supplementary materials


nk2214 scheme

Acta Cryst. (2014). E70, m17    [ doi:10.1107/S1600536813032716 ]

trans-Di­chlorido­bis­(pyridazine-[kappa]N)palladium(II)

B. Laramée and G. S. Hanan

Abstract top

The title compound, [PdCl2(C4H4N2)2], contains two crystallographically unique complexes; the PdII atom lies on an inversion center in both cases. The two pyridazine units bonded to the PdII atom are thus coplanar although dihedral angles within each complex are different. In one complex, the angle between the ring plane and Pd-Cl bond is almost perpendicular [89.4 (1)°], while the other is tilted with an angle of 60.0 (1)°. In the crystal, weak C...H-N hydrogen bonds and C...H-Cl inter­actions connect the two independent complex mol­ecules.

Comment top

In the present work, a square planar trans-bis(chloro)-bis(pyridazine-κN) palladium(II) metal complex has been synthesized. Similar metal complexes are already known in coordination polymer chemistry (Degtyarenko et al., 2008)).

The molecular structure of the title compound is illustrated in Fig. 1, where two molecules are found in the asymmetric unit. The bond distances are unexceptional. In one complex the plane of the pyridazyl ring is perpendicular with respect to the Cl–Pd–Cl axis, while in the second molecules the ring is slightly tilted with an angle of 60 (1)°, which may be due to the presence of weak hydrogen bonds.

Related literature top

For related pyridazine copper, nickel, silver and rhenium metal complexes, see: Otieno et al. (1995); Cano et al. (2000); Degtyarenko et al. (2008) and Raimondi et al. (2012), respectively.

Experimental top

trans-bis(chloro)-bis(pyridazine-κN)palladium(II). Pyridazine (0.12 mg, 0.0015 mmol) is added into a nitromethane solution (1.0 mL) of PdCl2(MeCN)2 (0.39 mg, 0.0015 mmol), and heated to 80 °C for 12 hours. After 3 hours, a yellow precipitate started to form. The precipitate was isolated by filtration and redissolved in a minimum amount of dimethyl sulfoxide. Clear bronze crystals were obtained by slow diffusion of THF into the DMSO solution over 2 weeks. 1H NMR (400 MHz, CD3NO2) delta ppm 9.15-9.13 (t, J=3.5 Hz. 4 H) 8.80 (t, J=3.2 Hz, 4 H).

Refinement top

H atoms were positioned geometrically (C—H 0.95 Å) and included in the refinement in the riding model approximation; their temperature displacement parameters were set to 1.2 times the equivalent isotropic temperature factors of the parent site.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker , 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of trans-bis(chloro)-bis(pyridazine-κN)palladium(II), with atom labels and displacement ellipsoids drawn at the 80% probability level. The two halves of both complexes are related by inversion symmetry.
trans-Dichloridobis(pyridazine-κN)palladium(II) top
Crystal data top
[PdCl2(C4H4N2)2]Z = 2
Mr = 337.48F(000) = 328
Triclinic, P1Dx = 2.106 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 7.9910 (1) ÅCell parameters from 9992 reflections
b = 8.4273 (1) Åθ = 5.9–70.9°
c = 9.6172 (2) ŵ = 18.45 mm1
α = 84.614 (1)°T = 150 K
β = 67.682 (1)°Block, brown
γ = 63.134 (1)°0.08 × 0.06 × 0.06 mm
V = 532.09 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1971 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 70.9°, θmin = 5.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.216, Tmax = 0.260k = 910
13678 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.8794P]
where P = (Fo2 + 2Fc2)/3
1971 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.75 e Å3
Crystal data top
[PdCl2(C4H4N2)2]γ = 63.134 (1)°
Mr = 337.48V = 532.09 (2) Å3
Triclinic, P1Z = 2
a = 7.9910 (1) ÅCu Kα radiation
b = 8.4273 (1) ŵ = 18.45 mm1
c = 9.6172 (2) ÅT = 150 K
α = 84.614 (1)°0.08 × 0.06 × 0.06 mm
β = 67.682 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
1971 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1957 reflections with I > 2σ(I)
Tmin = 0.216, Tmax = 0.260Rint = 0.018
13678 measured reflectionsθmax = 70.9°
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.97 e Å3
S = 1.07Δρmin = 0.75 e Å3
1971 reflectionsAbsolute structure: ?
139 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 4 K Charged-Coupled Device (CCD) Area Detector using the program APEX2 and a Nonius FR591 rotating anode equiped with a Montel 200 optics The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). One complete sphere of data was collected, to better than 0.80 Å resolution.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50001.00000.01106 (11)
Cl10.18605 (9)0.51044 (8)1.13317 (7)0.01691 (15)
N10.3652 (3)0.7675 (3)1.0036 (3)0.0132 (5)
N20.3068 (3)0.8322 (3)0.8878 (3)0.0170 (5)
C10.2179 (4)1.0087 (4)0.8859 (3)0.0162 (5)
H10.17501.05560.80500.019*
C20.1834 (4)1.1295 (4)0.9954 (3)0.0171 (6)
H20.12071.25480.98920.021*
C30.2440 (4)1.0592 (4)1.1123 (3)0.0186 (6)
H30.22381.13471.19060.022*
C40.3358 (4)0.8747 (4)1.1130 (3)0.0166 (5)
H40.37850.82371.19320.020*
Pd20.50000.00000.50000.01214 (11)
Cl20.20050 (9)0.03267 (8)0.49612 (7)0.01848 (16)
N30.3747 (3)0.2644 (3)0.5494 (3)0.0141 (5)
N40.3653 (3)0.3203 (3)0.6799 (3)0.0169 (5)
C50.2860 (4)0.4951 (4)0.7117 (3)0.0175 (5)
H50.27740.53570.80420.021*
C60.2145 (4)0.6235 (4)0.6188 (4)0.0191 (6)
H60.16180.74730.64520.023*
C70.2239 (4)0.5624 (4)0.4878 (3)0.0196 (6)
H70.17690.64290.41970.023*
C80.3034 (4)0.3806 (4)0.4574 (3)0.0156 (5)
H80.30780.33660.36800.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01260 (16)0.00575 (16)0.01452 (16)0.00218 (11)0.00736 (11)0.00139 (10)
Cl10.0152 (3)0.0133 (3)0.0216 (3)0.0055 (2)0.0080 (2)0.0037 (2)
N10.0136 (10)0.0093 (11)0.0164 (11)0.0043 (9)0.0067 (9)0.0027 (9)
N20.0188 (11)0.0152 (12)0.0160 (11)0.0060 (9)0.0078 (9)0.0023 (9)
C10.0147 (12)0.0135 (13)0.0184 (12)0.0041 (10)0.0077 (10)0.0048 (10)
C20.0139 (13)0.0115 (14)0.0226 (14)0.0038 (11)0.0063 (11)0.0029 (11)
C30.0201 (14)0.0147 (15)0.0219 (14)0.0060 (11)0.0105 (11)0.0007 (11)
C40.0187 (13)0.0126 (13)0.0194 (13)0.0050 (11)0.0108 (11)0.0018 (11)
Pd20.01237 (16)0.00725 (17)0.01663 (16)0.00237 (11)0.00801 (11)0.00169 (11)
Cl20.0156 (3)0.0139 (3)0.0278 (3)0.0051 (2)0.0121 (3)0.0025 (2)
N30.0125 (10)0.0092 (11)0.0197 (12)0.0032 (9)0.0069 (9)0.0000 (9)
N40.0168 (11)0.0162 (12)0.0179 (11)0.0063 (9)0.0082 (9)0.0022 (9)
C50.0157 (12)0.0131 (13)0.0214 (13)0.0040 (10)0.0065 (11)0.0039 (10)
C60.0143 (13)0.0102 (14)0.0266 (14)0.0031 (11)0.0041 (11)0.0006 (11)
C70.0164 (13)0.0173 (15)0.0214 (14)0.0048 (11)0.0077 (11)0.0048 (12)
C80.0157 (12)0.0135 (13)0.0169 (12)0.0043 (10)0.0085 (10)0.0025 (10)
Geometric parameters (Å, º) top
Pd1—N12.009 (2)Pd2—N32.003 (2)
Pd1—N1i2.009 (2)Pd2—N3ii2.004 (2)
Pd1—Cl12.3072 (6)Pd2—Cl22.2969 (6)
Pd1—Cl1i2.3073 (6)Pd2—Cl2ii2.2969 (6)
N1—C41.333 (4)N3—C81.335 (4)
N1—N21.344 (3)N3—N41.346 (3)
N2—C11.329 (4)N4—C51.327 (3)
C1—C21.396 (4)C5—C61.393 (4)
C1—H10.9500C5—H50.9500
C2—C31.370 (4)C6—C71.369 (4)
C2—H20.9500C6—H60.9500
C3—C41.388 (4)C7—C81.377 (4)
C3—H30.9500C7—H70.9500
C4—H40.9500C8—H80.9500
N1—Pd1—N1i180.0N3—Pd2—N3ii180.000 (1)
N1—Pd1—Cl189.26 (7)N3—Pd2—Cl289.44 (7)
N1i—Pd1—Cl190.74 (7)N3ii—Pd2—Cl290.56 (7)
N1—Pd1—Cl1i90.74 (7)N3—Pd2—Cl2ii90.56 (7)
N1i—Pd1—Cl1i89.26 (7)N3ii—Pd2—Cl2ii89.44 (7)
Cl1—Pd1—Cl1i179.999 (1)Cl2—Pd2—Cl2ii180.0
C4—N1—N2121.9 (2)C8—N3—N4121.2 (2)
C4—N1—Pd1122.5 (2)C8—N3—Pd2121.78 (19)
N2—N1—Pd1115.63 (17)N4—N3—Pd2117.00 (18)
C1—N2—N1117.4 (2)C5—N4—N3117.2 (2)
N2—C1—C2124.2 (3)N4—C5—C6124.6 (3)
N2—C1—H1117.9N4—C5—H5117.7
C2—C1—H1117.9C6—C5—H5117.7
C3—C2—C1117.0 (3)C7—C6—C5116.8 (3)
C3—C2—H2121.5C7—C6—H6121.6
C1—C2—H2121.5C5—C6—H6121.6
C2—C3—C4118.1 (3)C6—C7—C8118.1 (3)
C2—C3—H3120.9C6—C7—H7121.0
C4—C3—H3120.9C8—C7—H7121.0
N1—C4—C3121.5 (3)N3—C8—C7122.1 (3)
N1—C4—H4119.3N3—C8—H8118.9
C3—C4—H4119.3C7—C8—H8118.9
N1i—Pd1—N1—C437 (100)N3ii—Pd2—N3—C888 (32)
Cl1—Pd1—N1—C490.8 (2)Cl2—Pd2—N3—C860.0 (2)
Cl1i—Pd1—N1—C489.2 (2)Cl2ii—Pd2—N3—C8120.0 (2)
N1i—Pd1—N1—N2143 (100)N3ii—Pd2—N3—N492 (32)
Cl1—Pd1—N1—N289.38 (18)Cl2—Pd2—N3—N4120.08 (18)
Cl1i—Pd1—N1—N290.62 (18)Cl2ii—Pd2—N3—N459.92 (18)
C4—N1—N2—C10.1 (4)C8—N3—N4—C51.2 (4)
Pd1—N1—N2—C1179.70 (18)Pd2—N3—N4—C5178.73 (18)
N1—N2—C1—C20.5 (4)N3—N4—C5—C60.7 (4)
N2—C1—C2—C30.8 (4)N4—C5—C6—C71.5 (4)
C1—C2—C3—C40.4 (4)C5—C6—C7—C80.4 (4)
N2—N1—C4—C30.4 (4)N4—N3—C8—C72.4 (4)
Pd1—N1—C4—C3179.4 (2)Pd2—N3—C8—C7177.6 (2)
C2—C3—C4—N10.1 (4)C6—C7—C8—N31.5 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N4i0.952.553.438 (3)155
C3—H3···Cl2iii0.952.943.569 (3)125
C1—H1···Cl2iv0.952.923.787 (3)153
C8—H8···Cl1v0.952.823.529 (3)132
Symmetry codes: (i) x+1, y+1, z+2; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N4i0.952.553.438 (3)155.0
C3—H3···Cl2ii0.952.943.569 (3)124.6
C1—H1···Cl2iii0.952.923.787 (3)152.7
C8—H8···Cl1iv0.952.823.529 (3)132.1
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y, z1.
Acknowledgements top

The authors thank the Department of Chemistry of the Université de Montréal for access to the CCD facility. We thank Thierry Maris for useful crystallographic discussions. We are grateful to the Université de Montréal for financial assistance.

references
References top

Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cano, J., De Munno, G., Lloret, F. & Julve, M. (2000). Inorg. Chem. 39, 1611–1614.

Degtyarenko, A. S., Solntsev, P. V., Krautscheid, H., Rusanov, E. B., Chernega, A. N. & Domasevitch, K. V. (2008). New J. Chem. 32, 1910–1918.

Otieno, T., Rettig, S. J., Thompson, R. C. & Trotter, J. (1995). Inorg. Chem. 34, 1718–1725.

Raimondi, A., Panigati, M., Maggioni, D., D'Alfonso, L., Mercandelli, P., Mussini, P. & D'Alfonso, G. (2012). Inorg. Chem. 51, 2966–2975.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.