[Journal logo]

Volume 70 
Part 1 
Pages m7-m8  
January 2014  

Received 15 November 2013
Accepted 1 December 2013
Online 7 December 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.007 Å
R = 0.033
wR = 0.054
Data-to-parameter ratio = 21.5
Details
Open access

Bis(hy­droxy­ammonium) hexa­chlorido­platinate(IV)-18-crown-6 (1/2)

aDepartment of Chemistry, Saint Petersburg State University, Universitetsky Pr. 26, 198504 Stary Petergof, Russian Federation, and bDepartment of Chemistry, University of Jyvaskyla, PO Box 35 FI-40014 Jyvaskyla, Finland
Correspondence e-mail: tgc@mail.ru

In the title complex, (NH3OH)2[PtCl6]·2C12H24O6, the PtIV atom is coordinated by six chloride anions in a slightly distorted octa­hedral geometry. The Pt-Cl bond lengths are comparable to those reported for other hexa­chlorido­platinate(IV) species. The hy­droxy­ammonium groups act as linkers between the [PtCl6]2- anion and the crown ether mol­ecules. The anion is linked to two hy­droxy­ammonium cations via O-H...Cl hydrogen bonds and each hy­droxy­ammonium moiety is linked to a crown ether mol­ecule by hydrogen bonds between ammonium H atoms and 18-crown-6 O atoms. The crown ether mol­ecules have the classic crown shape in which all O atoms are located in the inner part of the crown ether ring and all -CH2- groups are turned to the outside.

Related literature

For general background to supra­molecular assemblies, see: Saalfrank & Demleitner (1999[Saalfrank, R. W. & Demleitner, B. (1999). In Transition Metals in Supramolecular Chemistry, edited by J. P. Sauvage, ch. 1, pp. 1-52. Chichester: Wiley & Sons.]). For crystal structures of related compounds based on platinum complexes and crown ether mol­ecules, see: Bulatov et al. (2012[Bulatov, E. Yu., Chulkova, T. G., Haukka, M. & Kukushkin, V. Yu. (2012). J. Chem. Crystallogr. 42, 352-355.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4O)2[PtCl6](C12H24O6)2

  • Mr = 1004.50

  • Orthorhombic, F d d 2

  • a = 29.6079 (10) Å

  • b = 30.5302 (10) Å

  • c = 8.5175 (3) Å

  • V = 7699.3 (5) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 4.12 mm-1

  • T = 100 K

  • 0.48 × 0.12 × 0.11 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.241, Tmax = 0.664

  • 29930 measured reflections

  • 4628 independent reflections

  • 4037 reflections with I > 2[sigma](I)

  • Rint = 0.067

Refinement
  • R[F2 > 2[sigma](F2)] = 0.033

  • wR(F2) = 0.054

  • S = 1.13

  • 4628 reflections

  • 215 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 1.49 e Å-3

  • [Delta][rho]min = -1.23 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2066 Friedel pairs

  • Absolute structure parameter: 0.035 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O7-H7O...Cl4 0.84 2.44 3.237 (4) 159
O7-H7O...Cl3 0.84 2.69 3.184 (4) 119
N1-H1C...O1 0.91 1.90 2.811 (5) 177
N1-H1D...O3 0.91 2.02 2.849 (5) 152
N1-H1D...O4 0.91 2.54 3.006 (5) 113
N1-H1E...O5 0.91 1.95 2.856 (6) 172
N1-H1E...O6 0.91 2.58 3.039 (5) 112

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2505 ).


Acknowledgements

The authors are grateful to the Russian Fund for Basic Research for grant 11-03-90417, Saint Petersburg State University for a research grant (2011-2013), and the Ministry of Education and Science of the Russian Federation for the Scholarship of the President of the Russian Federation for Students and PhD Students Training Abroad (2013-2014).

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bulatov, E. Yu., Chulkova, T. G., Haukka, M. & Kukushkin, V. Yu. (2012). J. Chem. Crystallogr. 42, 352-355.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [IUCr Journals]
Saalfrank, R. W. & Demleitner, B. (1999). In Transition Metals in Supramolecular Chemistry, edited by J. P. Sauvage, ch. 1, pp. 1-52. Chichester: Wiley & Sons.
Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2014). E70, m7-m8   [ doi:10.1107/S1600536813032649 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.