organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Hy­dr­oxy­phen­yl)-4-methyl­benzene­sulfonamide

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, Wales, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 9 December 2013; accepted 9 December 2013; online 14 December 2013)

In the title compound, C13H13NO3S, the dihedral angle between the benzene rings is 64.15 (7)° and the C—S—N—C torsion angle is −57.18 (12)°. An intra­molecular N—H⋯O hydrogen bond closes an S(5) ring. In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into C(8) chains propagating in [100]. Weak C—H⋯π inter­actions are also observed.

Related literature

For background to the biological activity of sulfonamide compounds, see: Ozbek et al. (2007[Ozbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); El-Sayed et al. (2011[El-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714-3720.]). For related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.],b[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825.],c[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO3S

  • Mr = 263.31

  • Monoclinic, P 21 /c

  • a = 7.6780 (1) Å

  • b = 15.4747 (3) Å

  • c = 10.7250 (2) Å

  • β = 104.333 (2)°

  • V = 1234.62 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.34 mm−1

  • T = 120 K

  • 0.35 × 0.16 × 0.13 mm

Data collection
  • Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2013[Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.494, Tmax = 0.750

  • 4355 measured reflections

  • 2377 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.082

  • S = 1.06

  • 2377 reflections

  • 172 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3 0.83 (2) 2.22 (2) 2.6420 (16) 111.6 (17)
O3—H1O⋯O2i 0.86 (2) 1.94 (2) 2.7852 (15) 172 (2)
C3—H3⋯Cg2ii 0.95 2.92 3.8022 (16) 155
C7—H7CCg1iii 0.98 2.85 3.5937 (17) 134
Symmetry codes: (i) x-1, y, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2013[Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The biological activities of sulphonamide compounds are well documented, for example as antimicrobial (Ozbek et al., 2007) and anticancer (El-Sayed et al., 2011) agents. Further to our interest in related compounds with potential biactivity, we now report the synthesis and crystal structure of the title compound.

The benzene rings (C1–C6 and C8–C13) of the title compound (I) in Fig. 1 make a dihedral angle of 64.15 (7)° with each other. The bridge C1—S1—N1—C8 torsion angle between the benzene rings is -57.18 (12)°. The O1–S1–O2 and C1–S1–N1 angles are 119.78 (6) and 107.97 (6)°, respectively. The bond lengths and angles are similar to those in related structures (Gowda et al., 2008a,b,c).

The molecular conformation features an N—H···O hydrogen bond which forms an S(5) ring (Fig. 2). In the crystal, molecules are linked by O—H···O hydrogen bonds into C(8) chains along [100] (Figs. 2 and 3). Weak C—H···π interactions are also observed (Table 1).

Related literature top

For background to the biological activity of sulfonamide compounds, see: Ozbek et al. (2007); El-Sayed et al. (2011). For related structures, see: Gowda et al. (2008a,b,c).

Experimental top

A mixture of 2-aminophenol (109 mg, 1 mmol) and p-toluenesulfonyl chloride (190 mg, 1 mmol) in 10 ml dioxane with addition of few drops of triethylamine as a catalyst, was refluxed for 4 h. The reaction mixture was left to cool at ambient temperature where the solid product was deposited, collected by filteration and recrystallized from ethanol in 91% yield. Brown needles were grown from ethanol solution over 3 days at room temperature. M.p. 391 K.

Refinement top

The H atoms of the NH and OH groups were found from difference Fourier maps and refined freely. The C-bound H atoms were positioned geometrically, with C—H = 0.95 and 0.98 Å and refined as riding with Uiso(H) = 1.Ueq(C) for the methyl H atoms and Uiso(H) = 1.2Ueq(C) for the other H atoms.

Structure description top

The biological activities of sulphonamide compounds are well documented, for example as antimicrobial (Ozbek et al., 2007) and anticancer (El-Sayed et al., 2011) agents. Further to our interest in related compounds with potential biactivity, we now report the synthesis and crystal structure of the title compound.

The benzene rings (C1–C6 and C8–C13) of the title compound (I) in Fig. 1 make a dihedral angle of 64.15 (7)° with each other. The bridge C1—S1—N1—C8 torsion angle between the benzene rings is -57.18 (12)°. The O1–S1–O2 and C1–S1–N1 angles are 119.78 (6) and 107.97 (6)°, respectively. The bond lengths and angles are similar to those in related structures (Gowda et al., 2008a,b,c).

The molecular conformation features an N—H···O hydrogen bond which forms an S(5) ring (Fig. 2). In the crystal, molecules are linked by O—H···O hydrogen bonds into C(8) chains along [100] (Figs. 2 and 3). Weak C—H···π interactions are also observed (Table 1).

For background to the biological activity of sulfonamide compounds, see: Ozbek et al. (2007); El-Sayed et al. (2011). For related structures, see: Gowda et al. (2008a,b,c).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2013); cell refinement: CrysAlis PRO (Oxford Diffraction, 2013); data reduction: CrysAlis PRO (Oxford Diffraction, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids for non-H atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the hydrogen bonds along the a axis direction of the title compound. H bonds are shown as dashed lines.
[Figure 3] Fig. 3. View of the molecular packing along the a axis of the title compound. H bonds are shown as dashed lines.
N-(2-Hydroxyphenyl)-4-methylbenzenesulfonamide top
Crystal data top
C13H13NO3SF(000) = 552
Mr = 263.31Dx = 1.417 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 2248 reflections
a = 7.6780 (1) Åθ = 5.1–73.2°
b = 15.4747 (3) ŵ = 2.34 mm1
c = 10.7250 (2) ÅT = 120 K
β = 104.333 (2)°Needle, brown
V = 1234.62 (4) Å30.35 × 0.16 × 0.13 mm
Z = 4
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2377 independent reflections
Radiation source: SuperNova (Cu) X-ray Source2248 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.011
ω scansθmax = 73.2°, θmin = 5.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2013)
h = 89
Tmin = 0.494, Tmax = 0.750k = 1912
4355 measured reflectionsl = 1113
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 W = 1/[Σ2(FO2) + (0.0424P)2 + 0.5981P]
where P = (FO2 + 2FC2)/3
S = 1.06(Δ/σ)max = 0.001
2377 reflectionsΔρmax = 0.28 e Å3
172 parametersΔρmin = 0.38 e Å3
Crystal data top
C13H13NO3SV = 1234.62 (4) Å3
Mr = 263.31Z = 4
Monoclinic, P21/cCu Kα radiation
a = 7.6780 (1) ŵ = 2.34 mm1
b = 15.4747 (3) ÅT = 120 K
c = 10.7250 (2) Å0.35 × 0.16 × 0.13 mm
β = 104.333 (2)°
Data collection top
Oxford Diffraction SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2377 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2013)
2248 reflections with I > 2σ(I)
Tmin = 0.494, Tmax = 0.750Rint = 0.011
4355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.28 e Å3
2377 reflectionsΔρmin = 0.38 e Å3
172 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51287 (4)0.65871 (2)0.83597 (3)0.0203 (1)
O10.57618 (13)0.61174 (7)0.95358 (10)0.0281 (3)
O20.63687 (13)0.70958 (7)0.78545 (10)0.0267 (3)
O30.00824 (14)0.71635 (7)0.81974 (10)0.0264 (3)
N10.36177 (15)0.72621 (8)0.86360 (11)0.0208 (3)
C10.40408 (17)0.58685 (9)0.71468 (13)0.0196 (4)
C20.3833 (2)0.60851 (9)0.58584 (14)0.0239 (4)
C30.2974 (2)0.55124 (10)0.49170 (14)0.0268 (4)
C40.23172 (19)0.47243 (9)0.52309 (14)0.0247 (4)
C50.2521 (2)0.45305 (10)0.65261 (15)0.0278 (4)
C60.3373 (2)0.50922 (10)0.74888 (14)0.0253 (4)
C70.1447 (2)0.40915 (11)0.42031 (17)0.0343 (5)
C80.25492 (18)0.77847 (9)0.76315 (13)0.0192 (3)
C90.3290 (2)0.83739 (9)0.69307 (15)0.0243 (4)
C100.2174 (2)0.89020 (9)0.60237 (15)0.0273 (4)
C110.0320 (2)0.88327 (10)0.58080 (14)0.0265 (4)
C120.04291 (19)0.82447 (10)0.65038 (14)0.0234 (4)
C130.06818 (18)0.77298 (9)0.74268 (13)0.0202 (3)
H1N0.301 (3)0.7023 (13)0.9076 (19)0.035 (5)*
H1O0.106 (3)0.7191 (15)0.807 (2)0.051 (6)*
H20.427600.662000.562900.0290*
H30.282800.565900.403700.0320*
H50.206300.399900.675500.0330*
H60.350000.495000.836800.0300*
H7A0.222200.358300.424700.0510*
H7B0.127100.436500.335600.0510*
H7C0.028100.391400.433500.0510*
H90.455800.841600.707100.0290*
H100.268000.931000.555200.0330*
H110.043900.918900.518100.0320*
H120.169800.819500.634800.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0117 (2)0.0246 (2)0.0243 (2)0.0002 (1)0.0036 (1)0.0013 (1)
O10.0198 (5)0.0360 (6)0.0254 (5)0.0033 (4)0.0005 (4)0.0019 (4)
O20.0140 (5)0.0298 (5)0.0380 (6)0.0027 (4)0.0096 (4)0.0031 (4)
O30.0146 (5)0.0354 (6)0.0298 (5)0.0019 (4)0.0068 (4)0.0060 (4)
N10.0150 (5)0.0253 (6)0.0229 (6)0.0006 (5)0.0065 (5)0.0022 (5)
C10.0154 (6)0.0207 (6)0.0233 (7)0.0027 (5)0.0059 (5)0.0003 (5)
C20.0258 (7)0.0208 (7)0.0269 (7)0.0013 (5)0.0101 (6)0.0031 (5)
C30.0308 (8)0.0275 (7)0.0232 (7)0.0035 (6)0.0089 (6)0.0008 (6)
C40.0197 (6)0.0247 (7)0.0302 (7)0.0040 (6)0.0071 (6)0.0042 (6)
C50.0280 (8)0.0210 (7)0.0359 (8)0.0025 (6)0.0107 (6)0.0019 (6)
C60.0264 (7)0.0254 (7)0.0247 (7)0.0003 (6)0.0074 (6)0.0047 (6)
C70.0288 (8)0.0334 (8)0.0404 (9)0.0004 (7)0.0081 (7)0.0130 (7)
C80.0171 (6)0.0196 (6)0.0211 (6)0.0004 (5)0.0052 (5)0.0056 (5)
C90.0206 (7)0.0230 (7)0.0319 (7)0.0026 (5)0.0112 (6)0.0047 (6)
C100.0317 (8)0.0223 (7)0.0313 (8)0.0011 (6)0.0144 (6)0.0009 (6)
C110.0292 (8)0.0243 (7)0.0260 (7)0.0048 (6)0.0069 (6)0.0001 (6)
C120.0178 (6)0.0268 (7)0.0255 (7)0.0018 (5)0.0051 (5)0.0041 (6)
C130.0186 (6)0.0213 (6)0.0220 (6)0.0023 (5)0.0076 (5)0.0050 (5)
Geometric parameters (Å, º) top
S1—O11.4325 (11)C8—C91.390 (2)
S1—O21.4405 (11)C9—C101.391 (2)
S1—N11.6417 (12)C10—C111.389 (2)
S1—C11.7574 (14)C11—C121.389 (2)
O3—C131.3606 (18)C12—C131.387 (2)
O3—H1O0.86 (2)C2—H20.9500
N1—C81.4318 (18)C3—H30.9500
N1—H1N0.83 (2)C5—H50.9500
C1—C61.391 (2)C6—H60.9500
C1—C21.392 (2)C7—H7A0.9800
C2—C31.382 (2)C7—H7B0.9800
C3—C41.393 (2)C7—H7C0.9800
C4—C71.502 (2)C9—H90.9500
C4—C51.392 (2)C10—H100.9500
C5—C61.384 (2)C11—H110.9500
C8—C131.398 (2)C12—H120.9500
O1—S1—O2119.78 (6)C11—C12—C13119.77 (14)
O1—S1—N1105.36 (6)O3—C13—C8115.57 (12)
O1—S1—C1109.04 (6)O3—C13—C12124.25 (13)
O2—S1—N1106.42 (6)C8—C13—C12120.17 (13)
O2—S1—C1107.74 (6)C1—C2—H2120.00
N1—S1—C1107.97 (6)C3—C2—H2120.00
C13—O3—H1O111.0 (15)C2—C3—H3119.00
S1—N1—C8121.50 (9)C4—C3—H3119.00
C8—N1—H1N112.5 (15)C4—C5—H5119.00
S1—N1—H1N110.0 (15)C6—C5—H5119.00
S1—C1—C6119.35 (11)C1—C6—H6121.00
S1—C1—C2119.94 (11)C5—C6—H6121.00
C2—C1—C6120.71 (13)C4—C7—H7A109.00
C1—C2—C3119.17 (13)C4—C7—H7B109.00
C2—C3—C4121.39 (14)C4—C7—H7C109.00
C5—C4—C7120.78 (13)H7A—C7—H7B109.00
C3—C4—C5118.17 (13)H7A—C7—H7C109.00
C3—C4—C7121.03 (13)H7B—C7—H7C109.00
C4—C5—C6121.67 (14)C8—C9—H9120.00
C1—C6—C5118.87 (13)C10—C9—H9120.00
N1—C8—C9122.85 (13)C9—C10—H10120.00
N1—C8—C13117.26 (12)C11—C10—H10120.00
C9—C8—C13119.73 (13)C10—C11—H11120.00
C8—C9—C10119.99 (14)C12—C11—H11120.00
C9—C10—C11119.98 (14)C11—C12—H12120.00
C10—C11—C12120.33 (14)C13—C12—H12120.00
O1—S1—N1—C8173.59 (11)C2—C3—C4—C7177.69 (15)
O2—S1—N1—C858.25 (12)C2—C3—C4—C51.0 (2)
C1—S1—N1—C857.18 (12)C3—C4—C5—C61.0 (2)
O1—S1—C1—C2158.83 (12)C7—C4—C5—C6177.79 (15)
O2—S1—C1—C227.38 (14)C4—C5—C6—C10.1 (2)
N1—S1—C1—C287.19 (13)N1—C8—C9—C10175.85 (13)
O1—S1—C1—C622.08 (14)C13—C8—C9—C100.4 (2)
O2—S1—C1—C6153.53 (12)N1—C8—C13—O31.43 (18)
N1—S1—C1—C691.91 (13)N1—C8—C13—C12177.40 (13)
S1—N1—C8—C959.30 (17)C9—C8—C13—O3177.10 (13)
S1—N1—C8—C13125.18 (12)C9—C8—C13—C121.7 (2)
S1—C1—C6—C5179.91 (12)C8—C9—C10—C110.8 (2)
S1—C1—C2—C3180.00 (12)C9—C10—C11—C120.7 (2)
C6—C1—C2—C30.9 (2)C10—C11—C12—C130.6 (2)
C2—C1—C6—C51.0 (2)C11—C12—C13—O3176.92 (13)
C1—C2—C3—C40.1 (2)C11—C12—C13—C81.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.83 (2)2.22 (2)2.6420 (16)111.6 (17)
O3—H1O···O2i0.86 (2)1.94 (2)2.7852 (15)172 (2)
C9—H9···O20.952.503.0531 (18)117
C3—H3···Cg2ii0.952.923.8022 (16)155
C7—H7C···Cg1iii0.982.853.5937 (17)134
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.83 (2)2.22 (2)2.6420 (16)111.6 (17)
O3—H1O···O2i0.86 (2)1.94 (2)2.7852 (15)172 (2)
C3—H3···Cg2ii0.952.923.8022 (16)155
C7—H7C···Cg1iii0.982.853.5937 (17)134
Symmetry codes: (i) x1, y, z; (ii) x, y+3/2, z1/2; (iii) x, y+1, z+1.
 

Acknowledgements

We thank Manchester Metropolitan University, Erciyes University and Cardiff University for supporting this study.

References

First citationEl-Sayed, N. S., El-Bendary, E. R., El-Ashry, S. M. & El-Kerdawy, M. M. (2011). Eur. J. Med. Chem. 46, 3714–3720.  Web of Science CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008c). Acta Cryst. E64, o2190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOzbek, N., Katircioğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds