metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido­{8-[2-(di­methyl­amino)­ethyl­amino]­quinoline-κ3N,N′,N′′}zinc

aDepartment of Chemistry, College of Science for Women, Baghdad University, Baghdad, Iraq
*Correspondence e-mail: Alsudani@Uobaghdad.edu.iq

(Received 20 September 2013; accepted 31 October 2013; online 4 December 2013)

In the title complex, [ZnCl2(C13H17N3)], the coordination sphere of the zinc cation is distorted square pyramidal. The three N atoms of the N,N′,N′′-tridentate 8-[2-(di­methyl­amino)­ethyl­amino]­quinoline ligand and one chloride ion constitute a considerably distorted square base. The apical site is occupied by another chloride ion. The distortion from the ideal square-pyramidal geometry is manifested by the N—Zn—N angle of 133.25 (11)°. Like most square-pyramidal metal complexes, the zinc cation is displaced towards the apical chloride ion. In the crystal, mol­ecules are linked by N—H⋯Cl inter­actions. This leads to the formation of chains of mol­ecules parallel to the b-axis direction.

Related literature

For the role of the zinc cation in biochemical reactions, see: Xu et al. (2010[Xu, Z., Yoon, J. & Spring, D. R. (2010). Chem. Soc. Rev. 39, 1996-2006.]); Jena & Manivannan (2012[Jena, H. S. & Manivannan, V. (2012). Inorg. Chim. Acta, 394, 210-219.]). For the geometry of five-coordinate zinc complexes, see: Dai & Canary (2007[Dai, Z. & Canary, J. W. (2007). New J. Chem. 31, 1708-1718.]). For a related structure, see: Al-Sudani & Kariuki (2013[Al-Sudani, A.-R. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m491-m492.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C13H17N3)]

  • Mr = 351.57

  • Orthorhombic, P n a 21

  • a = 23.6403 (6) Å

  • b = 7.5682 (2) Å

  • c = 8.0329 (3) Å

  • V = 1437.20 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.07 mm−1

  • T = 150 K

  • 0.17 × 0.05 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.720, Tmax = 0.922

  • 6701 measured reflections

  • 2638 independent reflections

  • 2422 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.066

  • S = 1.07

  • 2638 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 873 Friedel pairs

  • Absolute structure parameter: −0.002 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl2i 0.93 2.65 3.420 (3) 141
Symmetry code: (i) x, y-1, z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and ACD/Chemsketch (Advanced Chemistry Development, 2008[Advanced Chemistry Development (2008). ACD/Chemsketch. Advanced Chemistry Development Inc. Toronto, Ontario, Canada.]).

Supporting information


Comment top

Zinc is a biologically important element. Zinc, always present as a divalent cation in biological systems, is the second most abundant d-block metal ion in the human body after iron. The zinc cation; Zn+2, is well known to play diverse roles in many serious biochemical reactions, (Xu et al., 2010; Jena & Manivannan, 2012). The zinc(II) ion, however, provides a number of coordination compounds because of its affinity towards different types of ligands and flexible coordination number ranging from two to eight. In zinc complexes, commonly found geometries are tetrahedral and octahedral. Six-coordinate complexes may be octahedral or trigonal-prismatic. Among the less common five-coordinate complexes, trigonal–bipyramidal geometry predominates over square-pyramidal geometry (Dai & Canary, 2007). Herein, we report the synthesis and characterization of 8-[2-dimethylamino]ethylamino]quinoline ZnCl2]. This complex was characterized by elemental analyses, mass spectroscopy, 1H-NMR, and single-crystal X-ray structure determination techniques. The single-crystal structure analysis of the complex reveals that the three nitrogen atoms of the tridentate ligand, N,N',N'', along with two chloride ions form a distorted square-pyramidal geometry around the zinc cation (Fig. 1). The three N atoms of the tridentate ligand, N,N',N'', and one Cl ion constitute a considerably distorted square base. The apical site is occupied by another Cl ion. The distortion from the ideal square-pyramidal geometry is manifested by the N1—Zn—N3 angle of 133.25 (11)°. As in most square-pyramidal metal complexes, the zinc cation is displaced towards the apical Cl ion. Zn—N2 bond [2.274 (3) Å] is longer than the other two Zn—N bonds [2.136 (3) and 2.138 (3) Å] and the Zn—Cl bonds are also differ in length [2.266 (1) for Cl1 and 2.360 (1) Å for Cl2]. The Cl2 ion and N2 atom are trans to each other with an N2—Zn—Cl2 angle of 158.87 (8)°. The molecules are linked by N—H···Cl interactions (Table 1). This leads to the formation of chains of molecules parallel to the b axis (Fig. 2).

Related literature top

For the role of the zinc cation in biochemical reactions, see: Xu et al. (2010); Jena & Manivannan (2012). For the geometry of five-coordinate zinc complexes, see: Dai & Canary (2007). For a related structure, see: Al-Sudani & Kariuki (2013).

Experimental top

To a stirred methanoic solution (30 ml) of zinc dichloride (0.273 g m; 0.002 mol) kept under a positive nitrogen pressure, a methanoic solution (10 ml) containing an equimolar amount of the ligand (NN'N"); (0.43 g m; 0.002 mol) was slowly added. The resulting off white slurry was stirred at R·T. for 3 hrs. Then, the off white solid was collected by filtration, washed with smaller amount of cold methanol (5 ml, twice) followed by diethyl ether (15 ml, twice).the isolated solid was dried under vacuum at 50 °C. The mass of the slightly off white solid was 0.6 g m (yield = 85%), M·P. = 224°C. Mass Spec·(ES+)(CH3CN), m/z = 415.02 (M+CH3CN+Na) +; 374.00 ((M+Na) +; 314.04(M—Cl)+; 216.13(NN'N" + H)+. Anal·Calc. for [(C13H17N3) ZnCl2](M·W.:351.6); C; 44.41, H; 4.87, and N; 11.95. Found: C;44.45, H;4.9, and N;12.0. 1H NMR (d6-DMSO, 400 MHz, p.p.m.): 2.3 (S, 6H, N(CH3)2); 2.65 (t, 2H, CH2–CH2); 3.25 (t, 2H, CH2–CH2); 6.55 (broad s,1H, HN-quin.); the resonances of the other 6H-quin appear at 6.95, 7.3, 7.45, 7.6, 8.35,and 8.85.

Suitable colorless crystalof I were obtained via a slow vapor diffusion of diethyl ether in a smaller amount of acetonitrile solution of the zinc complex kept under the atmosphere of N2 gas.

Refinement top

The N- and C-bound H atoms were geometrically placed (X—H = 0.95–0.99Å where X is N or C atom) and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(X).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and ACD/Chemsketch (Advanced Chemistry Development, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of (I) with atom labels and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A segment of the crystal structure showing the N—H···Cl interactions as dotted lines.
Dichlorido{8-[2-(dimethylamino)ethylamino]quinoline-κ3N,N',N''}zinc top
Crystal data top
[ZnCl2(C13H17N3)]F(000) = 720
Mr = 351.57Dx = 1.625 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2422 reflections
a = 23.6403 (6) Åθ = 2.8–27.5°
b = 7.5682 (2) ŵ = 2.07 mm1
c = 8.0329 (3) ÅT = 150 K
V = 1437.20 (8) Å3Block, colourless
Z = 40.17 × 0.05 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2638 independent reflections
Radiation source: fine-focus sealed tube2422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
CCD slices, ω and phi scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 3023
Tmin = 0.720, Tmax = 0.922k = 99
6701 measured reflectionsl = 810
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0224P)2 + 0.8402P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2638 reflectionsΔρmax = 0.31 e Å3
174 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: Flack (1983), 873 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.002 (15)
Crystal data top
[ZnCl2(C13H17N3)]V = 1437.20 (8) Å3
Mr = 351.57Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 23.6403 (6) ŵ = 2.07 mm1
b = 7.5682 (2) ÅT = 150 K
c = 8.0329 (3) Å0.17 × 0.05 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
2638 independent reflections
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
2422 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.922Rint = 0.043
6701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.066Δρmax = 0.31 e Å3
S = 1.07Δρmin = 0.38 e Å3
2638 reflectionsAbsolute structure: Flack (1983), 873 Friedel pairs
174 parametersAbsolute structure parameter: 0.002 (15)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.97979 (13)1.0311 (4)0.7265 (6)0.0244 (7)
H10.96111.13290.76850.029*
C21.03902 (13)1.0354 (5)0.7106 (7)0.0280 (8)
H21.05951.13800.74220.034*
C31.06704 (15)0.8905 (5)0.6491 (5)0.0267 (9)
H31.10690.89240.63500.032*
C41.03549 (14)0.7389 (5)0.6071 (5)0.0213 (8)
C50.97605 (13)0.7445 (5)0.6265 (4)0.0171 (7)
C60.94322 (14)0.5944 (5)0.5872 (4)0.0188 (7)
C70.96889 (14)0.4450 (5)0.5276 (5)0.0241 (8)
H70.94670.34480.49920.029*
C81.02845 (15)0.4391 (5)0.5079 (5)0.0250 (8)
H81.04580.33440.46730.030*
C91.06105 (15)0.5815 (5)0.5466 (5)0.0232 (8)
H91.10090.57570.53320.028*
C100.84685 (13)0.5713 (5)0.4719 (5)0.0231 (8)
H10A0.84540.44280.44940.028*
H10B0.86170.63190.37180.028*
C110.78850 (14)0.6401 (4)0.5145 (5)0.0219 (8)
H11A0.76270.61970.41930.026*
H11B0.77350.57460.61160.026*
C120.79589 (17)0.9336 (6)0.3988 (5)0.0331 (9)
H12A0.83110.90080.34250.050*
H12B0.79661.06000.42520.050*
H12C0.76370.90830.32550.050*
C130.73599 (14)0.8808 (5)0.6338 (5)0.0283 (9)
H13A0.73481.00910.64970.043*
H13B0.73300.82190.74200.043*
H13C0.70440.84430.56270.043*
Cl10.83558 (3)0.77871 (12)0.97688 (12)0.02365 (19)
Cl20.84770 (3)1.18659 (10)0.73045 (17)0.02760 (19)
N10.94882 (11)0.8923 (3)0.6858 (3)0.0183 (7)
N20.88348 (11)0.6075 (4)0.6168 (4)0.0179 (6)
H2A0.87450.52450.69800.021*
N30.79023 (12)0.8311 (4)0.5534 (4)0.0199 (6)
Zn10.859314 (13)0.87704 (4)0.71978 (6)0.01701 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (15)0.0196 (16)0.0254 (17)0.0024 (12)0.000 (2)0.002 (2)
C20.0242 (15)0.0246 (18)0.035 (2)0.0062 (13)0.002 (2)0.001 (2)
C30.0205 (16)0.028 (2)0.031 (2)0.0013 (15)0.0014 (16)0.0002 (18)
C40.0220 (16)0.025 (2)0.0166 (17)0.0018 (15)0.0042 (14)0.0004 (16)
C50.0207 (15)0.0140 (17)0.0165 (16)0.0013 (14)0.0012 (14)0.0005 (15)
C60.0187 (16)0.0246 (19)0.0131 (17)0.0030 (15)0.0007 (14)0.0003 (14)
C70.0251 (18)0.021 (2)0.026 (2)0.0027 (16)0.0005 (16)0.0024 (16)
C80.0277 (18)0.0224 (19)0.025 (2)0.0068 (16)0.0032 (16)0.0026 (17)
C90.0220 (17)0.026 (2)0.0214 (19)0.0028 (16)0.0027 (15)0.0012 (16)
C100.0215 (16)0.0243 (19)0.0236 (18)0.0005 (14)0.0021 (17)0.0074 (18)
C110.0207 (17)0.0186 (19)0.026 (2)0.0013 (14)0.0035 (15)0.0046 (16)
C120.040 (2)0.034 (2)0.025 (2)0.0058 (19)0.0013 (19)0.0083 (19)
C130.0190 (16)0.032 (2)0.034 (2)0.0074 (16)0.0038 (16)0.0050 (19)
Cl10.0250 (4)0.0253 (4)0.0207 (4)0.0014 (4)0.0019 (4)0.0020 (4)
Cl20.0258 (3)0.0148 (4)0.0422 (5)0.0004 (3)0.0018 (6)0.0004 (6)
N10.0180 (12)0.0160 (15)0.021 (2)0.0015 (10)0.0003 (12)0.0007 (12)
N20.0149 (13)0.0185 (16)0.0203 (15)0.0007 (12)0.0002 (12)0.0002 (12)
N30.0216 (14)0.0205 (16)0.0175 (15)0.0039 (12)0.0026 (12)0.0011 (13)
Zn10.01713 (16)0.01476 (18)0.01915 (18)0.00002 (13)0.0011 (2)0.0008 (2)
Geometric parameters (Å, º) top
C1—N11.321 (4)C10—H10A0.9900
C1—C21.406 (4)C10—H10B0.9900
C1—H10.9500C11—N31.480 (4)
C2—C31.373 (5)C11—H11A0.9900
C2—H20.9500C11—H11B0.9900
C3—C41.409 (5)C12—N31.470 (5)
C3—H30.9500C12—H12A0.9800
C4—C51.414 (4)C12—H12B0.9800
C4—C91.421 (5)C12—H12C0.9800
C5—N11.376 (4)C13—N31.484 (4)
C5—C61.412 (5)C13—H13A0.9800
C6—C71.369 (5)C13—H13B0.9800
C6—N21.436 (4)C13—H13C0.9800
C7—C81.418 (5)Cl1—Zn12.2659 (11)
C7—H70.9500Cl2—Zn12.3604 (8)
C8—C91.361 (5)N1—Zn12.136 (3)
C8—H80.9500N2—Zn12.274 (3)
C9—H90.9500N2—H2A0.9300
C10—N21.476 (5)N3—Zn12.139 (3)
C10—C111.513 (4)
N1—C1—C2123.2 (3)H11A—C11—H11B108.0
N1—C1—H1118.4N3—C12—H12A109.5
C2—C1—H1118.4N3—C12—H12B109.5
C3—C2—C1119.6 (3)H12A—C12—H12B109.5
C3—C2—H2120.2N3—C12—H12C109.5
C1—C2—H2120.2H12A—C12—H12C109.5
C2—C3—C4118.7 (3)H12B—C12—H12C109.5
C2—C3—H3120.6N3—C13—H13A109.5
C4—C3—H3120.6N3—C13—H13B109.5
C3—C4—C5118.4 (3)H13A—C13—H13B109.5
C3—C4—C9122.6 (3)N3—C13—H13C109.5
C5—C4—C9119.0 (3)H13A—C13—H13C109.5
N1—C5—C6118.3 (3)H13B—C13—H13C109.5
N1—C5—C4121.8 (3)C1—N1—C5118.2 (3)
C6—C5—C4119.8 (3)C1—N1—Zn1124.1 (2)
C7—C6—C5119.9 (3)C5—N1—Zn1117.6 (2)
C7—C6—N2123.4 (3)C6—N2—C10115.7 (3)
C5—C6—N2116.6 (3)C6—N2—Zn1111.7 (2)
C6—C7—C8120.3 (3)C10—N2—Zn1107.8 (2)
C6—C7—H7119.8C6—N2—H2A107.1
C8—C7—H7119.8C10—N2—H2A107.1
C9—C8—C7120.8 (3)Zn1—N2—H2A107.1
C9—C8—H8119.6C12—N3—C11109.8 (3)
C7—C8—H8119.6C12—N3—C13108.2 (3)
C8—C9—C4120.1 (3)C11—N3—C13108.4 (3)
C8—C9—H9120.0C12—N3—Zn1111.9 (2)
C4—C9—H9120.0C11—N3—Zn1108.2 (2)
N2—C10—C11107.0 (3)C13—N3—Zn1110.3 (2)
N2—C10—H10A110.3N1—Zn1—N3133.25 (11)
C11—C10—H10A110.3N1—Zn1—Cl1112.30 (8)
N2—C10—H10B110.3N3—Zn1—Cl1109.10 (8)
C11—C10—H10B110.3N1—Zn1—N275.72 (10)
H10A—C10—H10B108.6N3—Zn1—N279.56 (10)
N3—C11—C10111.0 (3)Cl1—Zn1—N295.69 (8)
N3—C11—H11A109.4N1—Zn1—Cl293.79 (8)
C10—C11—H11A109.4N3—Zn1—Cl295.46 (8)
N3—C11—H11B109.4Cl1—Zn1—Cl2105.31 (4)
C10—C11—H11B109.4N2—Zn1—Cl2158.87 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2i0.932.653.420 (3)141
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl2i0.932.653.420 (3)140.9
Symmetry code: (i) x, y1, z.
 

Acknowledgements

I would like to thank Professor P. G. Edwards of Cardiff University, School of Chemistry, for providing me with many opportunities to work in his laboratory as an academic visitor as well as for his invaluable advice and financial support, without which this work as well as others would not have been possible. Furthermore, I would like to thank Dr Benson M. Kariuki for the X-ray structure determination of the title complex.

References

First citationAdvanced Chemistry Development (2008). ACD/Chemsketch. Advanced Chemistry Development Inc. Toronto, Ontario, Canada.
First citationAl-Sudani, A.-R. H. & Kariuki, B. M. (2013). Acta Cryst. E69, m491–m492.  CSD CrossRef CAS IUCr Journals
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals
First citationDai, Z. & Canary, J. W. (2007). New J. Chem. 31, 1708–1718.  Web of Science CrossRef CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals
First citationJena, H. S. & Manivannan, V. (2012). Inorg. Chim. Acta, 394, 210–219.  Web of Science CSD CrossRef
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationXu, Z., Yoon, J. & Spring, D. R. (2010). Chem. Soc. Rev. 39, 1996–2006.  Web of Science CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds