supplementary materials


zq2212 scheme

Acta Cryst. (2013). E69, m669    [ doi:10.1107/S1600536813031218 ]

2-[(Ferrocen-1-yl)(hy­droxy)meth­yl]prop-2-ene­nitrile

S. Selvanayagam, K. Ravikumar, S. Kathiravan and R. Raghunathan

Abstract top

In the title ferrocene derivative, [Fe(C5H5)(C9H8NO)], the dihedral angle between the ene­nitrile group and the substituted cyclo­penta­dienyl ring is 71.2 (1)°. The cyclopentadienyl rings of the ferrocene moiety are arranged in an eclipsed conformation. The hy­droxy group, and the corresponding methine H atom, are disordered over two sets of sites with site-occupancy factors of 0.744 (4) and 0.256 (4). An intra­molecular C-H...O close contact is observed. In the crystal, O-H...N hydrogen bonds form a C(6) chain along [100].

Comment top

Ferrocene derivatives posses antimicrobial (Li et al., 2013), antibacterial (Skiba et al., 2012) and antitumor (Karolyi et al., 2012) activities. In view of these important properties, we have undertaken the crystal structure determination of the title compound, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity of the title compound, as illustrated in Fig. 1. The geometry of the ferrocenyl group is comparable with the related literature (Leka et al., 2012a,b). The cyclopentadienyl rings are almost parallel forming a dihedral angle between the mean planes of the rings of 0.18 (1)°, while the distances of Fe1 to Cg1 (C1–C5) and Cg2 (C6–C10) centroids are 1.643 (1) and 1.637 (1) Å, respectively. The bond length C13—N1 of 1.124 (3) Å confirms the triple bond character. The enenitrile group is almost perpendicular to the cyclopentadienyl ring, oriented with a dihedral angle of 71.2 (1)° with respect to the mean plane of the ring. The hydroxy group, and the corresponding methine H atom, are disordered over two orientations, with site-occupancy factors of 0.744 (4) and 0.256 (4).

In addition to the van der Waals interactions, the molecular structure is influenced by intramolecular C—H···O interactions. In the molecular packing, O-H···N hydrogen bonds form a C(6) chain motif along the ac plane of the unit cell (Fig. 2).

Related literature top

For general background to ferrocene derivatives, see: Li et al. (2013); Skiba et al. (2012); Karolyi et al. (2012). For related structures, see: Leka et al. (2012a,b).

Experimental top

A mixture of ferrocenecarboxaldehyde (10 mmol), acrylonitrile (12 mmol) and 1,4-diazabicyclo[2.2.2]octance (20 mol%) was stirred at room temperature for about 30 days. Silica gel was added to the reaction mixure and the product was isolated by using hexane/ethylacetate (3:1) as eluent. Single crystals of the title compound were obtained by slow evaporation of a methanol solution of the title compound at room temperature.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93-0.98 Å, and Uiso(H) = 1.2Ueq(C) for H atoms. The atoms H11 and O1 are disordered over two positions: the major component exhibits a refined site-occupancy factor of 0.744 (4). The bond distances C11—O1 and C11—O1' were restrained with a DFIX command (Sheldrick, 2008) Å while the anisotropic thermal parameters of O1' and H11' were set to those of O1 and H11 [EADP instruction; Sheldrick, 2008)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The minor occupied atoms of the disordered part have been omitted for clarity
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the c axis; H-bonds are shown as dashed lines. The minor occupied atoms of the disordered part have been omitted for clarity. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted.
2-[(Ferrocen-1-yl)(hydroxy)methyl]prop-2-enenitrile top
Crystal data top
[Fe(C5H5)(C9H8NO)]Z = 2
Mr = 267.10F(000) = 276
Triclinic, P1Dx = 1.511 Mg m3
a = 7.4317 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.0137 (16) ÅCell parameters from 5048 reflections
c = 10.083 (2) Åθ = 2.6–24.8°
α = 92.09 (3)°µ = 1.26 mm1
β = 93.81 (3)°T = 292 K
γ = 101.09 (3)°Block, colourless
V = 587.3 (2) Å30.22 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 28.1°, θmin = 2.0°
ω scansh = 99
6351 measured reflectionsk = 1010
2683 independent reflectionsl = 1313
2481 reflections with I > 2σ(I)
Refinement top
Refinement on F23 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.143P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2683 reflectionsΔρmax = 0.78 e Å3
160 parametersΔρmin = 0.51 e Å3
Crystal data top
[Fe(C5H5)(C9H8NO)]γ = 101.09 (3)°
Mr = 267.10V = 587.3 (2) Å3
Triclinic, P1Z = 2
a = 7.4317 (15) ÅMo Kα radiation
b = 8.0137 (16) ŵ = 1.26 mm1
c = 10.083 (2) ÅT = 292 K
α = 92.09 (3)°0.22 × 0.20 × 0.18 mm
β = 93.81 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2481 reflections with I > 2σ(I)
6351 measured reflectionsRint = 0.028
2683 independent reflectionsθmax = 28.1°
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.112Δρmax = 0.78 e Å3
S = 1.06Δρmin = 0.51 e Å3
2683 reflectionsAbsolute structure: ?
160 parametersAbsolute structure parameter: ?
3 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.12344 (3)0.78280 (3)0.68844 (3)0.03652 (14)
O10.1780 (3)1.2232 (3)0.8242 (3)0.0630 (7)0.744 (4)
H10.08081.15760.83340.094*0.744 (4)
O1'0.3410 (9)1.0729 (9)0.9630 (6)0.0630 (7)0.256 (4)
H1'0.42041.01450.96530.094*0.256 (4)
N10.7948 (3)1.1554 (3)0.8583 (3)0.0685 (7)
C10.0590 (3)0.7684 (3)0.8309 (2)0.0469 (5)
H1A0.05330.84940.90700.056*
C20.1490 (3)0.7765 (3)0.7047 (3)0.0495 (5)
H20.21690.86430.67700.059*
C30.1239 (4)0.6360 (4)0.6253 (3)0.0580 (7)
H30.17110.60940.53230.070*
C40.0192 (4)0.5410 (3)0.7013 (3)0.0592 (7)
H40.01910.43640.67130.071*
C50.0208 (4)0.6227 (3)0.8283 (3)0.0529 (6)
H50.09250.58500.90250.063*
C60.3135 (3)0.9999 (3)0.7279 (2)0.0370 (4)
C70.2271 (3)0.9998 (3)0.5987 (2)0.0500 (6)
H70.15741.08400.56590.060*
C80.2586 (4)0.8557 (4)0.5254 (3)0.0637 (8)
H80.21320.82250.43290.076*
C90.3633 (4)0.7675 (4)0.6070 (3)0.0597 (7)
H90.40430.66250.58170.072*
C100.3985 (3)0.8559 (3)0.7331 (3)0.0467 (5)
H100.46850.82320.81040.056*
C110.3231 (3)1.1352 (3)0.8366 (2)0.0400 (4)
H110.32181.08220.92270.048*0.744 (4)
H11'0.21471.18800.82760.048*0.256 (4)
C120.4964 (3)1.2685 (3)0.8351 (2)0.0438 (5)
C130.6643 (3)1.2065 (3)0.8478 (2)0.0464 (5)
C140.5015 (4)1.4309 (4)0.8248 (4)0.0779 (10)
H14A0.61411.50580.82570.093*
H14B0.39271.47190.81650.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02602 (18)0.0411 (2)0.03825 (19)0.00367 (12)0.00291 (12)0.00018 (12)
O10.0324 (11)0.0528 (13)0.103 (2)0.0050 (9)0.0150 (11)0.0021 (12)
O1'0.0324 (11)0.0528 (13)0.103 (2)0.0050 (9)0.0150 (11)0.0021 (12)
N10.0404 (12)0.0762 (16)0.0859 (17)0.0112 (11)0.0096 (11)0.0092 (13)
C10.0379 (11)0.0524 (13)0.0459 (12)0.0047 (10)0.0120 (9)0.0006 (9)
C20.0257 (10)0.0587 (14)0.0610 (14)0.0013 (9)0.0059 (9)0.0095 (11)
C30.0390 (12)0.0699 (17)0.0520 (13)0.0194 (11)0.0021 (10)0.0081 (12)
C40.0482 (14)0.0414 (12)0.0826 (18)0.0087 (10)0.0201 (13)0.0034 (12)
C50.0424 (12)0.0532 (14)0.0602 (14)0.0018 (10)0.0081 (10)0.0183 (11)
C60.0262 (9)0.0397 (10)0.0420 (10)0.0015 (7)0.0018 (7)0.0044 (8)
C70.0408 (12)0.0600 (14)0.0424 (11)0.0091 (10)0.0014 (9)0.0140 (10)
C80.0546 (16)0.0820 (19)0.0410 (12)0.0224 (14)0.0153 (11)0.0083 (12)
C90.0375 (12)0.0615 (16)0.0745 (18)0.0049 (11)0.0198 (12)0.0197 (13)
C100.0261 (9)0.0467 (12)0.0640 (14)0.0007 (8)0.0004 (9)0.0024 (10)
C110.0301 (10)0.0391 (10)0.0482 (11)0.0006 (8)0.0059 (8)0.0035 (8)
C120.0311 (10)0.0427 (11)0.0547 (12)0.0002 (8)0.0035 (9)0.0022 (9)
C130.0321 (11)0.0499 (12)0.0521 (12)0.0022 (9)0.0008 (9)0.0052 (9)
C140.0422 (14)0.0460 (15)0.143 (3)0.0022 (12)0.0181 (17)0.0090 (17)
Geometric parameters (Å, º) top
Fe1—C62.027 (2)C3—H30.9800
Fe1—C52.029 (2)C4—C51.404 (4)
Fe1—C82.029 (3)C4—H40.9800
Fe1—C102.030 (2)C5—H50.9800
Fe1—C12.031 (2)C6—C71.414 (3)
Fe1—C32.032 (2)C6—C101.419 (3)
Fe1—C72.032 (2)C6—C111.501 (3)
Fe1—C22.033 (2)C7—C81.413 (4)
Fe1—C92.034 (3)C7—H70.9800
Fe1—C42.035 (3)C8—C91.397 (5)
O1—C111.399 (3)C8—H80.9800
O1—H10.8200C9—C101.416 (4)
O1'—C111.394 (6)C9—H90.9800
O1'—H1'0.8200C10—H100.9800
N1—C131.124 (3)C11—C121.508 (3)
C1—C21.408 (4)C11—H110.9800
C1—C51.408 (4)C11—H11'0.9800
C1—H1A0.9800C12—C141.303 (4)
C2—C31.406 (4)C12—C131.429 (3)
C2—H20.9800C14—H14A0.9300
C3—C41.402 (4)C14—H14B0.9300
C6—Fe1—C5124.47 (10)C2—C3—H3125.8
C6—Fe1—C868.46 (10)Fe1—C3—H3125.8
C5—Fe1—C8156.88 (14)C3—C4—C5107.7 (2)
C6—Fe1—C1040.94 (9)C3—C4—Fe169.70 (15)
C5—Fe1—C10107.84 (11)C5—C4—Fe169.54 (15)
C8—Fe1—C1068.20 (12)C3—C4—H4126.2
C6—Fe1—C1107.63 (10)C5—C4—H4126.2
C5—Fe1—C140.59 (11)Fe1—C4—H4126.2
C8—Fe1—C1161.02 (14)C4—C5—C1108.4 (2)
C10—Fe1—C1121.84 (11)C4—C5—Fe170.04 (15)
C6—Fe1—C3157.18 (12)C1—C5—Fe169.80 (14)
C5—Fe1—C367.81 (12)C4—C5—H5125.8
C8—Fe1—C3107.91 (11)C1—C5—H5125.8
C10—Fe1—C3160.59 (12)Fe1—C5—H5125.8
C1—Fe1—C368.06 (11)C7—C6—C10107.8 (2)
C6—Fe1—C740.76 (9)C7—C6—C11125.7 (2)
C5—Fe1—C7161.10 (12)C10—C6—C11126.4 (2)
C8—Fe1—C740.73 (12)C7—C6—Fe169.79 (13)
C10—Fe1—C768.59 (11)C10—C6—Fe169.64 (12)
C1—Fe1—C7124.28 (11)C11—C6—Fe1128.96 (15)
C3—Fe1—C7121.75 (11)C8—C7—C6107.6 (2)
C6—Fe1—C2121.64 (10)C8—C7—Fe169.52 (15)
C5—Fe1—C268.07 (11)C6—C7—Fe169.45 (13)
C8—Fe1—C2124.44 (13)C8—C7—H7126.2
C10—Fe1—C2157.38 (11)C6—C7—H7126.2
C1—Fe1—C240.53 (10)Fe1—C7—H7126.2
C3—Fe1—C240.49 (11)C9—C8—C7108.8 (2)
C7—Fe1—C2107.66 (11)C9—C8—Fe170.09 (15)
C6—Fe1—C968.68 (10)C7—C8—Fe169.75 (14)
C5—Fe1—C9121.88 (13)C9—C8—H8125.6
C8—Fe1—C940.22 (13)C7—C8—H8125.6
C10—Fe1—C940.79 (10)Fe1—C8—H8125.6
C1—Fe1—C9157.44 (13)C8—C9—C10108.0 (2)
C3—Fe1—C9124.04 (11)C8—C9—Fe169.69 (16)
C7—Fe1—C968.38 (12)C10—C9—Fe169.46 (14)
C2—Fe1—C9160.49 (12)C8—C9—H9126.0
C6—Fe1—C4160.96 (12)C10—C9—H9126.0
C5—Fe1—C440.42 (12)Fe1—C9—H9126.0
C8—Fe1—C4121.56 (13)C9—C10—C6107.8 (2)
C10—Fe1—C4124.15 (12)C9—C10—Fe169.75 (14)
C1—Fe1—C468.23 (11)C6—C10—Fe169.42 (12)
C3—Fe1—C440.33 (12)C9—C10—H10126.1
C7—Fe1—C4156.93 (13)C6—C10—H10126.1
C2—Fe1—C468.13 (12)Fe1—C10—H10126.1
C9—Fe1—C4107.59 (12)O1'—C11—C6112.5 (4)
C11—O1—H1109.5O1—C11—C6113.0 (2)
C11—O1'—H1'109.5O1'—C11—C12102.2 (3)
C2—C1—C5107.7 (2)O1—C11—C12105.74 (19)
C2—C1—Fe169.80 (13)C6—C11—C12111.08 (18)
C5—C1—Fe169.61 (14)O1—C11—H11109.0
C2—C1—H1A126.2C6—C11—H11109.0
C5—C1—H1A126.2C12—C11—H11109.0
Fe1—C1—H1A126.2O1'—C11—H11'110.3
C3—C2—C1107.8 (2)C6—C11—H11'110.3
C3—C2—Fe169.71 (15)C12—C11—H11'110.3
C1—C2—Fe169.67 (14)C14—C12—C13119.6 (2)
C3—C2—H2126.1C14—C12—C11124.9 (2)
C1—C2—H2126.1C13—C12—C11115.5 (2)
Fe1—C2—H2126.1N1—C13—C12178.9 (3)
C4—C3—C2108.5 (2)C12—C14—H14A120.0
C4—C3—Fe169.98 (15)C12—C14—H14B120.0
C2—C3—Fe169.81 (14)H14A—C14—H14B120.0
C4—C3—H3125.8
C5—C1—C2—C30.0 (3)C7—C8—C9—Fe159.20 (18)
Fe1—C1—C2—C359.52 (17)C8—C9—C10—C60.1 (3)
C5—C1—C2—Fe159.55 (17)Fe1—C9—C10—C659.20 (16)
C1—C2—C3—C40.0 (3)C8—C9—C10—Fe159.25 (18)
Fe1—C2—C3—C459.50 (18)C7—C6—C10—C90.2 (3)
C1—C2—C3—Fe159.49 (16)C11—C6—C10—C9176.6 (2)
C2—C3—C4—C50.0 (3)Fe1—C6—C10—C959.40 (17)
Fe1—C3—C4—C559.42 (18)C7—C6—C10—Fe159.58 (16)
C2—C3—C4—Fe159.39 (17)C11—C6—C10—Fe1124.0 (2)
C3—C4—C5—C10.0 (3)C7—C6—C11—O1'153.7 (4)
Fe1—C4—C5—C159.47 (17)C10—C6—C11—O1'30.5 (4)
C3—C4—C5—Fe159.51 (18)Fe1—C6—C11—O1'61.8 (4)
C2—C1—C5—C40.0 (3)C7—C6—C11—O126.2 (3)
Fe1—C1—C5—C459.62 (18)C10—C6—C11—O1158.0 (2)
C2—C1—C5—Fe159.66 (16)Fe1—C6—C11—O165.7 (3)
C10—C6—C7—C80.2 (3)C7—C6—C11—C1292.4 (2)
C11—C6—C7—C8176.7 (2)C10—C6—C11—C1283.3 (3)
Fe1—C6—C7—C859.26 (17)Fe1—C6—C11—C12175.68 (15)
C10—C6—C7—Fe159.49 (15)O1'—C11—C12—C14116.6 (4)
C11—C6—C7—Fe1124.1 (2)O1—C11—C12—C140.3 (4)
C6—C7—C8—C90.2 (3)C6—C11—C12—C14123.2 (3)
Fe1—C7—C8—C959.41 (19)O1'—C11—C12—C1362.6 (4)
C6—C7—C8—Fe159.21 (16)O1—C11—C12—C13179.5 (2)
C7—C8—C9—C100.1 (3)C6—C11—C12—C1357.5 (3)
Fe1—C8—C9—C1059.11 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.152.841 (3)141
C14—H14B···O10.932.312.648 (4)101
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.822.152.841 (3)141
C14—H14B···O10.932.312.648 (4)101
Symmetry code: (i) x1, y, z.
Acknowledgements top

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme and also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

references
References top

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, U. S. A.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Karolyi, B. I., Bosze, S., Orban, E., Sohar, P., Drahos, L., Gal, E. & Csampai, A. (2012). Molecules, 17, 2316–2329.

Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012a). Acta Cryst. E68, m229.

Leka, Z., Novaković, S. B., Stevanović, D., Bogdanović, G. A. & Vukićević, R. D. (2012b). Acta Cryst. E68, m230.

Li, S., Wang, Z., Wei, Y., Wu, C., Gao, S., Jiang, H., Zhao, X., Yan, H. & Wang, X. (2013). Biomaterials, 34, 902–911.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Skiba, J., Rajinisz, A., de Oliveira, K. N., Ott, I., Solecka, J. & Kowalski, K. (2012). Eur. J. Med. Chem. 57, 234–239.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.