & Rheingold, A. L. (2009). Eur. J. Inorg. Chem. pp. 2047–2049.

Chen, T., Hunks, W., Chen, P. S., Xu, C., DiPasquale, A. G. & Rheingold, A. L. (2010). Organometallics, 29, 501–504.

Chen, T., Xu, C., Hunks, W., Stender, M., Stauf, G. T., Chen, P. S. & Roeder, J. F. (2007). ECS Trans. 11, 269–278.

Edelmann, F. T. (2008). Adv. Organomet. Chem. 57, 183–352.

Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374.

Foley, S. R., Bensimon, C. & Richeson, D. S. (1997). J. Am. Chem. Soc. 119, 10359–10363.

Foley, S. R., Yap, G. P. A. & Richeson, D. S. (2000). Dalton Trans. pp. 1663–1668.

Jones, C., Rose, R. P. & Stasch, A. (2008). Dalton Trans. pp. 2871–2878.

Jutzi, P., Keitemeyer, S., Neumann, B. & Stammler, H.-G. (1999). Organometallics, 18, 4778–4784.

Karsch, H. H., Schlüter, P. A. & Reisky, M. (1998). Eur. J. Inorg. Chem. pp. 433–436.

Kühl, O. (2004). Coord. Chem. Rev. 248, 411–427.

Lee, J., Choi, S., Lee, C., Kang, Y. & Lim, D. (2007). Appl. Surf. Sci. 253, 3969–3976.

Matioszek, D., Saffon, N., Sotiropoulos, J.-M., Miqueu, K., Castel, A. & Escudié, J. (2012). Inorg. Chem. 51, 11716–11721.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yeong, H.-X., Zhang, S.-H., Xi, W.-W., Guo, J.-D., Lim, K. H., Nagase, S. & So, C.-W. (2012). Chem. Eur. J. 18, 2685–2691.

Zhang, S.-H. & So, C.-W. (2011). Organometallics, 30, 2059–2062.