[Journal logo]

Volume 70 
Part 1 
Pages o85-o86  
January 2014  

Received 21 November 2013
Accepted 17 December 2013
Online 21 December 2013

Key indicators
Single-crystal X-ray study
T = 296 K
Mean [sigma](C-C) = 0.002 Å
R = 0.026
wR = 0.104
Data-to-parameter ratio = 11.2
Details
Open access

4-Nitro­benzoic acid-sulfa­thia­zole (1/1)

aDepartment of Chemistry, NITK Surathkal, Mangalore 575 025, India
Correspondence e-mail: darshak_rtrivedi@yahoo.co.in

In the crystal structure of the title compound, C7H5NO4·C9H9N3O2S2, the sulfa­thia­zole and 4-nitro­benzoic acid mol­ecules are held together by short [pi]-[pi] contacts between the thia­zole and nitro­benzene rings, with a centroid-centroid distance of 3.8226 (7) Å. The sulfa­thia­zole mol­ecules form dimers via N-H...N hydrogen bonds involving the thia­zole and sulfonamide moieties, owing to the fact that sulfathizole exhibits amide-imide tautomerism. The N-H (amine) groups of two sulfathiazole molecules are linked to the two S=O groups of a sulfathiazole via N-H...O hydrogen bonds. Two mol­ecules of coformer are held together by O-H...O hydrogen bonds. These units self-assemble, forming a three-dimensional network stabilized by (acid)C-H...[pi](sulfa­thia­zole benzene ring) inter­actions.

Related literature

For polymorphism in sulfa­thia­zole, see: Lagas & Lerk (1981[Lagas, M. & Lerk, C. F. (1981). Int. J. Pharm. 8, 11-24.]); Blagden et al. (1998[Blagden, N., Davey, R. J., Lieberman, H. F., Williams, L., Payne, R., Roberts, R., Rowe, R. & Docherty, R. (1998). J. Chem. Soc. Faraday Trans. 94, 1035-1044.]); Hughes et al. (1999[Hughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831-1833.]); For hydrogen bonding in sulfonamides, see: Adsmond & Grant (2000[Adsmond, D. A. & Grant, D. J. W. (2000). J. Pharm. Sci. 90, 2058-2077.]). For the packing similarity of five polymorphs of sulfa­thia­zole, see: Gelbrich et al. (2008[Gelbrich, T., Hughes, D. S., Hursthouse, M. B. & Threlfall, T. L. (2008). CrystEngComm, 10, 1328-1334.]). For solvates of sulfa­thia­zole, see: Bingham et al. (2001[Bingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Travener, S. & Threlfall, T. L. (2001). Chem. Commun. pp. 603-604.]). For co-crystals of sulfa­thia­zole, see: Shefter & Sackman (1971[Shefter, E. & Sackman, P. (1971). J. Pharm. Sci. 60, 282-286.]); Drebushchak et al. (2006[Drebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006). Acta Cryst. E62, o2669-o2671.]).

[Scheme 1]

Experimental

Crystal data
  • C7H5NO4·C9H9N3O2S2

  • Mr = 422.45

  • Monoclinic, P 21 /n

  • a = 6.6309 (2) Å

  • b = 15.0142 (6) Å

  • c = 17.7082 (7) Å

  • [beta] = 94.551 (1)°

  • V = 1757.43 (11) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.35 mm-1

  • T = 296 K

  • 0.50 × 0.42 × 0.21 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.291, Tmax = 0.482

  • 17445 measured reflections

  • 3460 independent reflections

  • 3329 reflections with I > 2[sigma](I)

  • Rint = 0.014

Refinement
  • R[F2 > 2[sigma](F2)] = 0.026

  • wR(F2) = 0.104

  • S = 0.89

  • 3460 reflections

  • 309 parameters

  • 69 restraints

  • All H-atom parameters refined

  • [Delta][rho]max = 0.39 e Å-3

  • [Delta][rho]min = -0.44 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1-C6 ring.

D-H...A D-H H...A D...A D-H...A
O4-H14...O3i 1.03 (4) 1.63 (4) 2.6493 (13) 172 (3)
N1-H8...O1ii 0.82 (2) 2.22 (2) 3.0113 (15) 163.3 (18)
N1-H9...O2iii 0.838 (19) 2.326 (19) 3.0509 (15) 145.0 (17)
N3-H5...N2iv 0.897 (19) 1.96 (2) 2.8583 (15) 174.2 (16)
C14-H12...Cg2v 0.974 (18) 2.867 (18) 3.6648 (14) 139.8 (15)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y, -z+1; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and Mercury.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2237 ).


Acknowledgements

MO is thankful to NITK Surathkal for a fellowship. The authors thank the DST (Department of Science and Technology, Government of India, New Delhi, India) for the SCXRD facility (procured under the FIST programme).

References

Adsmond, D. A. & Grant, D. J. W. (2000). J. Pharm. Sci. 90, 2058-2077.  [Web of Science] [CrossRef]
Bingham, A. L., Hughes, D. S., Hursthouse, M. B., Lancaster, R. W., Travener, S. & Threlfall, T. L. (2001). Chem. Commun. pp. 603-604.  [CSD] [CrossRef]
Blagden, N., Davey, R. J., Lieberman, H. F., Williams, L., Payne, R., Roberts, R., Rowe, R. & Docherty, R. (1998). J. Chem. Soc. Faraday Trans. 94, 1035-1044.  [CrossRef] [ChemPort]
Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Drebushchak, T. N., Mikhailenko, M. A., Boldyreva, E. V. & Shakhtshneider, T. P. (2006). Acta Cryst. E62, o2669-o2671.  [CrossRef] [IUCr Journals]
Gelbrich, T., Hughes, D. S., Hursthouse, M. B. & Threlfall, T. L. (2008). CrystEngComm, 10, 1328-1334.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Hughes, D. S., Hursthouse, M. B., Threlfall, T. & Tavener, S. (1999). Acta Cryst. C55, 1831-1833.  [CrossRef] [IUCr Journals]
Lagas, M. & Lerk, C. F. (1981). Int. J. Pharm. 8, 11-24.  [CrossRef] [ChemPort] [Web of Science]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Shefter, E. & Sackman, P. (1971). J. Pharm. Sci. 60, 282-286.  [CSD] [CrossRef] [ChemPort] [PubMed] [Web of Science]
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2014). E70, o85-o86   [ doi:10.1107/S1600536813034004 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.