supplementary materials


hg5368 scheme

Acta Cryst. (2014). E70, o70-o71    [ doi:10.1107/S1600536813033771 ]

5-Chloro-5''-[4-(di­methyl­amino)­benzyl­idene]-4'-[4-(di­methyl­amino)­phen­yl]-1',1''-di­methyl­dispiro­[indoline-3,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione

I. S. A. Farag, A. S. Girgis, A. A. Ramadan, A. M. Moustafa and E. R. T. Tiekink

Abstract top

The title compound, C34H38ClN5O2, has spiro links connecting the pyrrolidine ring and indole residue, as well as the piperidine and pyrrolidine rings. A half-chair conformation is found for the piperidine ring with the C atom connected to the spiro-C atom lying 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). The methyl­ene C atom is the flap in the envelope conformation for the pyrrolidine ring. In the crystal, supra­molecular chains are sustained by alternating eight-membered {...HNCO}2 and 14-membered {...HC5O}2 synthons. Chains are connected into a three-dimensional network by (pyrrolidine-bound phenyl-meth­yl)C-H...[pi](pyrrolidine-bound phen­yl) edge-to-face inter­actions.

Introduction top

Experimental top

Synthesis and crystallization top

A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis­(4-di­methyl­amino­phenyl­methyl­idene)-4-piperidones (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I). Reaction time 20 h. Yellow crystals. M.pt: 525–527 K. Yield 68%. Anal. Calcd. for C34H38ClN5O2 (584.17): C, 69.91; H, 6.56; N, 11.99. Found: C, 70.02; H, 6.68; N, 11.93. IR: νmax/cm-1: 3168 (N—H); 1692 (CO); 1613, 1566 (CC).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atom was treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Results and discussion top

In continuation of our biological and crystallographic studies of spiro­pyrrolidine derivatives derivatives (Girgis et al. 2012; Ahmed Farag et al. 2013a), which are known to to have biological activity (Kumar et al. 2008), the title compound, (I), was synthesised and characterised crystallographically.

The molecular structure of (I) is shown in Fig. 1 which shows two spiro links, i.e. at atom C1, linking the piperidine and pyrrolidine rings, and at atom C6 where the pyrrolidine ring and indole residue are connected. The piperidine ring carries phenyl­methyl­idene and pyrrolidine-bound aryl residues at positions C4 and C8, respectively. An E conformation is found the C4C11 double bond. The piperidine-N1 atom has sp3 character as seen by the sum of the angles at this atom of 337 °. A half-chair conformation is found for the piperidine ring in which the C2 atom lies 0.738 (4) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.0407 Å). With respect to the piperidine ring, both the N-bound methyl and phenyl­methyl­idene substituents occupy equatorial positions . An envelope conformation is found for the pyrrolidine ring with the C7 being the flap atom lying 0.547 (5) Å out of the plane of the remaining four atoms which have a r.m.s. deviation of 0.0906 Å. The similarity of the molecular structures of (I) and recently described derivatives (Ahmed Farag et al. 2013a,b), at least in terms of the cores of these, is emphasised in the overlay diagram, Fig. 2.

The crystal structure of (I) features centrosymmetric eight-membered {···HNCO}2 synthons, Table 1. These are linked into supra­molecular chains aligned in the (1 1 2) plane by 14-membered {···HC5O}2 synthons, Table 1. Chains are connected into the three-dimensional architecture by (pyrrolidine-bound phenyl-methyl)C–H···π(pyrrolidine-bound phenyl), edge-to-face, inter­actions, Fig. 3 and Table 1.

Related literature top

For the biological activity of related spiro pyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Ahmed Farag et al. (2013a); Ahmed Farag et al. (2013b). For the synthesis of the precursor molecule, see Al-Omary et al. (2012).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of the three recently determined compounds, drawn so that the central pyrrolidine rings are overlapped. Red image (Ahmed Farag et al., 2013a), green image (Ahmed Farag et al., 2013b) and blue image (present study).
[Figure 3] Fig. 3. A view of the unit-cell contents in projection down the a axis in (I). The N—H···O and ππ interactions are shown as orange and purple dashed lines, respectively.
5-Chloro-5''-[4-(dimethylamino)benzylidene]-4'-[4-(dimethylamino)phenyl]-1',1''-dimethyldispiro[indoline-3,2'-pyrrolidine-3',3''-piperidine]-2,4''-dione top
Crystal data top
C34H38ClN5O2Z = 2
Mr = 584.14F(000) = 620
Triclinic, P1Dx = 1.226 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.5458 (5) ÅCell parameters from 5831 reflections
b = 12.2357 (5) Åθ = 2.9–27.5°
c = 12.5267 (7) ŵ = 0.16 mm1
α = 64.341 (2)°T = 293 K
β = 84.286 (2)°Block, orange
γ = 83.467 (2)°0.31 × 0.18 × 0.13 mm
V = 1582.29 (13) Å3
Data collection top
Enraf–Nonius 590 KappaCCD
diffractometer
7127 independent reflections
Radiation source: fine-focus sealed tube2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
φ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.782, Tmax = 0.927k = 1515
13814 measured reflectionsl = 1610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
7127 reflections(Δ/σ)max < 0.001
385 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C34H38ClN5O2γ = 83.467 (2)°
Mr = 584.14V = 1582.29 (13) Å3
Triclinic, P1Z = 2
a = 11.5458 (5) ÅMo Kα radiation
b = 12.2357 (5) ŵ = 0.16 mm1
c = 12.5267 (7) ÅT = 293 K
α = 64.341 (2)°0.31 × 0.18 × 0.13 mm
β = 84.286 (2)°
Data collection top
Enraf–Nonius 590 KappaCCD
diffractometer
7127 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2244 reflections with I > 2σ(I)
Tmin = 0.782, Tmax = 0.927Rint = 0.081
13814 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.165Δρmax = 0.15 e Å3
S = 0.91Δρmin = 0.20 e Å3
7127 reflectionsAbsolute structure: ?
385 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00842 (11)0.90513 (9)0.33316 (9)0.1119 (5)
O10.3446 (2)0.59561 (19)0.5160 (2)0.0750 (8)
O20.1064 (2)0.4073 (2)0.9448 (2)0.0704 (7)
N10.2654 (2)0.6453 (2)0.8157 (2)0.0469 (7)
N20.1139 (3)0.4251 (3)0.6910 (2)0.0662 (9)
N30.3573 (3)1.3398 (2)0.3237 (2)0.0652 (8)
N40.0072 (3)0.5930 (3)0.8421 (3)0.0668 (9)
H4n0.03480.59790.90080.080*
N50.6847 (3)0.0837 (3)1.0145 (3)0.0800 (10)
C10.2785 (3)0.5106 (3)0.7211 (3)0.0504 (9)
C20.3223 (3)0.5320 (3)0.8207 (2)0.0482 (9)
H2A0.30380.46580.89680.058*
H2B0.40630.53620.81080.058*
C30.3109 (3)0.7505 (3)0.7153 (2)0.0494 (9)
H3A0.38520.76530.73460.059*
H3B0.25750.82150.70320.059*
C40.3277 (3)0.7353 (3)0.6021 (3)0.0452 (8)
C50.3213 (3)0.6136 (3)0.6040 (3)0.0507 (9)
C60.1383 (3)0.5203 (3)0.7259 (3)0.0560 (10)
C70.1985 (3)0.3228 (3)0.7457 (3)0.0749 (12)
H7A0.20220.26690.70900.090*
H7B0.17940.27920.83000.090*
C80.3149 (3)0.3828 (3)0.7230 (3)0.0613 (10)
H80.34350.39730.64200.074*
C90.2653 (3)0.6588 (3)0.9254 (3)0.0725 (11)
H9A0.22720.59340.98840.109*
H9B0.22440.73500.91600.109*
H9C0.34430.65700.94430.109*
C100.0077 (4)0.3941 (3)0.7112 (4)0.1041 (15)
H10A0.01660.33650.68000.156*
H10B0.05790.46630.67210.156*
H10C0.02830.35900.79480.156*
C110.3454 (2)0.8291 (3)0.4941 (3)0.0490 (9)
H110.35550.80610.43180.059*
C120.3515 (3)0.9578 (3)0.4575 (3)0.0474 (9)
C130.3543 (3)1.0342 (3)0.3361 (3)0.0551 (9)
H130.35400.99970.28300.066*
C140.3575 (3)1.1582 (3)0.2919 (3)0.0561 (10)
H140.35961.20470.21020.067*
C150.3576 (3)1.2159 (3)0.3670 (3)0.0500 (9)
C160.3594 (3)1.1397 (3)0.4884 (3)0.0530 (9)
H160.36231.17370.54150.064*
C170.3571 (3)1.0161 (3)0.5311 (3)0.0543 (10)
H170.35930.96900.61250.065*
C180.3406 (3)1.3962 (3)0.4056 (3)0.0846 (13)
H18A0.26611.37860.44800.127*
H18B0.34351.48260.36210.127*
H18C0.40131.36460.46070.127*
C190.3349 (3)1.4166 (3)0.2012 (3)0.0779 (12)
H19A0.39281.39610.15090.117*
H19B0.33821.50020.18590.117*
H19C0.25881.40470.18520.117*
C200.0856 (3)0.4990 (4)0.8513 (3)0.0599 (10)
C210.0032 (3)0.6814 (3)0.7249 (3)0.0568 (10)
C220.0627 (3)0.7898 (4)0.6808 (4)0.0724 (11)
H220.10860.81630.73160.087*
C230.0601 (3)0.8595 (4)0.5598 (4)0.0775 (12)
H230.10350.93420.52830.093*
C240.0067 (4)0.8180 (3)0.4863 (3)0.0696 (11)
C250.0755 (3)0.7089 (3)0.5291 (3)0.0667 (11)
H250.12040.68210.47800.080*
C260.0748 (3)0.6413 (3)0.6511 (3)0.0545 (9)
C270.4107 (4)0.3056 (3)0.8031 (3)0.0573 (10)
C280.5228 (4)0.2936 (3)0.7547 (3)0.0693 (11)
H280.53770.33690.67350.083*
C290.6123 (4)0.2206 (3)0.8222 (4)0.0689 (11)
H290.68510.21460.78520.083*
C300.5965 (4)0.1550 (3)0.9452 (4)0.0645 (11)
C310.4844 (4)0.1671 (3)0.9943 (3)0.0681 (11)
H310.46940.12451.07560.082*
C320.3959 (3)0.2404 (3)0.9255 (3)0.0669 (11)
H320.32310.24670.96230.080*
C330.6631 (4)0.0129 (3)1.1413 (4)0.0925 (13)
H33A0.62490.06491.17570.139*
H33B0.73600.02231.17730.139*
H33C0.61420.05061.15450.139*
C340.7943 (4)0.0575 (4)0.9629 (4)0.1278 (18)
H34A0.78170.01800.91390.192*
H34B0.84440.00491.02470.192*
H34C0.83010.13180.91550.192*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1734 (13)0.0715 (7)0.0785 (8)0.0019 (7)0.0476 (8)0.0139 (6)
O10.128 (2)0.0533 (14)0.0436 (15)0.0158 (14)0.0206 (15)0.0242 (12)
O20.0789 (19)0.0616 (16)0.0541 (16)0.0088 (14)0.0129 (14)0.0119 (13)
N10.067 (2)0.0403 (16)0.0340 (16)0.0073 (14)0.0040 (14)0.0171 (13)
N20.084 (2)0.0508 (19)0.070 (2)0.0043 (19)0.0158 (18)0.0298 (16)
N30.098 (2)0.0430 (18)0.0476 (19)0.0053 (16)0.0090 (17)0.0116 (16)
N40.065 (2)0.065 (2)0.063 (2)0.0093 (18)0.0162 (17)0.0227 (18)
N50.086 (3)0.078 (2)0.075 (3)0.005 (2)0.002 (2)0.035 (2)
C10.070 (3)0.041 (2)0.039 (2)0.0017 (18)0.0080 (19)0.0191 (16)
C20.062 (2)0.041 (2)0.038 (2)0.0047 (17)0.0013 (17)0.0141 (16)
C30.061 (2)0.0426 (19)0.041 (2)0.0002 (17)0.0038 (17)0.0146 (16)
C40.054 (2)0.045 (2)0.039 (2)0.0054 (17)0.0056 (17)0.0213 (17)
C50.064 (2)0.046 (2)0.040 (2)0.0014 (18)0.0042 (19)0.0183 (18)
C60.071 (3)0.050 (2)0.052 (2)0.010 (2)0.000 (2)0.0258 (19)
C70.108 (3)0.054 (2)0.071 (3)0.011 (3)0.009 (2)0.032 (2)
C80.089 (3)0.051 (2)0.045 (2)0.001 (2)0.006 (2)0.0245 (18)
C90.118 (3)0.058 (2)0.042 (2)0.017 (2)0.008 (2)0.0220 (19)
C100.102 (4)0.086 (3)0.140 (4)0.029 (3)0.031 (3)0.053 (3)
C110.055 (2)0.049 (2)0.041 (2)0.0022 (18)0.0066 (17)0.0208 (17)
C120.053 (2)0.045 (2)0.041 (2)0.0061 (17)0.0014 (17)0.0155 (18)
C130.071 (3)0.054 (2)0.042 (2)0.0079 (19)0.0039 (18)0.0218 (18)
C140.068 (3)0.055 (2)0.035 (2)0.0096 (19)0.0049 (18)0.0099 (18)
C150.056 (2)0.046 (2)0.045 (2)0.0046 (18)0.0027 (18)0.0161 (19)
C160.067 (3)0.048 (2)0.042 (2)0.0052 (19)0.0084 (18)0.0173 (18)
C170.066 (3)0.049 (2)0.042 (2)0.0083 (19)0.0037 (18)0.0116 (18)
C180.123 (4)0.053 (2)0.076 (3)0.010 (2)0.002 (3)0.027 (2)
C190.100 (3)0.045 (2)0.069 (3)0.010 (2)0.015 (2)0.003 (2)
C200.063 (3)0.058 (3)0.059 (3)0.015 (2)0.006 (2)0.025 (2)
C210.052 (3)0.053 (2)0.065 (3)0.007 (2)0.002 (2)0.023 (2)
C220.060 (3)0.070 (3)0.088 (3)0.000 (2)0.000 (2)0.037 (3)
C230.070 (3)0.065 (3)0.097 (4)0.001 (2)0.024 (3)0.031 (3)
C240.087 (3)0.050 (3)0.068 (3)0.009 (2)0.022 (3)0.017 (2)
C250.085 (3)0.060 (3)0.060 (3)0.010 (2)0.015 (2)0.026 (2)
C260.063 (3)0.047 (2)0.055 (3)0.0063 (19)0.006 (2)0.021 (2)
C270.083 (3)0.041 (2)0.041 (2)0.005 (2)0.007 (2)0.0154 (18)
C280.096 (3)0.051 (2)0.052 (3)0.011 (2)0.020 (3)0.017 (2)
C290.075 (3)0.066 (3)0.064 (3)0.005 (2)0.014 (2)0.030 (2)
C300.081 (3)0.047 (2)0.066 (3)0.006 (2)0.007 (3)0.026 (2)
C310.094 (3)0.052 (2)0.048 (3)0.010 (2)0.004 (3)0.017 (2)
C320.087 (3)0.058 (2)0.047 (3)0.002 (2)0.019 (2)0.021 (2)
C330.122 (4)0.071 (3)0.085 (3)0.016 (3)0.029 (3)0.035 (3)
C340.095 (4)0.143 (5)0.135 (5)0.033 (3)0.008 (4)0.060 (4)
Geometric parameters (Å, º) top
Cl1—C241.744 (4)C11—H110.9300
O1—C51.214 (3)C12—C131.398 (4)
O2—C201.244 (4)C12—C171.397 (4)
N1—C21.444 (4)C13—C141.375 (4)
N1—C91.453 (4)C13—H130.9300
N1—C31.461 (3)C14—C151.400 (4)
N2—C71.450 (4)C14—H140.9300
N2—C101.465 (4)C15—C161.399 (4)
N2—C61.472 (4)C16—C171.371 (4)
N3—C151.370 (4)C16—H160.9300
N3—C191.442 (4)C17—H170.9300
N3—C181.452 (4)C18—H18A0.9600
N4—C201.350 (4)C18—H18B0.9600
N4—C211.398 (4)C18—H18C0.9600
N4—H4n0.8600C19—H19A0.9600
N5—C301.368 (4)C19—H19B0.9600
N5—C341.430 (5)C19—H19C0.9600
N5—C331.453 (4)C21—C221.365 (5)
C1—C21.523 (4)C21—C261.388 (4)
C1—C51.542 (4)C22—C231.379 (5)
C1—C81.563 (4)C22—H220.9300
C1—C61.606 (4)C23—C241.369 (5)
C2—H2A0.9700C23—H230.9300
C2—H2B0.9700C24—C251.387 (5)
C3—C41.499 (4)C25—C261.387 (4)
C3—H3A0.9700C25—H250.9300
C3—H3B0.9700C27—C321.392 (4)
C4—C111.358 (4)C27—C281.393 (4)
C4—C51.490 (4)C28—C291.375 (5)
C6—C261.515 (4)C28—H280.9300
C6—C201.549 (4)C29—C301.399 (5)
C7—C81.547 (4)C29—H290.9300
C7—H7A0.9700C30—C311.397 (5)
C7—H7B0.9700C31—C321.375 (4)
C8—C271.512 (4)C31—H310.9300
C8—H80.9800C32—H320.9300
C9—H9A0.9600C33—H33A0.9600
C9—H9B0.9600C33—H33B0.9600
C9—H9C0.9600C33—H33C0.9600
C10—H10A0.9600C34—H34A0.9600
C10—H10B0.9600C34—H34B0.9600
C10—H10C0.9600C34—H34C0.9600
C11—C121.446 (4)
C2—N1—C9114.3 (3)C12—C13—H13118.6
C2—N1—C3112.1 (2)C13—C14—C15121.5 (3)
C9—N1—C3110.9 (2)C13—C14—H14119.2
C7—N2—C10114.6 (3)C15—C14—H14119.2
C7—N2—C6107.0 (3)N3—C15—C16122.1 (3)
C10—N2—C6115.4 (3)N3—C15—C14121.8 (3)
C15—N3—C19120.4 (3)C16—C15—C14116.1 (3)
C15—N3—C18119.4 (3)C17—C16—C15121.7 (3)
C19—N3—C18117.1 (3)C17—C16—H16119.2
C20—N4—C21111.3 (3)C15—C16—H16119.2
C20—N4—H4n124.4C16—C17—C12122.8 (3)
C21—N4—H4n124.4C16—C17—H17118.6
C30—N5—C34121.1 (4)C12—C17—H17118.6
C30—N5—C33120.8 (4)N3—C18—H18A109.5
C34—N5—C33116.9 (4)N3—C18—H18B109.5
C2—C1—C5106.3 (2)H18A—C18—H18B109.5
C2—C1—C8115.7 (3)N3—C18—H18C109.5
C5—C1—C8111.4 (3)H18A—C18—H18C109.5
C2—C1—C6111.1 (3)H18B—C18—H18C109.5
C5—C1—C6108.0 (3)N3—C19—H19A109.5
C8—C1—C6104.1 (2)N3—C19—H19B109.5
N1—C2—C1107.8 (3)H19A—C19—H19B109.5
N1—C2—H2A110.2N3—C19—H19C109.5
C1—C2—H2A110.2H19A—C19—H19C109.5
N1—C2—H2B110.2H19B—C19—H19C109.5
C1—C2—H2B110.2O2—C20—N4125.1 (3)
H2A—C2—H2B108.5O2—C20—C6125.9 (4)
N1—C3—C4113.6 (2)N4—C20—C6108.9 (3)
N1—C3—H3A108.9C22—C21—C26121.5 (4)
C4—C3—H3A108.9C22—C21—N4128.7 (4)
N1—C3—H3B108.9C26—C21—N4109.7 (3)
C4—C3—H3B108.9C21—C22—C23119.1 (4)
H3A—C3—H3B107.7C21—C22—H22120.4
C11—C4—C5116.6 (3)C23—C22—H22120.4
C11—C4—C3123.2 (3)C24—C23—C22119.6 (4)
C5—C4—C3120.1 (2)C24—C23—H23120.2
O1—C5—C4121.9 (3)C22—C23—H23120.2
O1—C5—C1120.2 (3)C23—C24—C25122.3 (4)
C4—C5—C1117.8 (3)C23—C24—Cl1119.6 (4)
N2—C6—C26111.2 (3)C25—C24—Cl1118.1 (4)
N2—C6—C20112.8 (3)C26—C25—C24117.6 (4)
C26—C6—C20100.7 (3)C26—C25—H25121.2
N2—C6—C1102.7 (3)C24—C25—H25121.2
C26—C6—C1118.5 (3)C25—C26—C21119.8 (4)
C20—C6—C1111.4 (3)C25—C26—C6131.0 (4)
N2—C7—C8103.5 (3)C21—C26—C6109.1 (3)
N2—C7—H7A111.1C32—C27—C28115.3 (4)
C8—C7—H7A111.1C32—C27—C8124.8 (4)
N2—C7—H7B111.1C28—C27—C8120.0 (3)
C8—C7—H7B111.1C29—C28—C27122.7 (3)
H7A—C7—H7B109.0C29—C28—H28118.6
C27—C8—C7115.2 (3)C27—C28—H28118.6
C27—C8—C1117.2 (3)C28—C29—C30121.6 (4)
C7—C8—C1104.4 (3)C28—C29—H29119.2
C27—C8—H8106.4C30—C29—H29119.2
C7—C8—H8106.4N5—C30—C31121.3 (4)
C1—C8—H8106.4N5—C30—C29122.7 (4)
N1—C9—H9A109.5C31—C30—C29116.0 (4)
N1—C9—H9B109.5C32—C31—C30121.6 (4)
H9A—C9—H9B109.5C32—C31—H31119.2
N1—C9—H9C109.5C30—C31—H31119.2
H9A—C9—H9C109.5C31—C32—C27122.8 (4)
H9B—C9—H9C109.5C31—C32—H32118.6
N2—C10—H10A109.5C27—C32—H32118.6
N2—C10—H10B109.5N5—C33—H33A109.5
H10A—C10—H10B109.5N5—C33—H33B109.5
N2—C10—H10C109.5H33A—C33—H33B109.5
H10A—C10—H10C109.5N5—C33—H33C109.5
H10B—C10—H10C109.5H33A—C33—H33C109.5
C4—C11—C12132.2 (3)H33B—C33—H33C109.5
C4—C11—H11113.9N5—C34—H34A109.5
C12—C11—H11113.9N5—C34—H34B109.5
C13—C12—C17115.1 (3)H34A—C34—H34B109.5
C13—C12—C11118.0 (3)N5—C34—H34C109.5
C17—C12—C11126.9 (3)H34A—C34—H34C109.5
C14—C13—C12122.7 (3)H34B—C34—H34C109.5
C14—C13—H13118.6
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4n···O2i0.862.002.853 (4)169
C28—H28···O1ii0.932.473.337 (4)156
C33—H33c···Cg1iii0.962.883.807 (5)163
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C27–C32 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4n···O2i0.862.002.853 (4)169
C28—H28···O1ii0.932.473.337 (4)156
C33—H33c···Cg1iii0.962.883.807 (5)163
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.
Acknowledgements top

This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (Grant No. 1133).

references
References top

Ahmed Farag, I. S., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2013a). Acta Cryst. E70, o22–o23.

Ahmed Farag, I. S., Girgis, A. S., Ramadan, A. A., Moustafa, A. M. & Tiekink, E. R. T. (2013b). Acta Cryst. E70, o43-o44.

Al-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65–72.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.

Girgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50, 1–8.

Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Kumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731–5735.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1996). University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.