supplementary materials


mw2118 scheme

Acta Cryst. (2014). E70, m11-m12    [ doi:10.1107/S160053681303256X ]

An acetonitrile solvatomorph of di­chlorido­(1,10-phenanthroline-5,6-dione)platinum(II)

A. Hamala, C. Fritz, G. Rawji and V. Lynch

Abstract top

In the title complex, [PtCl2(C12H6N2O2)]·CH3CN, the PtII atom lies in a slightly distorted square-planar arrangement defined by an N2Cl2 donor set. In the packed structure, columns of complex moieties are stacked such that the neighboring units are oriented at 180° and laterally displaced with respect to each other. This prevents any overlap of the phenanthroline rings and thus there is no possibility of any [pi]-[pi] inter­actions between aromatic rings.

Comment top

1,10-phenanthroline-5,6-dione (phendione), a versatile electroactive ligand with dual functionalities (diquinoid and di­imine), has been widely used in condensation with primary amines either as a free phendione entity (Dickerson & Summers, 1970) or one coordinated to a metal center (MacDonnell & Bodige, 1996; Moucheron et al., 1997; Westerlund et al., 2005; Williams et al., 2012). Because of its dual functionalities, the phendione ligand has been used as a bridging ligand in homo- and heterometallic multinuclear complexes and polymetallic dendritic structures (Fox et al., 1991; MacDonnell & Bodige, 1996; Paw & Eisenberg, 1997; Calderazzo et al., 1999; Campagna et al., 1999; Calucci et al., 2006). The anti­microbial properties of this complex and the free ligand have also been investigated (Roy et al., 2008). In our studies, this ligand and the title complex have been used in the synthesis of metallo­inter­calators of DNA.

Three structural studies of di­chloro­(phendione)platinum(II) have been reported (Granger et al., 2005; Okamura et al., 2006; Roy et al., 2008). In all three studies, the complex was obtained as a DMSO solvate in the Cc space group. Two of these studies appear to be preliminary (Granger et al., 2005; Okamura et al., 2006) and the structural data were not submitted to the Cambridge Structural Database (CSD). The third study is thorough and its deposited data (CCDC 678530) are available for comparison (Roy et al., 2008). The structure reported here is an aceto­nitrile solvate belonging to a different monoclinic space group, P21/c, resulting in a very different three dimensional packing arrangement compared to that in the reported study.

The title complex is essentially planar with three of the four bond angles about the Pt atom deviating slightly from the idealized square planar geometry. The N12—Pt1—N1 angle is significantly reduced to ~81° due to the constraints of the phendione ligand and two of the remaining bond angles are ~95° (Fig. 1). The unit cell contains four molecules each of the complex and the solvent, aceto­nitrile. Inter­molecular inter­actions are responsible for the observed three dimensional array which may be described as consisting of zigzagging columns of stacked complex moieties, oriented 180° and laterally displaced with respect to each other. The separation between the stacked moieties alternates between 3.360 Å and 3.364 Å but due to the relative orientation of the stacked units, π-π stacking is not possible. The solvent molecules lie between the columns in the space created by the zigzagging (Fig. 2).

The three dimensional array of the title complex is clearly different from that of the reported structure (Roy et al., 2008). A major contributing factor to the different packing arrangements observed in the two studies is the relative orientation of the stacked complex moieties with respect to each other, 180° (current study) versus ~120° (reported (Roy et al., 2008)). The 120° orientation allows a partial overlap of the end rings of the stacked phendione ligands thereby increasing the potential for π-π inter­action. Therefore, the structural study reported here is consistent with a solvate polymorph of [Pt(phendione)Cl2] in which aceto­nitrile as the solvent leads to a different packing arrangement than in the DMSO solvate structure.

Experimental top

Synthesis and crystallization top

The phendione ligand, K2PtCl4, and other reagents used in the syntheses were purchased from Sigma-Aldrich. [Pt(DMSO)2Cl2] was prepared from K2PtCl4 and DMSO according to the literature (Romeo & Scolaro, 1998). The title complex was synthesized by adding the solid ligand in a 1:1 molar ratio to a stirred aceto­nitrile solution of [Pt(DMSO)2Cl2] at maintained at 343 K. The pale yellow mixture was kept stirred at this temperature for ~2 hours while replenishing the solvent as necessary. During this time, as the color darkened, orange needles began to precipitate. The mixture was removed from heat and left covered at room temperature for slow crystallization. Good quality light orange needle-shaped crystals suitable for a crystal structure were obtained after ~6 hours. Yield: 40%.

Refinement top

The H atoms were placed in idealized positions (aromatic C—H distances of 0.93 Å and methyl C—H distances of 0.96 Å) with displacement parameters Uiso(H)set to 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl protons.

Related literature top

For condensation of the free and complexed phendione ligand with primary amines, see: Dickerson & Summers (1970); MacDonnell & Bodige (1996); Moucheron et al. (1997); Westerlund et al. (2005); Williams et al. (2012). For use of the ligand in the construction of multinuclear homo- and heterometallic complexes as well as dendritic polynuclear metal structures, see: Fox et al. (1991); MacDonnell & Bodige (1996); Paw & Eisenberg (1997); Calderazzo et al. (1999); Campagna et al. (1999); Calucci et al. (2006). For antimicrobial activity of the free ligand and the title complex, see: Roy et al. (2008). For previous structural studies related to the title complex, see: Granger et al. (2005); Okamura et al. (2006); Roy et al. (2008). For synthesis of Pt(DMSO)2Cl2, see: Romeo & Scolaro (1998).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: XP SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP diagram of the title complex showing 50% probability displacement elipsoids.
[Figure 2] Fig. 2. A packing diagram of the title complex viewed down the c axis.
Dichlorido(1,10-phenanthroline-5,6-dione-κ2N,N')platinum(II) acetonitrile monosolvate top
Crystal data top
[PtCl2(C12H6N2O2)]·C2H3NF(000) = 968
Mr = 517.23Dx = 2.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.7285 (2) ÅCell parameters from 3185 reflections
b = 22.6380 (6) Åθ = 1.0–27.5°
c = 9.7561 (3) ŵ = 9.91 mm1
β = 98.0740 (17)°T = 298 K
V = 1471.32 (7) Å3Needle, yellow
Z = 40.40 × 0.06 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2837 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.081
φ and ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: gaussian
(XPREP in SHELXL/PC; Sheldrick, 2008)
h = 78
Tmin = 0.174, Tmax = 0.629k = 2926
11801 measured reflectionsl = 129
3345 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0216P)2 + 7.4291P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.002
3345 reflectionsΔρmax = 1.48 e Å3
201 parametersΔρmin = 1.30 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (4)
Crystal data top
[PtCl2(C12H6N2O2)]·C2H3NV = 1471.32 (7) Å3
Mr = 517.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7285 (2) ŵ = 9.91 mm1
b = 22.6380 (6) ÅT = 298 K
c = 9.7561 (3) Å0.40 × 0.06 × 0.05 mm
β = 98.0740 (17)°
Data collection top
Nonius KappaCCD
diffractometer
3345 independent reflections
Absorption correction: gaussian
(XPREP in SHELXL/PC; Sheldrick, 2008)
2837 reflections with I > 2σ(I)
Tmin = 0.174, Tmax = 0.629Rint = 0.081
11801 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.094Δρmax = 1.48 e Å3
S = 1.16Δρmin = 1.30 e Å3
3345 reflectionsAbsolute structure: ?
201 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.22275 (4)0.538338 (12)0.35597 (3)0.03226 (13)
Cl10.2456 (3)0.63727 (10)0.4031 (2)0.0535 (5)
Cl20.1736 (3)0.55973 (11)0.12469 (18)0.0490 (5)
O10.2795 (12)0.3386 (4)0.8277 (7)0.078 (2)
O20.2372 (13)0.2739 (4)0.5941 (9)0.088 (2)
N10.2643 (8)0.5130 (3)0.5574 (5)0.0332 (13)
C20.2906 (10)0.5475 (4)0.6672 (8)0.0413 (18)
H2A0.29270.58820.65480.050*
C30.3157 (11)0.5248 (4)0.8018 (8)0.047 (2)
H3A0.33460.55010.87770.057*
C40.3120 (12)0.4655 (4)0.8204 (8)0.050 (2)
H4A0.32900.44960.90930.060*
C50.2831 (11)0.4291 (4)0.7071 (8)0.0437 (19)
C60.2705 (13)0.3630 (5)0.7205 (10)0.060 (3)
C70.2476 (13)0.3264 (5)0.5856 (10)0.055 (2)
C80.2270 (12)0.3572 (4)0.4480 (9)0.0442 (18)
C90.2042 (13)0.3274 (4)0.3234 (9)0.055 (2)
H9A0.20250.28640.32050.066*
C100.1843 (13)0.3600 (5)0.2043 (9)0.056 (2)
H10A0.17150.34090.11920.067*
C110.1828 (11)0.4203 (4)0.2087 (8)0.0428 (18)
H11A0.16390.44140.12620.051*
N120.2080 (8)0.4498 (3)0.3291 (6)0.0339 (13)
C130.2300 (10)0.4186 (4)0.4489 (7)0.0342 (15)
C140.2592 (11)0.4543 (3)0.5756 (7)0.0335 (16)
N1A0.328 (2)0.6730 (6)0.1587 (14)0.109 (4)
C2A0.2973 (18)0.6945 (6)0.0552 (13)0.076 (3)
C3A0.2662 (19)0.7226 (6)0.0677 (12)0.085 (3)
H3A10.34140.75880.07750.127*
H3A20.30990.69720.14480.127*
H3A30.12590.73120.06500.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03263 (17)0.03434 (19)0.03048 (17)0.00009 (12)0.00674 (10)0.00010 (11)
Cl10.0700 (14)0.0367 (11)0.0542 (11)0.0022 (10)0.0102 (9)0.0047 (9)
Cl20.0597 (12)0.0558 (13)0.0317 (9)0.0014 (10)0.0069 (8)0.0063 (8)
O10.095 (5)0.081 (6)0.060 (4)0.013 (4)0.015 (4)0.039 (4)
O20.127 (7)0.042 (5)0.094 (6)0.005 (4)0.018 (5)0.027 (4)
N10.024 (3)0.048 (4)0.029 (3)0.003 (3)0.006 (2)0.001 (3)
C20.033 (4)0.051 (5)0.041 (4)0.002 (3)0.010 (3)0.007 (3)
C30.041 (4)0.071 (7)0.030 (4)0.003 (4)0.009 (3)0.010 (4)
C40.040 (4)0.076 (7)0.034 (4)0.006 (4)0.006 (3)0.009 (4)
C50.031 (4)0.062 (6)0.039 (4)0.005 (4)0.008 (3)0.007 (4)
C60.050 (5)0.074 (7)0.057 (5)0.012 (5)0.009 (4)0.024 (5)
C70.056 (5)0.050 (6)0.060 (5)0.007 (4)0.017 (4)0.018 (4)
C80.045 (4)0.030 (4)0.058 (5)0.009 (3)0.009 (3)0.008 (3)
C90.068 (6)0.036 (5)0.063 (5)0.002 (4)0.012 (4)0.010 (4)
C100.061 (5)0.056 (6)0.051 (5)0.003 (5)0.010 (4)0.015 (4)
C110.042 (4)0.044 (5)0.042 (4)0.005 (4)0.007 (3)0.009 (3)
N120.035 (3)0.037 (4)0.031 (3)0.001 (3)0.007 (2)0.001 (2)
C130.028 (3)0.040 (4)0.035 (3)0.002 (3)0.005 (3)0.003 (3)
C140.033 (3)0.037 (4)0.033 (3)0.000 (3)0.005 (3)0.001 (3)
N1A0.131 (10)0.094 (10)0.105 (9)0.019 (8)0.023 (7)0.019 (7)
C2A0.090 (8)0.056 (7)0.086 (8)0.001 (6)0.021 (6)0.003 (6)
C3A0.106 (9)0.074 (9)0.076 (8)0.006 (7)0.019 (6)0.010 (6)
Geometric parameters (Å, º) top
Pt1—N122.022 (7)C7—C81.503 (12)
Pt1—N12.028 (5)C8—C91.380 (12)
Pt1—Cl22.2860 (18)C8—C131.389 (11)
Pt1—Cl12.287 (2)C9—C101.367 (13)
O1—C61.177 (11)C9—H9A0.9300
O2—C71.192 (13)C10—C111.365 (13)
N1—C21.318 (10)C10—H10A0.9300
N1—C141.341 (10)C11—N121.341 (9)
C2—C31.398 (11)C11—H11A0.9300
C2—H2A0.9300N12—C131.356 (9)
C3—C41.356 (13)C13—C141.466 (10)
C3—H3A0.9300N1A—C2A1.166 (16)
C4—C51.370 (12)C2A—C3A1.399 (17)
C4—H4A0.9300C3A—H3A10.9600
C5—C141.395 (11)C3A—H3A20.9600
C5—C61.506 (14)C3A—H3A30.9600
C6—C71.545 (15)
N12—Pt1—N181.0 (2)C9—C8—C7123.0 (8)
N12—Pt1—Cl294.83 (17)C13—C8—C7117.4 (8)
N1—Pt1—Cl2175.8 (2)C10—C9—C8118.1 (9)
N12—Pt1—Cl1175.87 (16)C10—C9—H9A121.0
N1—Pt1—Cl194.9 (2)C8—C9—H9A121.0
Cl2—Pt1—Cl189.27 (8)C11—C10—C9120.8 (8)
C2—N1—C14118.9 (7)C11—C10—H10A119.6
C2—N1—Pt1127.2 (6)C9—C10—H10A119.6
C14—N1—Pt1113.8 (5)N12—C11—C10121.6 (8)
N1—C2—C3122.0 (9)N12—C11—H11A119.2
N1—C2—H2A119.0C10—C11—H11A119.2
C3—C2—H2A119.0C11—N12—C13118.7 (7)
C4—C3—C2119.2 (8)C11—N12—Pt1127.2 (5)
C4—C3—H3A120.4C13—N12—Pt1114.0 (5)
C2—C3—H3A120.4N12—C13—C8121.1 (7)
C3—C4—C5119.4 (8)N12—C13—C14115.0 (7)
C3—C4—H4A120.3C8—C13—C14123.9 (7)
C5—C4—H4A120.3N1—C14—C5121.6 (7)
C4—C5—C14118.9 (8)N1—C14—C13116.1 (6)
C4—C5—C6122.0 (8)C5—C14—C13122.3 (7)
C14—C5—C6119.1 (8)N1A—C2A—C3A177.3 (14)
O1—C6—C5123.2 (10)C2A—C3A—H3A1109.5
O1—C6—C7119.4 (11)C2A—C3A—H3A2109.5
C5—C6—C7117.4 (7)H3A1—C3A—H3A2109.5
O2—C7—C8121.7 (10)C2A—C3A—H3A3109.5
O2—C7—C6118.4 (9)H3A1—C3A—H3A3109.5
C8—C7—C6119.8 (9)H3A2—C3A—H3A3109.5
C9—C8—C13119.6 (8)
N12—Pt1—N1—C2179.6 (6)C10—C11—N12—C131.8 (11)
Cl1—Pt1—N1—C20.9 (6)C10—C11—N12—Pt1177.0 (6)
N12—Pt1—N1—C141.0 (5)N1—Pt1—N12—C11178.5 (6)
Cl1—Pt1—N1—C14179.4 (4)Cl2—Pt1—N12—C111.6 (6)
C14—N1—C2—C30.8 (10)N1—Pt1—N12—C130.3 (5)
Pt1—N1—C2—C3179.3 (5)Cl2—Pt1—N12—C13179.6 (4)
N1—C2—C3—C40.3 (11)C11—N12—C13—C80.1 (10)
C2—C3—C4—C50.3 (12)Pt1—N12—C13—C8178.9 (5)
C3—C4—C5—C140.3 (12)C11—N12—C13—C14179.3 (6)
C3—C4—C5—C6177.9 (7)Pt1—N12—C13—C140.4 (7)
C4—C5—C6—O12.0 (13)C9—C8—C13—N121.0 (11)
C14—C5—C6—O1176.2 (8)C7—C8—C13—N12178.6 (7)
C4—C5—C6—C7177.2 (7)C9—C8—C13—C14178.2 (7)
C14—C5—C6—C74.6 (11)C7—C8—C13—C142.2 (11)
O1—C6—C7—O20.9 (14)C2—N1—C14—C50.8 (10)
C5—C6—C7—O2179.9 (9)Pt1—N1—C14—C5179.4 (5)
O1—C6—C7—C8177.3 (8)C2—N1—C14—C13179.8 (6)
C5—C6—C7—C83.5 (12)Pt1—N1—C14—C131.5 (7)
O2—C7—C8—C93.1 (14)C4—C5—C14—N10.2 (11)
C6—C7—C8—C9179.4 (8)C6—C5—C14—N1178.5 (7)
O2—C7—C8—C13176.5 (9)C4—C5—C14—C13179.2 (7)
C6—C7—C8—C130.1 (11)C6—C5—C14—C132.6 (11)
C13—C8—C9—C100.4 (12)N12—C13—C14—N11.3 (9)
C7—C8—C9—C10179.2 (8)C8—C13—C14—N1178.0 (7)
C8—C9—C10—C111.3 (13)N12—C13—C14—C5179.7 (6)
C9—C10—C11—N122.4 (13)C8—C13—C14—C51.1 (11)

Experimental details

Crystal data
Chemical formula[PtCl2(C12H6N2O2)]·C2H3N
Mr517.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.7285 (2), 22.6380 (6), 9.7561 (3)
β (°) 98.0740 (17)
V3)1471.32 (7)
Z4
Radiation typeMo Kα
µ (mm1)9.91
Crystal size (mm)0.40 × 0.06 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(XPREP in SHELXL/PC; Sheldrick, 2008)
Tmin, Tmax0.174, 0.629
No. of measured, independent and
observed [I > 2σ(I)] reflections
11801, 3345, 2837
Rint0.081
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.16
No. of reflections3345
No. of parameters201
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.48, 1.30

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL2013 (Sheldrick, 2008), XP SHELXTL/PC (Sheldrick, 2008), publCIF (Westrip, 2010).

Acknowledgements top

This work was supported in part by The Robert A. Welch Foundation of Houston, Texas (grant No. AF-0005).

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Calderazzo, F., Marchetti, F., Pamponi, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.

Calucci, L., Pampaloni, G., Pinzino, C. & Prescimone, A. (2006). Inorg. Chim. Acta, 359, 3911–3920.

Campagna, S., Serroni, S., Bodige, S. & MacDonell, F. M. (1999). Inorg. Chem. 38, 692–701.

Dickerson, J. E. & Summers, L. A. (1970). Aust. J. Chem. 23, 1023–1027.

Fox, G. A., Bhattacharya, S. & Pierpoint, C. G. (1991). Inorg. Chem. 30, 2895–2899.

Granger, R. M., Davies, R., Wilson, K. A., Kennedy, E., Vogler, B., Nguyen, Y., Mowles, E., Blackwood, R., Ciric, A. & White, P. S. (2005). J. Undergrad. Chem. Res. 2, 47–56.

MacDonnell, F. M. & Bodige, S. (1996). Inorg. Chem. 35, 5758–5759.

Moucheron, C., Kirsch-De Mesmaeker, A. & Choua, S. (1997). Inorg. Chem. 36, 584–592.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Okamura, R., Fujihara, T., Wada, T. & Tanaka, K. (2006). Bull. Chem. Soc. Jpn, 79, 106–112.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, 276 Macromolecular Crystallography, part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293.

Romeo, R. & Scolaro, L. M. (1998). Inorg. Synth. 32, 153–155.

Roy, S., Hagen, K. D., Maheswari, P. U., Lutz, M., Spek, A. L., Reedjk, J. & van Wezel, G. P. (2008). ChemMedChem, 3, 1427–1434.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westerlund, F., Pierard, F., Eng, M. P., Nordén, B. & Lincoln, P. J. (2005). J. Phys. Chem. B, 109, 17327–17332.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Williams, B. R., Dalton, S. R., Skiba, M., Kim, S. E., Shatz, A., Carroll, P. J. & Burgmayer, S. J. N. (2012). Inorg. Chem. 51, 12669–12681.