organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-methyl­sulfanyl-6-(naphtha­len-1-yl­­oxy)-1H-benzimidazole methanol monosolvate

aFacultad de Química, Departamento de Farmacia, UNAM, México DF, 04510, Mexico, and bFacultad de Química, Universidad Nacional Autónoma de México, México DF, 04510, Mexico
*Correspondence e-mail: mfa@unam.mx

(Received 6 December 2013; accepted 12 December 2013; online 21 December 2013)

In the title compound, C18H13ClN2OS·CH3OH, the dihedral angle between the benzimidazole group and the naphth­yloxy moiety [82.89 (5)°] very near to orthogonality. The H atom in the five-membered ring is disordered with equal occupancies at the two N atoms and the H atom of the methano­lic hy­droxy group is disordered with equal occupancies over two sites at the O atom. The methanol mol­ecule acts as a hydrogen-bond acceptor for the amino H atom and donates a hydrogen bond to the nonprotonated ring N atom. As a result, chains are formed running along the a axis.

Related literature

For related literature on compound alpha, see: Rivera et al. (2004[Rivera, N., Ibarra, I., Zepeda, A., Fortoul, T., Hernández, A., Castillo, R. & Cantó, G. (2004). Parasitol. Res. 93, 283-286.]); Vera-Montenegro et al. (2003[Vera-Montenegro, Y., Ibarra-Velarde, F., Quiroz-Romero, H., Hernández-Campos, A. & Castillo, R. (2003). Parasitol. Res. 91, 1-4.]); Fairweather (2009[Fairweather, I. (2009). J. Helminthol. 83, 139-150.]); McConville et al. (2010[McConville, M., Hanna, R. E. B., Brennan, G. P., McCoy, M., Edgar, H. W. J., McConell, S., Castillo, R., Hernández-Campos, A. & Fairweather, I. (2010). Parasitol. Res. 106, 311-323.]). For the synthesis of compound alpha, see: Hernández et al. (2002[Hernández, C. A., Ibarra, V. F., Vera, M. Y. F., Rivera, N. & Castillo, B. R. (2002). Chem. Pharm. Bull. 50, 649-652.]).

[Scheme 1]

Experimental

Crystal data
  • C18H13ClN2OS·CH4O

  • Mr = 372.85

  • Triclinic, [P \overline 1]

  • a = 7.4094 (6) Å

  • b = 9.1941 (8) Å

  • c = 14.4253 (11) Å

  • α = 73.978 (7)°

  • β = 75.315 (7)°

  • γ = 75.136 (7)°

  • V = 895.09 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.6 × 0.56 × 0.17 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.785, Tmax = 0.945

  • 6945 measured reflections

  • 4118 independent reflections

  • 2706 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.112

  • S = 1.03

  • 4118 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O⋯N2 0.94 (12) 1.87 (11) 2.768 (2) 158 (7)
O2—H2O⋯N1i 0.76 (11) 2.04 (11) 2.781 (3) 162 (9)
N1—H1N⋯O2ii 0.84 (8) 2.03 (8) 2.781 (3) 148 (7)
N2—H2N⋯O2 0.80 (9) 1.99 (9) 2.768 (2) 164 (7)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

5-Chloro-2-(methylthio)-6-(1-naphthyloxy)-1H-benzimidazole (named compound Alpha) is a bioisostere of triclabendazole (TCBZ), the drug of choice for the treatment of fasciolosis caused by liver fluke in cattle and humans (Fairweather, 2009). Compound Alpha, synthesized by our research group, (Hernández et al., 2002) proved to be as active as triclabendazole in cattle (Vera-Montenegro et al. 2003; Rivera et al., 2004) and it acts in a similar way. Electron microscopy studies have shown that compound alpha affects the stability and integrity of microtubules in agreement with the action mechanisms of benzimidazoles anthelmintics (McConville et al., 2010). However, the way in which TCBZ and compound Alpha interact at the molecular level with tubulin is still unknown. To establish the structure of compound alpha and its characteristics, we present the crystal structure of the title compound, useful for further modeling studies.

The asymmetric unit consist of the one molecule of 5-chloro-2-(methylthio)-6-(1-naphthyloxy)-1H-benzimidazole and one molecule of methanol (Figure 1). The benzimidazole group (plane 1) is coplanar with r.m.s. deviation of fitted atoms = 0.0592, in the same way for the naphthyloxy nucleus (plane 2) with r.m.s. deviation of fitted atoms = 0.0169, the angle between planes 1 and 2 are 83.99 (4) ° very near to orthogonality (90°), The C18 methylthio group is 0.1371 Å out of plane of the benzimidazole (plane 1).

The molecules are connected by N-H···O and O-H···N hydrogen bonds to chains running along the base vector [1 0 0] (Figure 2).

Related literature top

For related literature on compound alpha, see: Rivera et al. (2004); Vera-Montenegro et al. (2003); Fairweather (2009); McConville et al. (2010). For the synthesis of compound alpha, see: Hernández et al. (2002).

Experimental top

The title compound, was prepared according to the procedure reported by Hernández et al. (2002). Single crystals were obtained from 2 g of compound alpha with 14 ml of methanol at 80 °C approximately, slow evaporation at room temperature of methanol afforded crystals suitable for X-ray diffraction resulting in 1.5 g of flat colourless crystals (yield 75%). 1H-NMR (DMSO-d6, 300 MHz) δ: 2.72 (3H, s, S—CH3), 6.67 (1H, d, J=7.2 Hz, H-2'), 7.31 (1H, s, H-4), 7.40 (1H, t, J1=7.9, J2=8.0 Hz, H-3'), 7.59–7.64 (2H, m, H-6', H-7'), 7.68 (1H, d, J=8.3 Hz, H-4'), 7.75 (1H, s, H-7), 7.97–8.03 (1H, m, H-5'), 8.28–8.32 (1H, m, H-8'), 12.79 (1H, br, NH) 13 C-NMR (DMSO-d6, 75 MHz) δ: 13.46 (S—CH3), 102.95 (C-7), 110.20 (C-2'), 113.16 (C-4), 119.70 (C-8'), 120.83 (C-5), 122.04 (C– 4'), 123.80 (C-8'a), 124.12 (C-3'), 124.66 (C-6'),125.25 (C-7'), 126.21 (C– 5'), 128.72 (C-4'a), 131.34 (C-3a), 133.08 (C-7a), 148.05 (C-1'), 150.75 (C-2), 152.03 (C-6). MS (EI) m/z 340 (M+), 305, 290.

Refinement top

H atoms attached to C atoms were placed in geometrically idealized positions, and refined as riding on their parent atoms, with C—H distances fixed to 0.98 (methyl CH3), 0.99 (methylene CH2) and 1.00 Å (methine CH), and with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(C). The H atoms bonded to N and O are disordered over two equally occupied positions.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed along the c-axis, showing the N—H···O and O—H···N hydrogen bond extending along the a-b plane. Only one site of the disordered H atoms is shown.
5-Chloro-2-methylsulfanyl-6-(naphthalen-1-yloxy)-1H-benzimidazole methanol monosolvate top
Crystal data top
C18H13ClN2OS·CH4OZ = 2
Mr = 372.85F(000) = 388
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4094 (6) ÅCell parameters from 1801 reflections
b = 9.1941 (8) Åθ = 3.7–29.3°
c = 14.4253 (11) ŵ = 0.35 mm1
α = 73.978 (7)°T = 298 K
β = 75.315 (7)°Needle, colourless
γ = 75.136 (7)°0.6 × 0.56 × 0.17 mm
V = 895.09 (14) Å3
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
4118 independent reflections
Graphite monochromator2706 reflections with I > 2σ(I)
Detector resolution: 10.4685 pixels mm-1Rint = 0.021
ω scansθmax = 29.4°, θmin = 3.7°
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
h = 99
Tmin = 0.785, Tmax = 0.945k = 1112
6945 measured reflectionsl = 1916
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0371P)2 + 0.2903P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.22 e Å3
4118 reflectionsΔρmin = 0.27 e Å3
239 parameters
Crystal data top
C18H13ClN2OS·CH4Oγ = 75.136 (7)°
Mr = 372.85V = 895.09 (14) Å3
Triclinic, P1Z = 2
a = 7.4094 (6) ÅMo Kα radiation
b = 9.1941 (8) ŵ = 0.35 mm1
c = 14.4253 (11) ÅT = 298 K
α = 73.978 (7)°0.6 × 0.56 × 0.17 mm
β = 75.315 (7)°
Data collection top
Agilent Xcalibur (Atlas, Gemini)
diffractometer
4118 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2012)
2706 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.945Rint = 0.021
6945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
4118 reflectionsΔρmin = 0.27 e Å3
239 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. H1N H1O and H2N H2O disordered over two sites with occupancies 0.50:0.50

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.69760 (10)1.27046 (8)0.30171 (5)0.0685 (2)
S11.35810 (8)0.67687 (7)0.00019 (5)0.05141 (19)
O11.0904 (3)1.32293 (17)0.25994 (12)0.0550 (4)
N11.3436 (3)0.9102 (2)0.07959 (14)0.0411 (5)
N21.0553 (2)0.8595 (2)0.09667 (14)0.0369 (4)
C11.1882 (3)1.4079 (2)0.37612 (16)0.0384 (5)
C21.1589 (3)1.5608 (3)0.31968 (17)0.0461 (6)
H21.12111.58190.25980.055*
C31.1857 (4)1.6782 (3)0.35235 (19)0.0531 (6)
H31.16581.77860.31450.064*
C41.2426 (3)1.6488 (3)0.4420 (2)0.0577 (7)
H41.25981.72950.46380.069*
C51.2729 (3)1.5026 (3)0.49713 (19)0.0535 (6)
H51.31111.48470.55660.064*
C61.2482 (3)1.3773 (3)0.46688 (17)0.0441 (5)
C71.2791 (4)1.2237 (3)0.52271 (19)0.0576 (7)
H71.32151.20230.58140.069*
C81.2483 (4)1.1076 (3)0.4923 (2)0.0621 (7)
H81.26991.00730.53020.075*
C91.1837 (4)1.1363 (3)0.40414 (18)0.0551 (6)
H91.16051.05590.38430.066*
C101.1556 (3)1.2827 (3)0.34797 (16)0.0432 (5)
C111.2346 (3)1.1258 (3)0.17067 (17)0.0444 (5)
H111.35361.14860.16260.053*
C121.0750 (3)1.2040 (2)0.22222 (17)0.0450 (6)
C130.8955 (3)1.1704 (2)0.23444 (17)0.0444 (5)
C140.8714 (3)1.0586 (2)0.19396 (17)0.0431 (5)
H140.75181.03730.20130.052*
C151.0327 (3)0.9795 (2)0.14192 (15)0.0358 (5)
C161.2126 (3)1.0114 (2)0.13086 (16)0.0374 (5)
C171.2424 (3)0.8228 (2)0.06164 (15)0.0371 (5)
C181.1676 (3)0.5843 (3)0.0082 (2)0.0549 (6)
H18A1.21520.49980.02420.082*
H18B1.07030.65740.0230.082*
H18C1.11520.54620.07610.082*
O20.7136 (3)0.7793 (2)0.10784 (15)0.0633 (6)
C190.6753 (4)0.6830 (4)0.2003 (2)0.0908 (11)
H19A0.61570.74430.24810.136*
H19B0.79220.61880.2170.136*
H19C0.59160.61910.19960.136*
H1O0.837 (16)0.801 (9)0.088 (6)0.136*0.5
H2O0.621 (15)0.832 (10)0.095 (7)0.136*0.5
H1N1.463 (12)0.896 (8)0.068 (5)0.109*0.5
H2N0.969 (12)0.823 (8)0.094 (5)0.109*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0649 (4)0.0543 (4)0.0730 (5)0.0010 (3)0.0026 (4)0.0200 (3)
S10.0344 (3)0.0530 (4)0.0709 (4)0.0078 (3)0.0067 (3)0.0249 (3)
O10.0821 (12)0.0371 (9)0.0522 (10)0.0096 (8)0.0300 (9)0.0073 (8)
N10.0305 (9)0.0437 (11)0.0514 (12)0.0136 (9)0.0082 (9)0.0091 (9)
N20.0271 (9)0.0385 (10)0.0459 (11)0.0081 (8)0.0107 (8)0.0064 (8)
C10.0327 (11)0.0412 (12)0.0372 (12)0.0052 (9)0.0042 (9)0.0067 (10)
C20.0475 (13)0.0459 (13)0.0432 (13)0.0124 (11)0.0097 (11)0.0040 (11)
C30.0573 (15)0.0460 (14)0.0558 (16)0.0179 (12)0.0074 (12)0.0077 (12)
C40.0544 (15)0.0576 (17)0.0684 (18)0.0211 (13)0.0071 (14)0.0217 (14)
C50.0445 (13)0.0726 (18)0.0486 (15)0.0121 (13)0.0108 (11)0.0202 (13)
C60.0348 (11)0.0528 (14)0.0418 (13)0.0048 (10)0.0065 (10)0.0105 (11)
C70.0615 (16)0.0619 (17)0.0460 (15)0.0019 (13)0.0220 (13)0.0057 (13)
C80.0781 (19)0.0462 (15)0.0522 (16)0.0023 (13)0.0206 (14)0.0024 (12)
C90.0701 (17)0.0399 (13)0.0539 (16)0.0066 (12)0.0181 (13)0.0068 (12)
C100.0450 (13)0.0396 (12)0.0413 (13)0.0042 (10)0.0110 (10)0.0050 (10)
C110.0422 (12)0.0447 (13)0.0499 (14)0.0179 (11)0.0130 (11)0.0047 (11)
C120.0574 (15)0.0364 (12)0.0428 (13)0.0109 (11)0.0159 (11)0.0044 (10)
C130.0457 (13)0.0371 (12)0.0427 (13)0.0015 (10)0.0075 (10)0.0041 (10)
C140.0337 (11)0.0414 (12)0.0504 (14)0.0082 (10)0.0100 (10)0.0021 (11)
C150.0315 (10)0.0339 (11)0.0404 (12)0.0079 (9)0.0121 (9)0.0003 (9)
C160.0327 (11)0.0373 (12)0.0405 (12)0.0097 (9)0.0078 (9)0.0030 (10)
C170.0318 (11)0.0378 (11)0.0406 (12)0.0084 (9)0.0095 (9)0.0033 (10)
C180.0492 (14)0.0552 (15)0.0708 (17)0.0150 (12)0.0165 (13)0.0228 (13)
O20.0351 (9)0.0765 (13)0.0721 (13)0.0194 (9)0.0170 (9)0.0068 (10)
C190.0643 (19)0.110 (3)0.082 (2)0.0294 (19)0.0245 (17)0.025 (2)
Geometric parameters (Å, º) top
Cl1—C131.737 (2)C7—C81.349 (4)
S1—C171.736 (2)C7—H70.93
S1—C181.790 (2)C8—C91.405 (3)
O1—C121.389 (3)C8—H80.93
O1—C101.394 (3)C9—C101.361 (3)
N1—C171.341 (3)C9—H90.93
N1—C161.381 (3)C11—C121.372 (3)
N1—H1N0.84 (8)C11—C161.390 (3)
N2—C171.338 (3)C11—H110.93
N2—C151.386 (3)C12—C131.399 (3)
N2—H2N0.80 (9)C13—C141.381 (3)
C1—C21.410 (3)C14—C151.386 (3)
C1—C101.413 (3)C14—H140.93
C1—C61.421 (3)C15—C161.398 (3)
C2—C31.365 (3)C18—H18A0.96
C2—H20.93C18—H18B0.96
C3—C41.396 (3)C18—H18C0.96
C3—H30.93O2—C191.388 (3)
C4—C51.354 (3)O2—H1O0.94 (12)
C4—H40.93O2—H2O0.76 (11)
C5—C61.407 (3)C19—H19A0.96
C5—H50.93C19—H19B0.96
C6—C71.412 (3)C19—H19C0.96
C17—S1—C18101.75 (11)O1—C10—C1114.46 (18)
C12—O1—C10117.61 (16)C12—C11—C16117.8 (2)
C17—N1—C16105.61 (17)C12—C11—H11121.1
C17—N1—H1N125 (5)C16—C11—H11121.1
C16—N1—H1N129 (5)C11—C12—O1119.4 (2)
C17—N2—C15105.35 (17)C11—C12—C13121.4 (2)
C17—N2—H2N130 (5)O1—C12—C13119.2 (2)
C15—N2—H2N124 (5)C14—C13—C12121.3 (2)
C2—C1—C10123.0 (2)C14—C13—Cl1118.85 (18)
C2—C1—C6119.1 (2)C12—C13—Cl1119.81 (18)
C10—C1—C6117.9 (2)C13—C14—C15117.3 (2)
C3—C2—C1120.5 (2)C13—C14—H14121.4
C3—C2—H2119.8C15—C14—H14121.4
C1—C2—H2119.8N2—C15—C14130.70 (19)
C2—C3—C4120.6 (2)N2—C15—C16107.82 (18)
C2—C3—H3119.7C14—C15—C16121.4 (2)
C4—C3—H3119.7N1—C16—C11131.58 (19)
C5—C4—C3120.0 (2)N1—C16—C15107.67 (18)
C5—C4—H4120C11—C16—C15120.7 (2)
C3—C4—H4120N2—C17—N1113.55 (19)
C4—C5—C6121.8 (2)N2—C17—S1126.69 (16)
C4—C5—H5119.1N1—C17—S1119.75 (15)
C6—C5—H5119.1S1—C18—H18A109.5
C5—C6—C7123.1 (2)S1—C18—H18B109.5
C5—C6—C1118.0 (2)H18A—C18—H18B109.5
C7—C6—C1118.9 (2)S1—C18—H18C109.5
C8—C7—C6121.1 (2)H18A—C18—H18C109.5
C8—C7—H7119.5H18B—C18—H18C109.5
C6—C7—H7119.5C19—O2—H1O116 (5)
C7—C8—C9120.8 (2)C19—O2—H2O110 (7)
C7—C8—H8119.6O2—C19—H19A109.5
C9—C8—H8119.6O2—C19—H19B109.5
C10—C9—C8119.5 (2)H19A—C19—H19B109.5
C10—C9—H9120.3O2—C19—H19C109.5
C8—C9—H9120.3H19A—C19—H19C109.5
C9—C10—O1123.7 (2)H19B—C19—H19C109.5
C9—C10—C1121.8 (2)
C10—C1—C2—C3177.5 (2)C10—O1—C12—C13101.8 (2)
C6—C1—C2—C30.8 (3)C11—C12—C13—C140.9 (3)
C1—C2—C3—C40.1 (4)O1—C12—C13—C14176.64 (19)
C2—C3—C4—C50.4 (4)C11—C12—C13—Cl1179.13 (17)
C3—C4—C5—C60.1 (4)O1—C12—C13—Cl13.4 (3)
C4—C5—C6—C7179.9 (2)C12—C13—C14—C150.9 (3)
C4—C5—C6—C10.5 (3)Cl1—C13—C14—C15179.11 (16)
C2—C1—C6—C51.0 (3)C17—N2—C15—C14177.1 (2)
C10—C1—C6—C5177.3 (2)C17—N2—C15—C160.6 (2)
C2—C1—C6—C7179.4 (2)C13—C14—C15—N2177.4 (2)
C10—C1—C6—C72.3 (3)C13—C14—C15—C160.0 (3)
C5—C6—C7—C8178.0 (2)C17—N1—C16—C11178.3 (2)
C1—C6—C7—C81.6 (4)C17—N1—C16—C150.0 (2)
C6—C7—C8—C90.2 (4)C12—C11—C16—N1177.1 (2)
C7—C8—C9—C101.2 (4)C12—C11—C16—C151.0 (3)
C8—C9—C10—O1179.4 (2)N2—C15—C16—N10.4 (2)
C8—C9—C10—C10.5 (4)C14—C15—C16—N1177.52 (19)
C12—O1—C10—C97.8 (3)N2—C15—C16—C11178.92 (19)
C12—O1—C10—C1173.2 (2)C14—C15—C16—C111.0 (3)
C2—C1—C10—C9179.5 (2)C15—N2—C17—N10.6 (2)
C6—C1—C10—C91.3 (3)C15—N2—C17—S1178.42 (16)
C2—C1—C10—O10.5 (3)C16—N1—C17—N20.4 (2)
C6—C1—C10—O1177.75 (18)C16—N1—C17—S1178.71 (15)
C16—C11—C12—O1177.63 (18)C18—S1—C17—N25.5 (2)
C16—C11—C12—C130.1 (3)C18—S1—C17—N1173.50 (18)
C10—O1—C12—C1180.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···N20.94 (12)1.87 (11)2.768 (2)158 (7)
O2—H2O···N1i0.76 (11)2.04 (11)2.781 (3)162 (9)
N1—H1N···O2ii0.84 (8)2.03 (8)2.781 (3)148 (7)
N2—H2N···O20.80 (9)1.99 (9)2.768 (2)164 (7)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1O···N20.94 (12)1.87 (11)2.768 (2)158 (7)
O2—H2O···N1i0.76 (11)2.04 (11)2.781 (3)162 (9)
N1—H1N···O2ii0.84 (8)2.03 (8)2.781 (3)148 (7)
N2—H2N···O20.80 (9)1.99 (9)2.768 (2)164 (7)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Dirección General de Asuntos del Personal Académico (DGAPA) with the project IT201113. MFA is indebted to Dr A. L. Maldonado-Hermenegildo for useful comments.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.
First citationFairweather, I. (2009). J. Helminthol. 83, 139–150.  Web of Science CrossRef PubMed CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationHernández, C. A., Ibarra, V. F., Vera, M. Y. F., Rivera, N. & Castillo, B. R. (2002). Chem. Pharm. Bull. 50, 649–652.  Web of Science PubMed
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationMcConville, M., Hanna, R. E. B., Brennan, G. P., McCoy, M., Edgar, H. W. J., McConell, S., Castillo, R., Hernández-Campos, A. & Fairweather, I. (2010). Parasitol. Res. 106, 311–323.  Web of Science CrossRef PubMed
First citationRivera, N., Ibarra, I., Zepeda, A., Fortoul, T., Hernández, A., Castillo, R. & Cantó, G. (2004). Parasitol. Res. 93, 283–286.  Web of Science CrossRef PubMed
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationVera-Montenegro, Y., Ibarra-Velarde, F., Quiroz-Romero, H., Hernández-Campos, A. & Castillo, R. (2003). Parasitol. Res. 91, 1–4.  PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds