supplementary materials


zs2277 scheme

Acta Cryst. (2013). E69, o1764    [ doi:10.1107/S1600536813029826 ]

(4'-Acet­yloxy-1,3,1'-trioxo-1,3,4,4a,4b,5,6,7,9,9a-deca­hydro­spiro­[indene-2,9'-pyrano[4,3-a]pyrrolizin]-3'-yl)methyl acetate

N. Latha, J. Naga Siva Rao, R. Raghunathan, G. Divya and S. Lakshmi

Abstract top

In the title compound, C23H23NO8, the dihedral angle between the five- and six-membered rings of the indene-dione moiety is 3.09 (13)°. The mean plane of the five-membered ring (which has a flat envelope conformation with the spiro C atom as the flap) is inclined to the mean plane of the central five-membered ring of the pyrrolizine unit by 76.48 (12)°. This central ring has a twist conformation on the N-C(spiro) bond. The outer ring of the pyrrolizine unit has an envelope conformation with the N atom as the flap. The mean planes of these two fused rings are inclined to one another by 65.28 (15)°. The pyran ring has a screw-boat conformation and its mean plane makes a dihedral angle of 29.50 (11)° with the mean plane of the central five-membered ring of the pyrrolizine unit. In the crystal, mol­ecules are linked via C-H...O hydrogen bonds, forming two-dimensional networks lying parallel to the ab plane.

Comment top

The pyrrolidine skeleton occurs in many families of biologically important compounds. The resulting functionality due to ease of substitution and modification at several positions has been utilized to synthesize compounds with antimicrobial and antifungal properties (Selvanayagam et al., 2005). Derivatives of pyrrolidine are very useful in preventing and treating rheumatoid arthritis, asthma and allergies. They also possess anticonvulsant, anti-influenza (Gayathri et al., 2005) and antivirus activities (Kumar et al., 2006). The spiro (indole-pyrrolidine) ring system is a frequently encountered structural motif in many pharmacologically important alkaloids (Seshadri et al., 2003). In view of its biological activities, the structure determination of the title compound, C23H23NO8 was completed by X-ray diffraction. In this compound the sum of the angles at N1 of the pyrrolidine moiety (325.7°) is consistent with sp3 hybridization (Kalyanasundaram et al., 2005). The dihedral angle between the five and six-membered rings of the indanone moiety is 3.5 (1)° (Satis Kumar et al., 2007). In the benzene ring of the indole system, the endocyclic angles at C3 and C6 are contracted to 117.5 (3) and 117.1 (3)°, respectively, while those at C4, C5 and C7 are expanded to 122.1 (3), 121.4 (4) and 121.6 (2)°, respectively. This may be due to the fusion of the indole and benzene ring systems where the strain results in angular distortion (Govind et al., 2004). The dihedral angle between the mean planes of the indole system and the pyrrolidine moiety is 77.3 (1)°. The spiro junction at C9 in the indanone group deviates from the mean plane of the C1 – C8 ring by 0.2465 Å. Weak C—H···O intermolecular hydrogen bonds (Table 1) generate a one-dimensional chain structure extending along the a axis (Fig. 2).

Related literature top

For related structures, see: Gayathri et al. (2005); Govind et al. (2004); Kalyanasundaram et al. (2005); Kumar et al. (2006); Satis Kumar et al. (2007) Selvanayagam et al. (2005); Seshadri et al. (2003).

Experimental top

To a solution of ninhydrin (1 equiv) and proline (1.4 equiv) in dry toluene, α,β-unsaturated sugar lactone was added under a nitrogen atmosphere. The solution was refluxed for 15 h under Dean-Stark reaction conditions to give a cycloadduct. After completion of the reaction indicated by TLC, the solvent was evaporated under reduced pressure. The residual mass was extracted with dichloromethane and water. The organic layer was dried with anhydrous sodium sulfate and concentrated in vacuo. The crude mass was purified by column chromatography using hexane/EtOAc (8:2) as an eluent. Crystals suitable for X-ray diffraction were obtained from ethyl acetate solution using a slow evaporation method.

Refinement top

The positions of all the hydrogen atoms were identified from the difference electron density map and were allowed to ride on the parent atoms in calculated positions with distances C—H = 0.93 – 0.98 Å and Uiso(H) = 1.2Ueq(C) for non–methyl groups and Uiso(H) = 1.5Ueq(C) for the methyl groups. The absolute structure was not determined since no strong anamalous scattering atoms are present. However, the configuration for the six trivially named chiral centres [C9(R),C13(S),C14(R),C15(R), C16(R),C18(S)] was consistent with the Flack absolute parameter [0.1 (11) for 2550 Friedel pairs] (Flack, 1983).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the c axis.
(4'-Acetyloxy-1,3,1'-trioxo-1,3,4,4a,4b,5,6,7,9,9a-decahydrospiro[indene-2,9'-pyrano[4,3-a]pyrrolizin]-3'-yl)methyl acetate top
Crystal data top
C23H23NO8Dx = 1.367 Mg m3
Mr = 441.42Melting point: 463.15 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3596 reflections
a = 10.4817 (4) Åθ = 2.7–24.2°
b = 13.4904 (5) ŵ = 0.10 mm1
c = 15.1639 (5) ÅT = 295 K
V = 2144.21 (13) Å3Block, yellow
Z = 40.35 × 0.30 × 0.25 mm
F(000) = 928
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5845 independent reflections
Radiation source: fine-focus sealed tube4256 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scanθmax = 29.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1314
Tmin = 0.964, Tmax = 0.974k = 1817
15087 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.0734P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5845 reflectionsΔρmax = 0.46 e Å3
292 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (16)
Crystal data top
C23H23NO8V = 2144.21 (13) Å3
Mr = 441.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.4817 (4) ŵ = 0.10 mm1
b = 13.4904 (5) ÅT = 295 K
c = 15.1639 (5) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5845 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4256 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.974Rint = 0.032
15087 measured reflectionsθmax = 29.3°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.146Δρmax = 0.46 e Å3
S = 1.03Δρmin = 0.21 e Å3
5845 reflectionsAbsolute structure: ?
292 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5649 (2)0.55253 (15)0.53169 (13)0.0353 (4)
C20.4474 (2)0.57154 (16)0.58231 (13)0.0397 (5)
C30.3942 (3)0.6609 (2)0.60898 (17)0.0557 (6)
H30.43530.72080.59840.067*
C40.2786 (3)0.6575 (3)0.6515 (2)0.0727 (9)
H40.24090.71650.66960.087*
C50.2171 (3)0.5700 (3)0.6681 (2)0.0754 (9)
H50.13960.57090.69790.090*
C60.2679 (3)0.4801 (2)0.64149 (19)0.0610 (7)
H60.22560.42070.65200.073*
C70.3843 (2)0.48261 (18)0.59866 (15)0.0422 (5)
C80.4589 (2)0.39934 (16)0.56199 (15)0.0399 (5)
C90.5885 (2)0.43985 (15)0.53381 (12)0.0333 (4)
C100.6960 (3)0.32253 (18)0.63652 (17)0.0514 (6)
H10A0.67460.27430.59150.062*
H10B0.63990.31320.68670.062*
C110.8337 (3)0.3136 (3)0.6633 (3)0.0814 (10)
H11A0.84290.32680.72590.098*
H11B0.86470.24720.65140.098*
C120.9074 (2)0.3875 (2)0.61118 (16)0.0523 (6)
H12A0.96840.35450.57310.063*
H12B0.95300.43240.64990.063*
C130.80871 (19)0.44379 (16)0.55663 (13)0.0354 (4)
H130.82790.51490.55700.042*
C140.7914 (2)0.40667 (14)0.46069 (12)0.0323 (4)
H140.83010.34080.45510.039*
C150.84684 (19)0.47376 (15)0.39158 (13)0.0347 (4)
H150.82410.54270.40460.042*
C160.7979 (2)0.44573 (17)0.30034 (13)0.0395 (5)
H160.83860.48980.25740.047*
C170.5883 (2)0.44448 (18)0.36714 (13)0.0407 (5)
C180.64580 (19)0.39741 (15)0.44802 (12)0.0327 (4)
H180.62520.32660.44620.039*
C210.8282 (3)0.34081 (19)0.27453 (14)0.0498 (6)
H21A0.91990.33220.27020.060*
H21B0.79630.29550.31910.060*
C220.6594 (3)0.2683 (2)0.1934 (2)0.0675 (8)
C230.6042 (4)0.2586 (3)0.1044 (3)0.0961 (12)
H23A0.55250.31560.09180.144*
H23B0.55250.20000.10170.144*
H23C0.67160.25400.06180.144*
N10.68615 (17)0.42488 (12)0.60171 (11)0.0359 (4)
O10.62976 (15)0.61244 (11)0.49445 (11)0.0465 (4)
O20.42539 (19)0.31479 (13)0.55496 (14)0.0628 (5)
O30.47660 (17)0.46279 (18)0.36294 (13)0.0657 (6)
O40.66215 (15)0.46391 (12)0.29762 (10)0.0449 (4)
O50.98345 (14)0.46223 (12)0.39493 (11)0.0467 (4)
O70.76969 (19)0.31937 (14)0.19122 (10)0.0555 (5)
O80.6156 (3)0.2369 (2)0.26117 (19)0.1039 (9)
O61.0109 (3)0.6120 (2)0.3367 (2)0.1059 (10)
C191.0550 (3)0.5394 (2)0.3717 (2)0.0647 (7)
C201.1927 (3)0.5187 (3)0.3888 (3)0.0936 (12)
H20A1.22660.56850.42750.140*
H20B1.23870.51970.33400.140*
H20C1.20140.45470.41570.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (11)0.0371 (10)0.0332 (9)0.0019 (8)0.0057 (8)0.0016 (7)
C20.0389 (12)0.0496 (12)0.0307 (9)0.0089 (9)0.0007 (8)0.0046 (8)
C30.0657 (17)0.0560 (14)0.0455 (12)0.0181 (12)0.0007 (12)0.0107 (11)
C40.080 (2)0.082 (2)0.0564 (16)0.0323 (18)0.0119 (16)0.0186 (15)
C50.0557 (18)0.109 (3)0.0616 (17)0.0244 (18)0.0206 (14)0.0050 (17)
C60.0493 (15)0.0819 (19)0.0516 (14)0.0019 (13)0.0140 (12)0.0005 (13)
C70.0353 (12)0.0551 (13)0.0362 (10)0.0026 (9)0.0031 (9)0.0019 (9)
C80.0376 (12)0.0435 (11)0.0386 (10)0.0044 (9)0.0032 (9)0.0003 (9)
C90.0330 (10)0.0349 (9)0.0321 (9)0.0012 (8)0.0019 (8)0.0017 (7)
C100.0583 (15)0.0448 (12)0.0509 (12)0.0055 (11)0.0016 (11)0.0127 (10)
C110.063 (2)0.087 (2)0.094 (2)0.0138 (17)0.0084 (17)0.0475 (19)
C120.0408 (13)0.0784 (17)0.0376 (11)0.0115 (12)0.0050 (10)0.0017 (11)
C130.0331 (11)0.0421 (10)0.0309 (9)0.0009 (8)0.0022 (8)0.0002 (8)
C140.0319 (10)0.0361 (9)0.0290 (9)0.0054 (8)0.0015 (7)0.0022 (7)
C150.0305 (10)0.0401 (10)0.0335 (9)0.0010 (8)0.0030 (8)0.0047 (8)
C160.0364 (12)0.0508 (12)0.0312 (9)0.0014 (9)0.0004 (8)0.0069 (8)
C170.0340 (12)0.0523 (12)0.0356 (10)0.0024 (9)0.0030 (9)0.0058 (8)
C180.0318 (10)0.0364 (9)0.0301 (9)0.0031 (8)0.0015 (8)0.0025 (7)
C210.0525 (15)0.0626 (15)0.0345 (11)0.0040 (12)0.0034 (10)0.0056 (9)
C220.077 (2)0.0620 (17)0.0632 (17)0.0153 (15)0.0023 (16)0.0129 (14)
C230.107 (3)0.094 (3)0.087 (2)0.024 (2)0.026 (2)0.022 (2)
N10.0372 (10)0.0400 (9)0.0305 (8)0.0029 (7)0.0012 (7)0.0026 (7)
O10.0456 (9)0.0380 (8)0.0561 (9)0.0010 (6)0.0024 (8)0.0077 (7)
O20.0607 (12)0.0479 (10)0.0799 (12)0.0178 (9)0.0183 (10)0.0063 (9)
O30.0377 (10)0.1093 (16)0.0501 (10)0.0117 (10)0.0087 (8)0.0007 (10)
O40.0383 (9)0.0628 (10)0.0337 (7)0.0047 (7)0.0058 (6)0.0071 (7)
O50.0296 (8)0.0591 (10)0.0512 (9)0.0012 (7)0.0026 (7)0.0098 (8)
O70.0634 (12)0.0696 (11)0.0336 (8)0.0089 (9)0.0063 (8)0.0084 (7)
O80.103 (2)0.121 (2)0.0884 (17)0.0511 (17)0.0194 (16)0.0001 (16)
O60.0768 (17)0.0691 (15)0.172 (3)0.0177 (13)0.0071 (18)0.0219 (17)
C190.0461 (16)0.0670 (18)0.081 (2)0.0131 (13)0.0071 (14)0.0054 (15)
C200.0402 (17)0.150 (4)0.091 (3)0.0208 (19)0.0006 (16)0.004 (2)
Geometric parameters (Å, º) top
C1—O11.198 (3)C13—H130.9800
C1—C21.474 (3)C14—C151.502 (3)
C1—C91.540 (3)C14—C181.543 (3)
C2—C31.388 (3)C14—H140.9800
C2—C71.392 (3)C15—O51.441 (3)
C3—C41.374 (4)C15—C161.523 (3)
C3—H30.9300C15—H150.9800
C4—C51.367 (5)C16—O41.445 (3)
C4—H40.9300C16—C211.502 (3)
C5—C61.384 (5)C16—H160.9800
C5—H50.9300C17—O31.198 (3)
C6—C71.382 (4)C17—O41.334 (3)
C6—H60.9300C17—C181.507 (3)
C7—C81.478 (3)C18—H180.9800
C8—O21.198 (3)C21—O71.434 (3)
C8—C91.525 (3)C21—H21A0.9700
C9—N11.466 (3)C21—H21B0.9700
C9—C181.543 (3)C22—O81.202 (4)
C10—N11.482 (3)C22—O71.347 (4)
C10—C111.504 (4)C22—C231.474 (5)
C10—H10A0.9700C23—H23A0.9600
C10—H10B0.9700C23—H23B0.9600
C11—C121.488 (4)C23—H23C0.9600
C11—H11A0.9700O5—C191.331 (3)
C11—H11B0.9700O6—C191.206 (4)
C12—C131.526 (3)C19—C201.493 (5)
C12—H12A0.9700C20—H20A0.9600
C12—H12B0.9700C20—H20B0.9600
C13—N11.477 (3)C20—H20C0.9600
C13—C141.549 (3)
O1—C1—C2127.1 (2)C18—C14—C13105.01 (15)
O1—C1—C9125.77 (19)C15—C14—H14109.0
C2—C1—C9107.16 (17)C18—C14—H14109.0
C3—C2—C7120.4 (2)C13—C14—H14109.0
C3—C2—C1129.7 (2)O5—C15—C14107.16 (16)
C7—C2—C1109.86 (18)O5—C15—C16109.85 (17)
C4—C3—C2117.5 (3)C14—C15—C16110.72 (17)
C4—C3—H3121.2O5—C15—H15109.7
C2—C3—H3121.2C14—C15—H15109.7
C5—C4—C3122.0 (3)C16—C15—H15109.7
C5—C4—H4119.0O4—C16—C21111.1 (2)
C3—C4—H4119.0O4—C16—C15108.38 (17)
C4—C5—C6121.4 (3)C21—C16—C15113.55 (18)
C4—C5—H5119.3O4—C16—H16107.9
C6—C5—H5119.3C21—C16—H16107.9
C7—C6—C5117.1 (3)C15—C16—H16107.9
C7—C6—H6121.5O3—C17—O4119.0 (2)
C5—C6—H6121.5O3—C17—C18121.4 (2)
C6—C7—C2121.6 (2)O4—C17—C18119.58 (18)
C6—C7—C8128.7 (2)C17—C18—C14117.57 (17)
C2—C7—C8109.67 (19)C17—C18—C9111.96 (17)
O2—C8—C7127.0 (2)C14—C18—C9104.48 (15)
O2—C8—C9125.3 (2)C17—C18—H18107.5
C7—C8—C9107.73 (18)C14—C18—H18107.5
N1—C9—C8112.07 (16)C9—C18—H18107.5
N1—C9—C1105.23 (16)O7—C21—C16109.2 (2)
C8—C9—C1102.51 (16)O7—C21—H21A109.8
N1—C9—C18105.61 (16)C16—C21—H21A109.8
C8—C9—C18116.74 (17)O7—C21—H21B109.8
C1—C9—C18114.27 (16)C16—C21—H21B109.8
N1—C10—C11103.7 (2)H21A—C21—H21B108.3
N1—C10—H10A111.0O8—C22—O7122.0 (3)
C11—C10—H10A111.0O8—C22—C23127.0 (3)
N1—C10—H10B111.0O7—C22—C23111.0 (3)
C11—C10—H10B111.0C22—C23—H23A109.5
H10A—C10—H10B109.0C22—C23—H23B109.5
C12—C11—C10107.5 (2)H23A—C23—H23B109.5
C12—C11—H11A110.2C22—C23—H23C109.5
C10—C11—H11A110.2H23A—C23—H23C109.5
C12—C11—H11B110.2H23B—C23—H23C109.5
C10—C11—H11B110.2C9—N1—C13104.98 (15)
H11A—C11—H11B108.5C9—N1—C10115.28 (18)
C11—C12—C13105.6 (2)C13—N1—C10105.39 (16)
C11—C12—H12A110.6C17—O4—C16121.06 (16)
C13—C12—H12A110.6C19—O5—C15117.8 (2)
C11—C12—H12B110.6C22—O7—C21116.6 (2)
C13—C12—H12B110.6O6—C19—O5122.5 (3)
H12A—C12—H12B108.7O6—C19—C20126.7 (3)
N1—C13—C12104.62 (17)O5—C19—C20110.6 (3)
N1—C13—C14106.06 (16)C19—C20—H20A109.5
C12—C13—C14115.31 (18)C19—C20—H20B109.5
N1—C13—H13110.2H20A—C20—H20B109.5
C12—C13—H13110.2C19—C20—H20C109.5
C14—C13—H13110.2H20A—C20—H20C109.5
C15—C14—C18110.17 (16)H20B—C20—H20C109.5
C15—C14—C13114.52 (16)
O1—C1—C2—C39.8 (4)O5—C15—C16—O4176.53 (16)
C9—C1—C2—C3171.2 (2)C14—C15—C16—O465.3 (2)
O1—C1—C2—C7166.7 (2)O5—C15—C16—C2159.5 (2)
C9—C1—C2—C712.3 (2)C14—C15—C16—C2158.7 (2)
C7—C2—C3—C40.0 (4)O3—C17—C18—C14160.9 (2)
C1—C2—C3—C4176.2 (2)O4—C17—C18—C1420.9 (3)
C2—C3—C4—C50.4 (5)O3—C17—C18—C939.9 (3)
C3—C4—C5—C61.0 (5)O4—C17—C18—C9141.9 (2)
C4—C5—C6—C71.0 (5)C15—C14—C18—C176.6 (2)
C5—C6—C7—C20.5 (4)C13—C14—C18—C17130.41 (18)
C5—C6—C7—C8178.8 (3)C15—C14—C18—C9118.18 (17)
C3—C2—C7—C60.0 (3)C13—C14—C18—C95.6 (2)
C1—C2—C7—C6176.9 (2)N1—C9—C18—C17154.84 (17)
C3—C2—C7—C8178.6 (2)C8—C9—C18—C1779.9 (2)
C1—C2—C7—C81.7 (2)C1—C9—C18—C1739.7 (2)
C6—C7—C8—O28.2 (4)N1—C9—C18—C1426.6 (2)
C2—C7—C8—O2170.3 (2)C8—C9—C18—C14151.83 (17)
C6—C7—C8—C9171.9 (2)C1—C9—C18—C1488.6 (2)
C2—C7—C8—C99.6 (2)O4—C16—C21—O752.9 (2)
O2—C8—C9—N183.9 (3)C15—C16—C21—O7175.42 (19)
C7—C8—C9—N196.2 (2)C8—C9—N1—C13166.03 (17)
O2—C8—C9—C1163.8 (2)C1—C9—N1—C1383.32 (18)
C7—C8—C9—C116.1 (2)C18—C9—N1—C1337.90 (19)
O2—C8—C9—C1838.1 (3)C8—C9—N1—C1050.5 (2)
C7—C8—C9—C18141.80 (19)C1—C9—N1—C10161.20 (18)
O1—C1—C9—N180.7 (2)C18—C9—N1—C1077.6 (2)
C2—C1—C9—N1100.27 (18)C12—C13—N1—C9156.46 (17)
O1—C1—C9—C8161.9 (2)C14—C13—N1—C934.13 (19)
C2—C1—C9—C817.1 (2)C12—C13—N1—C1034.3 (2)
O1—C1—C9—C1834.6 (3)C14—C13—N1—C1088.03 (19)
C2—C1—C9—C18144.34 (17)C11—C10—N1—C9151.2 (2)
N1—C10—C11—C1223.7 (4)C11—C10—N1—C1335.9 (3)
C10—C11—C12—C132.9 (4)O3—C17—O4—C16178.3 (2)
C11—C12—C13—N119.1 (3)C18—C17—O4—C163.5 (3)
C11—C12—C13—C1497.0 (3)C21—C16—O4—C1786.9 (2)
N1—C13—C14—C15137.90 (16)C15—C16—O4—C1738.5 (3)
C12—C13—C14—C15106.8 (2)C14—C15—O5—C19150.7 (2)
N1—C13—C14—C1816.9 (2)C16—C15—O5—C1989.0 (3)
C12—C13—C14—C18132.2 (2)O8—C22—O7—C214.3 (5)
C18—C14—C15—O5167.74 (16)C23—C22—O7—C21175.2 (3)
C13—C14—C15—O574.2 (2)C16—C21—O7—C22100.0 (3)
C18—C14—C15—C1647.9 (2)C15—O5—C19—O610.8 (5)
C13—C14—C15—C16166.04 (17)C15—O5—C19—C20173.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.593.401 (4)147
C14—H14···O2ii0.982.333.310 (3)178
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O6i0.932.593.401 (4)147
C14—H14···O2ii0.982.333.310 (3)178
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z+1.
references
References top

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gayathri, D., Aravindan, P. G., Velmurugan, D., Ravikumar, K. & Sureshbabu, A. R. (2005). Acta Cryst. E61, o3124–o3126.

Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2004). Acta Cryst. E60, o54–o56.

Kalyanasundaram, S., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Poornachandran, M. & Raghunathan, R. (2005). Acta Cryst. E61, o2158–o2160.

Kumar, R. G., Gayathri, D., Velmurugan, D., Ravikumar, K. & Poornachandran, M. (2006). Acta Cryst. E62, o4821–o4823.

Satis Kumar, B. K., Gayathri, D., Velmurugan, D., Ravikumar, K. & Sureshbabu, A. R. (2007). Acta Cryst. E63, m1287–m1289.

Selvanayagam, S., Velmurugan, D., Ravikumar, K., Jayashankaran, J. & Raghunathan, R. (2005). Acta Cryst. E61, o1582–o1584.

Seshadri, P. R., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sureshbabu, A. R. & Raghunathan, R. (2003). Acta Cryst. E59, o1458–o1460.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.