organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Fluoro-4-nitro­phen­­oxy)-3-nitro­pyridine

aDepartment of Chemistry and Chemical Engineering, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
*Correspondence e-mail: cuilili1127@gmail.com

(Received 11 November 2013; accepted 19 December 2013; online 24 December 2013)

In the title compound, C11H6FN3O5, the dihedral angle between the aromatic rings is 72.4 (3)°. The NO2 groups form dihedral angles of 40.8 (2) and 4.8 (2)°, respectively, with the attached pyridine and benzene rings. The crystal structure features ππ stacking between centrosymmetrically related pairs of pyridine rings [centroid–centroid separation = 3.800 (3) Å].

Related literature

For applications and the biological activity of 2-phen­oxy­pyridine, see: Chao et al. (2013[Chao, H., Turdi, H., Herpin, T. F., Roberge, J. Y., Liu, Y., Schnur, D. M., Poss, M. A., Rehfuss, R., Hua, J., Wu, Q., Price, L. A., Abell, L. M., Schumacher, W. A., Bostwick, J. S., Steinbacher, T. E., Stewart, A. B., Ogletree, M. L., Huang, C. S., Chang, M., Cacace, A. M., Arcuri, M. J., Celani, D., Wexler, R. R. & Lawrence, R. M. (2013). J. Med. Chem. 56, 1704-1714.]).

[Scheme 1]

Experimental

Crystal data
  • C11H6FN3O5

  • Mr = 279.19

  • Monoclinic, P 21 /c

  • a = 7.5275 (15) Å

  • b = 21.804 (4) Å

  • c = 7.1681 (14) Å

  • β = 101.07 (3)°

  • V = 1154.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 K

  • 0.41 × 0.36 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.945, Tmax = 0.970

  • 10606 measured reflections

  • 2611 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.140

  • S = 0.94

  • 2611 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Phenoxypyridines have been shown to be small molecule P2Y1 antagonists (Chao et al. 2013). Here, the crystal structure of 2-(2-fluoro-4-nitrophenoxy)- 3-nitropyridine is reported.

Related literature top

For applications and the biological activity of 2-phenoxypyridine, see: Chao et al. (2013).

Experimental top

To a solution of 2-chloro-3-nitropyridine (1.0 g, 6.3 mmol) and 2-fluoro-4-nitrophenol (1.48 g, 9.45 mmol) in toluene (35 ml) was added N,N-diisopropylethylamine (3.3 ml, 18.9 mmol). The reaction mixture was stirred for 48 h under reflux. The reaction mixture was concentrated in vacuo, diluted with water, and extracted with EtOAc. The organic phase was washed with brine, dried over anhydrous MgSO4, and concentrated in vacuo to yield the crude product as a solid. Purification by recrystallization from methanol gave the desired product, 2-(2-fluoro-4-nitrophenoxy)-3- nitropyridine (yellow solid, 0.80 g, 46%, 97.1–98.4 oC). 1H NMR (DMSO-d6, 300 Hz), 8.70 (dd, J = 8.1, 1.8 Hz, 1H), 8.47 (dd, J = 4.8, 1.8 Hz, 1H), 8.41 (dd, J = 10.2, 2.7 Hz, 1H), 8.25–8.20 (m, 1H), 7.80–7.74 (m 1H), 7.54–7.50 (m, 1H); ES–MS: 279.8 [(M + H+)]. Crystals of the title compound for X-ray diffraction were obtained by slow evaporation of MeOH/CH2Cl2 solution.

Refinement top

All hydrogen atoms were fixed at calculated positions and refined by using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

2-Phenoxypyridines have been shown to be small molecule P2Y1 antagonists (Chao et al. 2013). Here, the crystal structure of 2-(2-fluoro-4-nitrophenoxy)- 3-nitropyridine is reported.

For applications and the biological activity of 2-phenoxypyridine, see: Chao et al. (2013).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level.
2-(2-Fluoro-4-nitrophenoxy)-3-nitropyridine top
Crystal data top
C11H6FN3O5F(000) = 568
Mr = 279.19Dx = 1.606 Mg m3
Monoclinic, P21/cMelting point = 370.1–371.4 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.5275 (15) ÅCell parameters from 7455 reflections
b = 21.804 (4) Åθ = 3.1–27.7°
c = 7.1681 (14) ŵ = 0.14 mm1
β = 101.07 (3)°T = 293 K
V = 1154.6 (4) Å3Block, colourless
Z = 40.41 × 0.36 × 0.22 mm
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2611 independent reflections
Radiation source: fine-focus sealed tube1351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 0.1 pixels mm-1θmax = 27.5°, θmin = 3.0°
oscillation scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2828
Tmin = 0.945, Tmax = 0.970l = 98
10606 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
2611 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H6FN3O5V = 1154.6 (4) Å3
Mr = 279.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5275 (15) ŵ = 0.14 mm1
b = 21.804 (4) ÅT = 293 K
c = 7.1681 (14) Å0.41 × 0.36 × 0.22 mm
β = 101.07 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2611 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1351 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.970Rint = 0.083
10606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 0.94Δρmax = 0.21 e Å3
2611 reflectionsΔρmin = 0.26 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.7119 (3)0.37835 (11)0.5574 (3)0.0470 (6)
C40.8649 (3)0.34302 (12)0.6136 (3)0.0453 (6)
C10.5475 (3)0.29000 (12)0.4494 (3)0.0492 (6)
C30.8592 (3)0.28155 (12)0.5825 (3)0.0535 (7)
H30.96340.25800.61690.064*
C60.5501 (3)0.35242 (12)0.4752 (3)0.0516 (7)
H60.44640.37610.43850.062*
C20.6968 (3)0.25381 (13)0.4988 (4)0.0554 (7)
H20.69040.21170.47720.066*
C71.0406 (3)0.39397 (11)0.8728 (3)0.0430 (6)
C81.1950 (3)0.42593 (11)0.9561 (3)0.0446 (6)
C91.2093 (3)0.44800 (12)1.1372 (3)0.0524 (6)
H91.31240.46911.19560.063*
C101.0688 (4)0.43849 (13)1.2313 (3)0.0598 (7)
H101.07320.45351.35360.072*
C110.9221 (4)0.40613 (13)1.1387 (3)0.0580 (7)
H110.82680.39951.20180.070*
F10.7237 (2)0.43888 (7)0.5831 (2)0.0720 (5)
O11.0278 (2)0.37145 (9)0.6923 (2)0.0550 (5)
O41.3069 (3)0.45113 (12)0.6873 (3)0.0846 (7)
O51.4970 (2)0.43310 (12)0.9461 (4)0.0937 (8)
O20.3673 (3)0.20648 (13)0.3537 (5)0.1251 (11)
O30.2448 (3)0.29424 (13)0.3109 (4)0.1255 (12)
N30.9075 (3)0.38343 (10)0.9628 (3)0.0508 (5)
N21.3435 (3)0.43708 (10)0.8543 (4)0.0593 (6)
N10.3735 (3)0.26136 (14)0.3662 (4)0.0716 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0507 (13)0.0405 (14)0.0488 (12)0.0032 (11)0.0074 (11)0.0045 (10)
C40.0391 (12)0.0565 (16)0.0385 (11)0.0039 (11)0.0029 (10)0.0049 (10)
C10.0444 (13)0.0523 (16)0.0473 (13)0.0054 (11)0.0005 (11)0.0089 (11)
C30.0452 (13)0.0559 (17)0.0568 (14)0.0103 (11)0.0034 (12)0.0036 (12)
C60.0428 (13)0.0531 (17)0.0541 (14)0.0053 (11)0.0028 (11)0.0027 (11)
C20.0579 (15)0.0461 (16)0.0600 (15)0.0013 (12)0.0060 (13)0.0083 (11)
C70.0374 (12)0.0461 (14)0.0429 (11)0.0031 (10)0.0009 (10)0.0003 (10)
C80.0356 (11)0.0426 (14)0.0526 (13)0.0010 (10)0.0008 (11)0.0020 (10)
C90.0477 (13)0.0484 (15)0.0546 (14)0.0047 (11)0.0060 (12)0.0031 (11)
C100.0678 (17)0.0625 (18)0.0448 (13)0.0060 (14)0.0003 (13)0.0058 (12)
C110.0575 (15)0.0730 (19)0.0447 (13)0.0122 (14)0.0126 (12)0.0008 (12)
F10.0736 (10)0.0425 (9)0.0955 (11)0.0038 (7)0.0051 (9)0.0074 (8)
O10.0392 (9)0.0785 (13)0.0472 (9)0.0119 (8)0.0080 (7)0.0158 (8)
O40.0682 (13)0.116 (2)0.0747 (13)0.0145 (13)0.0261 (11)0.0135 (13)
O50.0355 (10)0.121 (2)0.1207 (18)0.0093 (11)0.0043 (11)0.0072 (15)
O20.0874 (18)0.0756 (19)0.202 (3)0.0328 (14)0.0027 (18)0.0372 (19)
O30.0584 (14)0.109 (2)0.183 (3)0.0043 (14)0.0421 (17)0.0136 (19)
N30.0449 (11)0.0617 (14)0.0457 (10)0.0105 (10)0.0086 (9)0.0026 (9)
N20.0392 (11)0.0564 (15)0.0805 (16)0.0078 (10)0.0073 (11)0.0048 (12)
N10.0568 (15)0.0735 (19)0.0797 (16)0.0166 (13)0.0011 (13)0.0196 (14)
Geometric parameters (Å, º) top
C5—F11.333 (3)C7—C81.388 (3)
C5—C61.369 (3)C8—C91.369 (3)
C5—C41.380 (3)C8—N21.468 (3)
C4—C31.358 (3)C9—C101.375 (4)
C4—O11.393 (3)C9—H90.9300
C1—C21.363 (3)C10—C111.370 (3)
C1—C61.373 (3)C10—H100.9300
C1—N11.470 (3)C11—N31.339 (3)
C3—C21.392 (3)C11—H110.9300
C3—H30.9300O4—N21.215 (3)
C6—H60.9300O5—N21.218 (2)
C2—H20.9300O2—N11.200 (3)
C7—N31.312 (3)O3—N11.209 (3)
C7—O11.370 (3)
F1—C5—C6119.9 (2)C9—C8—C7119.4 (2)
F1—C5—C4118.9 (2)C9—C8—N2118.9 (2)
C6—C5—C4121.3 (2)C7—C8—N2121.6 (2)
C3—C4—C5120.3 (2)C8—C9—C10119.0 (2)
C3—C4—O1120.3 (2)C8—C9—H9120.5
C5—C4—O1119.3 (2)C10—C9—H9120.5
C2—C1—C6123.3 (2)C11—C10—C9117.6 (2)
C2—C1—N1119.0 (2)C11—C10—H10121.2
C6—C1—N1117.7 (2)C9—C10—H10121.2
C4—C3—C2119.8 (2)N3—C11—C10124.0 (3)
C4—C3—H3120.1N3—C11—H11118.0
C2—C3—H3120.1C10—C11—H11118.0
C5—C6—C1117.1 (2)C7—O1—C4116.05 (18)
C5—C6—H6121.4C7—N3—C11117.8 (2)
C1—C6—H6121.4O4—N2—O5124.2 (2)
C1—C2—C3118.2 (3)O4—N2—C8118.75 (19)
C1—C2—H2120.9O5—N2—C8117.0 (2)
C3—C2—H2120.9O2—N1—O3123.3 (3)
N3—C7—O1118.66 (19)O2—N1—C1118.2 (3)
N3—C7—C8122.1 (2)O3—N1—C1118.4 (3)
O1—C7—C8119.2 (2)

Experimental details

Crystal data
Chemical formulaC11H6FN3O5
Mr279.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5275 (15), 21.804 (4), 7.1681 (14)
β (°) 101.07 (3)
V3)1154.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.41 × 0.36 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.945, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
10606, 2611, 1351
Rint0.083
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.140, 0.94
No. of reflections2611
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The project was sponsored by the Natural Science Foundation of China (No. 21273024) and the Natural Science Foundation of Jilin Province, China (No. 201215135).

References

First citationChao, H., Turdi, H., Herpin, T. F., Roberge, J. Y., Liu, Y., Schnur, D. M., Poss, M. A., Rehfuss, R., Hua, J., Wu, Q., Price, L. A., Abell, L. M., Schumacher, W. A., Bostwick, J. S., Steinbacher, T. E., Stewart, A. B., Ogletree, M. L., Huang, C. S., Chang, M., Cacace, A. M., Arcuri, M. J., Celani, D., Wexler, R. R. & Lawrence, R. M. (2013). J. Med. Chem. 56, 1704–1714.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds