organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl­hydrazinium picrate monohydrate

aSchool of Chemistry and Material Science, Ludong University, Yantai 264025, People's Republic of China
*Correspondence e-mail: honglan_cai@126.com

(Received 21 November 2013; accepted 28 November 2013; online 7 December 2013)

In the crystal structure of the title compound, C6H8N3O2+·C6H2N3O7·H2O, N—H⋯O and O—H⋯O hydrogen bonds link the components into a two-dimensional network parallel to (010). In addition, there are pairs of weak inversion-related C—H⋯O hydrogen bonds within the two-dimensional network. The three nitro groups are twisted by 1.6 (3), 7.8 (3) and 12.1 (3)° from the ring plane in the anion, while in the cation, the nitro group makes a dihedral angle of 4.6 (2)° with the ring.

Related literature

For the use of picric acid acid as a co-crystallization agent, see: Herbstein & Kaftory (1976[Herbstein, F. H. & Kaftory, M. (1976). Acta Cryst. B32, 387-396.]); Dubost et al. (1981[Dubost, J.-P., Léger, J.-M., Hickel, D. & Colleter, J.-C. (1981). Acta Cryst. B37, 751-754.]); Harrison et al. (2007[Harrison, W. T. A., Swamy, M. T., Nagaraja, P., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3892.]); Peng et al. (2011[Peng, Y., Zhang, A.-J., Dong, M. & Wang, Y.-W. (2011). Chem. Commun. 47, 4505-4507.]); Zeng et al. (2011[Zeng, B., Li, J. & Wang, G. (2011). Acta Cryst. E67, o1464.]); Dey et al. (2011[Dey, S. K., Pramanik, A. & Das, G. (2011). CrystEngComm, 13, 1664-1675.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N3O2+·C6H2N3O7·H2O

  • Mr = 400.28

  • Monoclinic, P 21 /c

  • a = 4.8483 (3) Å

  • b = 28.798 (2) Å

  • c = 11.6352 (8) Å

  • β = 101.360 (1)°

  • V = 1592.70 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 299 K

  • 0.20 × 0.08 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.994

  • 16632 measured reflections

  • 3643 independent reflections

  • 2487 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.150

  • S = 1.05

  • 3643 reflections

  • 271 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O10i 0.87 (1) 2.05 (1) 2.916 (3) 177 (2)
N1—H1B⋯O10 0.87 (1) 1.94 (1) 2.809 (3) 172 (2)
N1—H1B⋯O9ii 0.87 (1) 2.56 (3) 2.908 (3) 105 (2)
N1—H1C⋯O6iii 0.87 (1) 2.08 (1) 2.947 (3) 170 (2)
N2—H2A⋯O4 0.86 (1) 2.13 (2) 2.868 (3) 144 (3)
O10—H10A⋯O3 0.82 (1) 2.09 (2) 2.832 (3) 150 (3)
O10—H10A⋯O4 0.82 (1) 2.24 (2) 2.743 (3) 120 (2)
O10—H10B⋯O3ii 0.83 (1) 2.05 (1) 2.869 (3) 171 (3)
O10—H10B⋯O9ii 0.83 (1) 2.43 (3) 2.898 (3) 117 (3)
C11—H11⋯O8iv 0.93 2.51 3.433 (3) 172
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z-1; (iv) -x+3, -y+1, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Cocrystal strategy has been often used due to its application in the fields of drug chemistry, physical material chemistry and biological crystallography. Picric acid, as a strong organic acid, is very frequently adopted to facilitate the crystallization of some difficult-crystallized organic bases (Herbstein & Kaftory, 1976; Dubost et al., 1981; Harrison et al., 2007; Peng et al., 2011; Zeng et al., 2011; Dey et al., 2011). In this report, we report the 1:1 cocrystallized complex of 4-nitrophenylhydrazine and picric acid in 95% methanol solution.

In the title compound (I), the asymmetric unit consists of a 4-nitrophenyldrazinium cation, a picrate anion and a solvent water molecule (Fig.1). During the preparation of (I) the picric acid proton has been transferred to the terminal hydrazine atom N1. In the picrate molecule, the phenolate (O3—C7) bond distance is 1.245 (3) Å shows an indication of delocalization between the precursor single C—O bond and the benzene ring with three electron-withdrawing nitro groups. As a result, the neighbouring C7—C8 and C7—C12 bond lengths of 1.459 (3) Å and 1.452 (3) Å are longer by ca 0.08 Å than the mean distance of the other four C—C bonds. The C8—C7—C12 angle is about 10° smaller than the mean value (121.4°) of the other five benzene inner angles. The three nitro groups N4/O4/O5, N5/O6/O7 and N6/O8/O9 are twisted by 1.6 (3)°, 7.8 (3)° and 12.1 (3)° from the picrate benzene ring plane, respectively.

In the crystal, N—H···O and O—H···O hydrogen bonds link the components of the structure into a two-dimensional network parallel to (010) (Fig. 2). In addition, there are pairs of weak inversion related C—H···O hydrogen bonds within the two-dimensional network.

Related literature top

For the use of picric acid acid as a co-crystallization agent, see: Herbstein & Kaftory (1976); Dubost et al. (1981); Harrison et al. (2007); Peng et al. (2011); Zeng et al. (2011); Dey et al. (2011).

Experimental top

All the reagents and solvents were used as obtained without further purification. 1:1 molar amount of 4-nitrophenylhydrazine (0.2 mmol, 30.6 mg) and picric acid (0.2 mmol, 45.8 g) were dissolved in 95% methanol (20.0 ml). The mixture was stirred for half an hour at ambient temperature and then filtered. The resulting yellow solution was kept in air for one week. Yellow needles of (I) suitable for single-crystal X-ray diffraction analysis were grown by slow evaporation of the solution at the bottom of the vessel. The crystals were filtered and dried in air. Yield: 60.2 mg, 75% (based on picric acid or 4-nitrophenylhydrazine).

Refinement top

H atoms bonded to C atoms were positioned geometrically with C–H = 0.93 Å (aromatic) and refined in a riding-model approximation with [Uiso(H) = 1.2Ueq(aromatic C)]. H atoms bonded to N and O atoms were found in difference Fourier maps and refined with the constraints of N—H = 0.86 (1)Å and O—H = 0.82 (1) Å. The N1-bonded H···H distances were constrained by using the SADI command in SHELXL (Sheldrick, 2008). The water O10-bonded H···H distance was constrained to be 1.35 (1) Å. The isotropic displacment parameters of of N-bonded and water O10-bonded hydrogen atoms were set 1.2 times and 1.5 times of their parent atoms, respectively.

Structure description top

Cocrystal strategy has been often used due to its application in the fields of drug chemistry, physical material chemistry and biological crystallography. Picric acid, as a strong organic acid, is very frequently adopted to facilitate the crystallization of some difficult-crystallized organic bases (Herbstein & Kaftory, 1976; Dubost et al., 1981; Harrison et al., 2007; Peng et al., 2011; Zeng et al., 2011; Dey et al., 2011). In this report, we report the 1:1 cocrystallized complex of 4-nitrophenylhydrazine and picric acid in 95% methanol solution.

In the title compound (I), the asymmetric unit consists of a 4-nitrophenyldrazinium cation, a picrate anion and a solvent water molecule (Fig.1). During the preparation of (I) the picric acid proton has been transferred to the terminal hydrazine atom N1. In the picrate molecule, the phenolate (O3—C7) bond distance is 1.245 (3) Å shows an indication of delocalization between the precursor single C—O bond and the benzene ring with three electron-withdrawing nitro groups. As a result, the neighbouring C7—C8 and C7—C12 bond lengths of 1.459 (3) Å and 1.452 (3) Å are longer by ca 0.08 Å than the mean distance of the other four C—C bonds. The C8—C7—C12 angle is about 10° smaller than the mean value (121.4°) of the other five benzene inner angles. The three nitro groups N4/O4/O5, N5/O6/O7 and N6/O8/O9 are twisted by 1.6 (3)°, 7.8 (3)° and 12.1 (3)° from the picrate benzene ring plane, respectively.

In the crystal, N—H···O and O—H···O hydrogen bonds link the components of the structure into a two-dimensional network parallel to (010) (Fig. 2). In addition, there are pairs of weak inversion related C—H···O hydrogen bonds within the two-dimensional network.

For the use of picric acid acid as a co-crystallization agent, see: Herbstein & Kaftory (1976); Dubost et al. (1981); Harrison et al. (2007); Peng et al. (2011); Zeng et al. (2011); Dey et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level. H-bonds are shown in dashed lines.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing the formation of a two-dimensional network parallel to (010). Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the motif have been omitted.
4-Nitrophenylhydrazinium picrate monohydrate top
Crystal data top
C6H8N3O2+·C6H2N3O7·H2OF(000) = 824
Mr = 400.28Dx = 1.669 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 924 reflections
a = 4.8483 (3) Åθ = 2.3–21.5°
b = 28.798 (2) ŵ = 0.15 mm1
c = 11.6352 (8) ÅT = 299 K
β = 101.360 (1)°Needle, yellow
V = 1592.70 (18) Å30.20 × 0.08 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3643 independent reflections
Radiation source: fine-focus sealed tube2487 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 66
Tmin = 0.971, Tmax = 0.994k = 3736
16632 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.5955P]
where P = (Fo2 + 2Fc2)/3
3643 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.31 e Å3
10 restraintsΔρmin = 0.31 e Å3
Crystal data top
C6H8N3O2+·C6H2N3O7·H2OV = 1592.70 (18) Å3
Mr = 400.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8483 (3) ŵ = 0.15 mm1
b = 28.798 (2) ÅT = 299 K
c = 11.6352 (8) Å0.20 × 0.08 × 0.04 mm
β = 101.360 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3643 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2487 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.994Rint = 0.045
16632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06310 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
3643 reflectionsΔρmin = 0.31 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3571 (5)0.67096 (8)0.4377 (2)0.0427 (6)
C20.5710 (5)0.67706 (9)0.3408 (2)0.0473 (6)
H20.59220.65620.27860.057*
C30.7524 (6)0.71420 (9)0.3368 (3)0.0523 (7)
H30.89680.71860.27220.063*
C40.7169 (6)0.74447 (8)0.4294 (3)0.0505 (7)
C50.5048 (7)0.73915 (10)0.5256 (3)0.0603 (8)
H50.48360.76030.58700.072*
C60.3246 (6)0.70235 (10)0.5302 (3)0.0555 (7)
H60.18060.69830.59520.067*
C70.7836 (5)0.56180 (8)0.7388 (2)0.0365 (5)
C80.6275 (5)0.59770 (7)0.7872 (2)0.0344 (5)
C90.6776 (5)0.61004 (7)0.9025 (2)0.0361 (5)
H90.56820.63270.92870.043*
C100.8913 (5)0.58870 (8)0.9798 (2)0.0375 (5)
C111.0603 (5)0.55567 (8)0.9429 (2)0.0363 (5)
H111.20630.54200.99600.044*
C121.0107 (5)0.54316 (7)0.8270 (2)0.0345 (5)
N10.2290 (5)0.59509 (8)0.3776 (2)0.0543 (6)
H1A0.377 (3)0.5818 (9)0.394 (2)0.065*
H1B0.078 (3)0.5783 (8)0.399 (2)0.065*
H1C0.250 (4)0.6027 (10)0.3037 (11)0.065*
N20.1620 (5)0.63550 (8)0.4446 (2)0.0579 (6)
H2A0.069 (6)0.6290 (11)0.5132 (14)0.070*
N30.9135 (7)0.78313 (9)0.4265 (3)0.0711 (8)
N40.3991 (4)0.62195 (7)0.71219 (19)0.0419 (5)
N50.9370 (5)0.60035 (8)1.10213 (19)0.0481 (5)
N61.2004 (4)0.50850 (7)0.79502 (19)0.0403 (5)
O11.1132 (6)0.78583 (8)0.3443 (3)0.0885 (8)
O20.8693 (7)0.81070 (9)0.5084 (3)0.1111 (11)
O30.7262 (4)0.54803 (7)0.63542 (15)0.0569 (5)
O40.3387 (6)0.61246 (9)0.6108 (2)0.1019 (10)
O50.2717 (6)0.65136 (10)0.7518 (2)0.0989 (10)
O60.7656 (5)0.62597 (7)1.13576 (17)0.0648 (6)
O71.1385 (5)0.58370 (8)1.16900 (17)0.0676 (6)
O81.3571 (5)0.48802 (8)0.87253 (19)0.0694 (6)
O91.2022 (4)0.50150 (8)0.69233 (18)0.0697 (6)
O100.2853 (4)0.54747 (6)0.43546 (16)0.0545 (5)
H10B0.264 (7)0.5203 (5)0.413 (2)0.082*
H10A0.362 (7)0.5483 (10)0.5049 (12)0.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0376 (13)0.0414 (13)0.0506 (15)0.0074 (10)0.0123 (11)0.0029 (11)
C20.0436 (14)0.0457 (14)0.0508 (15)0.0078 (11)0.0049 (12)0.0036 (12)
C30.0426 (15)0.0480 (15)0.0648 (18)0.0083 (12)0.0067 (13)0.0059 (14)
C40.0498 (15)0.0353 (13)0.0716 (19)0.0075 (11)0.0248 (14)0.0055 (13)
C50.074 (2)0.0456 (15)0.066 (2)0.0037 (14)0.0243 (17)0.0121 (14)
C60.0565 (17)0.0579 (17)0.0494 (16)0.0044 (13)0.0038 (13)0.0049 (13)
C70.0354 (12)0.0358 (12)0.0376 (13)0.0002 (10)0.0059 (10)0.0009 (10)
C80.0320 (11)0.0294 (11)0.0407 (13)0.0004 (9)0.0041 (10)0.0015 (9)
C90.0375 (12)0.0301 (11)0.0423 (14)0.0018 (9)0.0120 (10)0.0013 (10)
C100.0440 (13)0.0336 (12)0.0346 (13)0.0063 (10)0.0069 (10)0.0033 (9)
C110.0354 (12)0.0349 (12)0.0363 (13)0.0043 (10)0.0011 (10)0.0038 (10)
C120.0321 (12)0.0303 (11)0.0413 (13)0.0012 (9)0.0081 (10)0.0009 (9)
N10.0623 (15)0.0477 (13)0.0567 (15)0.0216 (12)0.0210 (12)0.0058 (11)
N20.0523 (14)0.0538 (14)0.0629 (16)0.0191 (11)0.0006 (12)0.0046 (12)
N30.077 (2)0.0415 (14)0.105 (2)0.0169 (13)0.0438 (18)0.0148 (15)
N40.0409 (11)0.0384 (11)0.0444 (13)0.0028 (9)0.0040 (9)0.0026 (9)
N50.0614 (14)0.0457 (12)0.0366 (12)0.0035 (11)0.0087 (11)0.0022 (10)
N60.0341 (10)0.0359 (10)0.0500 (13)0.0014 (8)0.0067 (9)0.0026 (9)
O10.0673 (15)0.0633 (15)0.140 (2)0.0261 (12)0.0334 (16)0.0306 (15)
O20.149 (3)0.0583 (15)0.135 (3)0.0392 (16)0.052 (2)0.0139 (16)
O30.0600 (12)0.0658 (12)0.0397 (10)0.0221 (10)0.0030 (9)0.0134 (9)
O40.128 (2)0.0933 (18)0.0613 (15)0.0675 (16)0.0387 (14)0.0269 (13)
O50.0998 (19)0.121 (2)0.0703 (16)0.0799 (17)0.0031 (13)0.0105 (15)
O60.0896 (16)0.0642 (13)0.0453 (11)0.0148 (11)0.0250 (11)0.0069 (9)
O70.0718 (14)0.0810 (15)0.0410 (11)0.0095 (11)0.0104 (10)0.0080 (10)
O80.0686 (13)0.0686 (13)0.0667 (14)0.0360 (11)0.0026 (11)0.0090 (11)
O90.0672 (13)0.0888 (16)0.0532 (13)0.0298 (12)0.0125 (10)0.0155 (11)
O100.0654 (13)0.0531 (11)0.0411 (11)0.0203 (10)0.0008 (9)0.0079 (9)
Geometric parameters (Å, º) top
C1—N21.384 (3)C10—N51.437 (3)
C1—C21.385 (4)C11—C121.371 (3)
C1—C61.391 (4)C11—H110.9300
C2—C31.380 (4)C12—N61.454 (3)
C2—H20.9300N1—N21.403 (3)
C3—C41.370 (4)N1—H1A0.866 (10)
C3—H30.9300N1—H1B0.873 (10)
C4—C51.371 (4)N1—H1C0.874 (10)
C4—N31.462 (3)N2—H2A0.857 (10)
C5—C61.367 (4)N3—O11.222 (4)
C5—H50.9300N3—O21.227 (4)
C6—H60.9300N4—O41.190 (3)
C7—O31.245 (3)N4—O51.193 (3)
C7—C121.452 (3)N5—O71.221 (3)
C7—C81.459 (3)N5—O61.231 (3)
C8—C91.362 (3)N6—O81.212 (3)
C8—N41.448 (3)N6—O91.213 (3)
C9—C101.376 (3)O10—H10B0.825 (10)
C9—H90.9300O10—H10A0.820 (10)
C10—C111.378 (3)
N2—C1—C2122.3 (2)C12—C11—H11120.4
N2—C1—C6117.6 (2)C10—C11—H11120.4
C2—C1—C6120.0 (2)C11—C12—C7124.0 (2)
C3—C2—C1119.7 (3)C11—C12—N6115.8 (2)
C3—C2—H2120.1C7—C12—N6120.2 (2)
C1—C2—H2120.1N2—N1—H1A111 (2)
C4—C3—C2119.1 (3)N2—N1—H1B102 (2)
C4—C3—H3120.4H1A—N1—H1B112.3 (15)
C2—C3—H3120.4N2—N1—H1C108 (2)
C3—C4—C5121.9 (2)H1A—N1—H1C112.3 (15)
C3—C4—N3119.1 (3)H1B—N1—H1C110.8 (15)
C5—C4—N3119.0 (3)C1—N2—N1119.9 (2)
C6—C5—C4119.3 (3)C1—N2—H2A116 (2)
C6—C5—H5120.3N1—N2—H2A111 (2)
C4—C5—H5120.3O1—N3—O2123.9 (3)
C5—C6—C1119.9 (3)O1—N3—C4118.6 (3)
C5—C6—H6120.0O2—N3—C4117.5 (3)
C1—C6—H6120.0O4—N4—O5120.0 (2)
O3—C7—C12124.0 (2)O4—N4—C8119.8 (2)
O3—C7—C8124.4 (2)O5—N4—C8120.2 (2)
C12—C7—C8111.6 (2)O7—N5—O6122.6 (2)
C9—C8—N4115.8 (2)O7—N5—C10119.2 (2)
C9—C8—C7124.1 (2)O6—N5—C10118.2 (2)
N4—C8—C7120.2 (2)O8—N6—O9121.8 (2)
C8—C9—C10119.5 (2)O8—N6—C12118.6 (2)
C8—C9—H9120.3O9—N6—C12119.6 (2)
C10—C9—H9120.3C7—O3—H10A134.2 (9)
C9—C10—C11121.5 (2)H1B—O10—H10B108 (3)
C9—C10—N5119.5 (2)H1B—O10—H10A114 (2)
C11—C10—N5119.0 (2)H10B—O10—H10A110.2 (17)
C12—C11—C10119.2 (2)
N2—C1—C2—C3177.3 (3)C8—C7—C12—C113.9 (3)
C6—C1—C2—C30.4 (4)O3—C7—C12—N64.4 (4)
C1—C2—C3—C40.1 (4)C8—C7—C12—N6177.02 (19)
C2—C3—C4—C50.5 (4)C2—C1—N2—N124.1 (4)
C2—C3—C4—N3178.4 (2)C6—C1—N2—N1159.0 (3)
C3—C4—C5—C60.7 (4)C3—C4—N3—O13.9 (4)
N3—C4—C5—C6178.3 (3)C5—C4—N3—O1175.0 (3)
C4—C5—C6—C10.3 (4)C3—C4—N3—O2177.1 (3)
N2—C1—C6—C5177.3 (3)C5—C4—N3—O23.9 (4)
C2—C1—C6—C50.3 (4)C9—C8—N4—O4178.5 (3)
O3—C7—C8—C9174.6 (2)C7—C8—N4—O40.1 (4)
C12—C7—C8—C93.9 (3)C9—C8—N4—O51.5 (4)
O3—C7—C8—N43.9 (4)C7—C8—N4—O5179.9 (3)
C12—C7—C8—N4177.60 (19)C9—C10—N5—O7175.1 (2)
N4—C8—C9—C10179.9 (2)C11—C10—N5—O76.1 (3)
C7—C8—C9—C101.5 (3)C9—C10—N5—O66.8 (3)
C8—C9—C10—C111.3 (3)C11—C10—N5—O6172.1 (2)
C8—C9—C10—N5177.5 (2)C11—C12—N6—O811.2 (3)
C9—C10—C11—C121.3 (3)C7—C12—N6—O8167.9 (2)
N5—C10—C11—C12177.5 (2)C11—C12—N6—O9167.3 (2)
C10—C11—C12—C71.6 (3)C7—C12—N6—O913.6 (3)
C10—C11—C12—N6179.32 (19)C12—C7—O3—H10A155.2 (11)
O3—C7—C12—C11174.6 (2)C8—C7—O3—H10A23.2 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10i0.87 (1)2.05 (1)2.916 (3)177 (2)
N1—H1B···O100.87 (1)1.94 (1)2.809 (3)172 (2)
N1—H1B···O9ii0.87 (1)2.56 (3)2.908 (3)105 (2)
N1—H1C···O6iii0.87 (1)2.08 (1)2.947 (3)170 (2)
N2—H2A···O40.86 (1)2.13 (2)2.868 (3)144 (3)
O10—H10A···O30.82 (1)2.09 (2)2.832 (3)150 (3)
O10—H10A···O40.82 (1)2.24 (2)2.743 (3)120 (2)
O10—H10B···O3ii0.83 (1)2.05 (1)2.869 (3)171 (3)
O10—H10B···O9ii0.83 (1)2.43 (3)2.898 (3)117 (3)
C11—H11···O8iv0.932.513.433 (3)172
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z1; (iv) x+3, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10i0.866 (10)2.051 (10)2.916 (3)177 (2)
N1—H1B···O100.873 (10)1.942 (10)2.809 (3)172 (2)
N1—H1B···O9ii0.873 (10)2.56 (3)2.908 (3)105 (2)
N1—H1C···O6iii0.874 (10)2.081 (11)2.947 (3)170 (2)
N2—H2A···O40.857 (10)2.13 (2)2.868 (3)144 (3)
O10—H10A···O30.820 (10)2.09 (2)2.832 (3)150 (3)
O10—H10A···O40.820 (10)2.24 (2)2.743 (3)120 (2)
O10—H10B···O3ii0.825 (10)2.050 (12)2.869 (3)171 (3)
O10—H10B···O9ii0.825 (10)2.43 (3)2.898 (3)117 (3)
C11—H11···O8iv0.932.513.433 (3)172
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y, z1; (iv) x+3, y+1, z+2.
 

Acknowledgements

This work received financial support mainly from the National Key Fundamental Project (No. 20603030).

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, S. K., Pramanik, A. & Das, G. (2011). CrystEngComm, 13, 1664–1675.  Web of Science CSD CrossRef CAS Google Scholar
First citationDubost, J.-P., Léger, J.-M., Hickel, D. & Colleter, J.-C. (1981). Acta Cryst. B37, 751–754.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarrison, W. T. A., Swamy, M. T., Nagaraja, P., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHerbstein, F. H. & Kaftory, M. (1976). Acta Cryst. B32, 387–396.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPeng, Y., Zhang, A.-J., Dong, M. & Wang, Y.-W. (2011). Chem. Commun. 47, 4505–4507.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, B., Li, J. & Wang, G. (2011). Acta Cryst. E67, o1464.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds