supplementary materials


pk2505 scheme

Acta Cryst. (2014). E70, m7-m8    [ doi:10.1107/S1600536813032649 ]

Bis(hy­droxy­ammonium) hexa­chlorido­platinate(IV)-18-crown-6 (1/2)

E. Bulatov, A. Afanasenko, T. Chulkova and M. Haukka

Abstract top

In the title complex, (NH3OH)2[PtCl6]·2C12H24O6, the PtIV atom is coordinated by six chloride anions in a slightly distorted octa­hedral geometry. The Pt-Cl bond lengths are comparable to those reported for other hexa­chlorido­platinate(IV) species. The hy­droxy­ammonium groups act as linkers between the [PtCl6]2- anion and the crown ether mol­ecules. The anion is linked to two hy­droxy­ammonium cations via O-H...Cl hydrogen bonds and each hy­droxy­ammonium moiety is linked to a crown ether mol­ecule by hydrogen bonds between ammonium H atoms and 18-crown-6 O atoms. The crown ether mol­ecules have the classic crown shape in which all O atoms are located in the inner part of the crown ether ring and all -CH2- groups are turned to the outside.

Comment top

The crystal structure of the title complex contains one Pt atom coordinated by six Cl atoms in an octahedral geometry (Fig. 1). The Pt—Cl1, Pt—Cl3, and Pt—Cl4 distances are 2.328 (3), 2.3202 (10), and 2.3184 (10) Å, respectively. The hydroxyammonium ions act as linkers between the [PtCl6]2- moieties and the crown ether molecules. The O—H···Cl and N—H···O hydrogen bond parameters are given in Table 1. Association with the platinum complexes changes the conformation of the crown ether. Thus, the cavity of the free 18-crown-6 has two inward-turned CH2 groups and two oxygens with the electron pairs facing outward and away from the center. In other words, the free crown ether does not display the true crown shape or cavity. However, in the presence of (NH3OH)2[PtCl6], reorganization of the crown occurs to give the classic crown shape in which all oxygen atoms are located in the inner part of the crown ring and all CH2 groups are turned to the outside.

Related literature top

For general background to supramolecular assemblies, see: Saalfrank & Demleitner (1999). For crystal structures of related compounds based on platinum complexes and crown ether molecules, see: Bulatov et al. (2012).

Experimental top

A mixture of cis-[PtCl2(HON=C(CH3)2)2] (0.045 mmol, 0.019 g) and N,N-dichlorotosylamide (0.090 mmol, 0.022 g) in chloroform (5 mL) was refluxed for 2 h, whereupon the reaction mixture was passed through a silica gel (60 Å; Merck) column using chloroform as the eluent. The resulting yellow solid was co-crystallized with 18-crown-6 in a 1:2 molar ratio from an acetone:chloroform (2:3, v/v) solution at 20–25 °C to give yellow crystals (yield 46%).

Refinement top

The OH hydrogen atom was located in a difference Fourier map but refined with fixed distances and angles (O—H = 0.84 Å and N—O—H = 109.47°) using a riding model with Uiso = 1.5Ueq of the parent atom. The NH3 hydrogen atoms were also found in a difference Fourier map, but were subsequently constrained to ride on their parent atom, with N—H = 0.91 Å and Uiso = 1.5Ueq (parent atom). The other hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.99 and Uiso = 1.2Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
Bis(hydroxyammonium) hexachloridoplatinate(IV)–18-crown-6 (1/2) top
Crystal data top
(NH4O)2[PtCl6](C12H24O6)2F(000) = 4048
Mr = 1004.50Dx = 1.733 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 9098 reflections
a = 29.6079 (10) Åθ = 2.6–30.0°
b = 30.5302 (10) ŵ = 4.12 mm1
c = 8.5175 (3) ÅT = 100 K
V = 7699.3 (5) Å3Needle, yellow
Z = 80.48 × 0.12 × 0.11 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4628 independent reflections
Radiation source: fine-focus sealed tube4037 reflections with I > 2σ(I)
Curved graphite crystal monochromatorRint = 0.067
Detector resolution: 16 pixels mm-1θmax = 28.3°, θmin = 1.9°
φ scans and ω scans with κ offseth = 3939
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
k = 4040
Tmin = 0.241, Tmax = 0.664l = 1011
29930 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + 25.8438P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4628 reflectionsΔρmax = 1.49 e Å3
215 parametersΔρmin = 1.23 e Å3
1 restraintAbsolute structure: Flack (1983), 2066 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.035 (6)
Crystal data top
(NH4O)2[PtCl6](C12H24O6)2V = 7699.3 (5) Å3
Mr = 1004.50Z = 8
Orthorhombic, Fdd2Mo Kα radiation
a = 29.6079 (10) ŵ = 4.12 mm1
b = 30.5302 (10) ÅT = 100 K
c = 8.5175 (3) Å0.48 × 0.12 × 0.11 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4628 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
4037 reflections with I > 2σ(I)
Tmin = 0.241, Tmax = 0.664Rint = 0.067
29930 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + 25.8438P]
where P = (Fo2 + 2Fc2)/3
S = 1.13Δρmax = 1.49 e Å3
4628 reflectionsΔρmin = 1.23 e Å3
215 parametersAbsolute structure: Flack (1983), 2066 Friedel pairs
1 restraintAbsolute structure parameter: 0.035 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.25000.25000.34985 (5)0.01233 (5)
Cl10.25000.25000.0765 (3)0.0260 (7)
Cl20.25000.25000.6231 (3)0.0178 (6)
Cl30.22293 (3)0.32131 (3)0.35338 (17)0.0194 (2)
Cl40.17574 (3)0.22593 (3)0.34620 (17)0.0196 (2)
O10.11462 (11)0.22413 (11)0.1142 (4)0.0191 (7)
O20.09346 (12)0.30857 (12)0.2258 (4)0.0204 (9)
O30.05499 (11)0.36586 (11)0.0014 (4)0.0176 (7)
O40.01529 (11)0.33464 (11)0.2718 (4)0.0152 (7)
O50.04401 (9)0.24907 (13)0.3768 (5)0.0154 (10)
O60.06925 (10)0.18918 (10)0.1471 (3)0.0159 (7)
O70.13001 (12)0.30883 (12)0.1706 (4)0.0322 (9)
H7O0.14850.29090.20910.048*
C10.1225 (2)0.23742 (17)0.2727 (6)0.0288 (13)
H1A0.09530.23140.33720.035*
H1B0.14810.22070.31720.035*
C20.13288 (19)0.28539 (18)0.2750 (7)0.0298 (13)
H2A0.15830.29180.20320.036*
H2B0.14160.29460.38230.036*
C30.10008 (17)0.35477 (16)0.2288 (6)0.0222 (11)
H3A0.10540.36460.33800.027*
H3B0.12690.36250.16520.027*
C40.05936 (15)0.37703 (15)0.1643 (6)0.0194 (10)
H4A0.06240.40920.17600.023*
H4B0.03210.36750.22250.023*
C50.02007 (16)0.39000 (15)0.0749 (5)0.0196 (11)
H5A0.00980.38130.03280.024*
H5B0.02420.42180.05640.024*
C60.02242 (17)0.38033 (15)0.2473 (6)0.0193 (10)
H6A0.05240.38890.28880.023*
H6B0.00090.39740.30370.023*
C70.02376 (18)0.32346 (16)0.4320 (6)0.0200 (11)
H7A0.00530.34220.50190.024*
H7B0.05600.32840.45720.024*
C80.01196 (16)0.27634 (16)0.4571 (6)0.0204 (11)
H8A0.01230.26960.57080.025*
H8B0.01880.27050.41670.025*
C90.03121 (15)0.20407 (14)0.3860 (5)0.0166 (10)
H9A0.00180.19960.33300.020*
H9B0.02800.19520.49730.020*
C100.06677 (15)0.17702 (15)0.3083 (5)0.0159 (10)
H10A0.09630.18200.35980.019*
H10B0.05920.14550.31750.019*
C110.10475 (15)0.16589 (16)0.0690 (5)0.0191 (11)
H11A0.10000.13390.08020.023*
H11B0.13420.17340.11680.023*
C120.10464 (18)0.17826 (17)0.1014 (6)0.0194 (12)
H12A0.12760.16100.15870.023*
H12B0.07470.17200.14800.023*
N10.09142 (12)0.28600 (12)0.1164 (5)0.0180 (8)
H1C0.09980.26600.04290.027*
H1D0.07160.30530.07320.027*
H1E0.07800.27200.19850.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01615 (9)0.00846 (9)0.01239 (9)0.00288 (16)0.0000.000
Cl10.0447 (18)0.0187 (15)0.0145 (16)0.0078 (8)0.0000.000
Cl20.0220 (14)0.0191 (14)0.0123 (14)0.0011 (7)0.0000.000
Cl30.0241 (5)0.0112 (5)0.0229 (5)0.0006 (4)0.0023 (6)0.0014 (6)
Cl40.0179 (5)0.0172 (5)0.0237 (5)0.0064 (4)0.0031 (6)0.0034 (6)
O10.0255 (18)0.0156 (17)0.016 (2)0.0005 (14)0.0061 (14)0.0010 (14)
O20.027 (2)0.016 (2)0.0184 (18)0.0011 (16)0.0046 (15)0.0011 (15)
O30.0233 (18)0.0147 (18)0.0146 (16)0.0019 (14)0.0004 (14)0.0031 (14)
O40.0220 (18)0.0102 (17)0.0136 (16)0.0005 (13)0.0005 (13)0.0006 (13)
O50.0187 (13)0.0102 (13)0.017 (3)0.0021 (17)0.0054 (14)0.0013 (16)
O60.0195 (17)0.0151 (17)0.0130 (17)0.0023 (13)0.0018 (12)0.0003 (12)
O70.026 (2)0.022 (2)0.049 (2)0.0009 (16)0.0164 (17)0.0057 (18)
C10.039 (3)0.027 (3)0.020 (3)0.004 (2)0.013 (2)0.000 (2)
C20.033 (3)0.030 (3)0.026 (3)0.005 (3)0.012 (3)0.004 (3)
C30.032 (3)0.017 (3)0.017 (2)0.008 (2)0.000 (2)0.003 (2)
C40.029 (2)0.014 (2)0.015 (2)0.0047 (18)0.005 (2)0.004 (2)
C50.024 (2)0.010 (2)0.024 (3)0.0044 (18)0.001 (2)0.003 (2)
C60.026 (3)0.011 (2)0.021 (3)0.000 (2)0.003 (2)0.000 (2)
C70.027 (3)0.017 (3)0.016 (3)0.000 (2)0.003 (2)0.002 (2)
C80.025 (3)0.018 (3)0.018 (2)0.0057 (19)0.007 (2)0.002 (2)
C90.020 (2)0.011 (2)0.018 (3)0.0035 (18)0.0008 (18)0.0010 (18)
C100.019 (2)0.010 (2)0.018 (3)0.0010 (18)0.0015 (18)0.0013 (18)
C110.021 (2)0.016 (2)0.021 (3)0.0044 (18)0.001 (2)0.0034 (19)
C120.023 (3)0.015 (3)0.019 (3)0.000 (2)0.001 (2)0.006 (2)
N10.0226 (19)0.0145 (19)0.017 (2)0.0013 (15)0.0002 (19)0.0010 (19)
Geometric parameters (Å, º) top
Pt1—Cl42.3184 (10)C3—H3B0.9900
Pt1—Cl4i2.3184 (10)C4—H4A0.9900
Pt1—Cl3i2.3202 (10)C4—H4B0.9900
Pt1—Cl32.3202 (10)C5—C61.499 (7)
Pt1—Cl22.327 (3)C5—H5A0.9900
Pt1—Cl12.328 (3)C5—H5B0.9900
O1—C11.428 (6)C6—H6A0.9900
O1—C121.435 (6)C6—H6B0.9900
O2—C31.424 (6)C7—C81.496 (7)
O2—C21.428 (6)C7—H7A0.9900
O3—C51.427 (5)C7—H7B0.9900
O3—C41.435 (6)C8—H8A0.9900
O4—C61.426 (5)C8—H8B0.9900
O4—C71.429 (5)C9—C101.493 (6)
O5—C91.427 (6)C9—H9A0.9900
O5—C81.436 (6)C9—H9B0.9900
O6—C101.425 (5)C10—H10A0.9900
O6—C111.432 (5)C10—H10B0.9900
O7—N11.416 (5)C11—C121.500 (6)
O7—H7O0.8400C11—H11A0.9900
C1—C21.497 (7)C11—H11B0.9900
C1—H1A0.9900C12—H12A0.9900
C1—H1B0.9900C12—H12B0.9900
C2—H2A0.9900N1—H1C0.9100
C2—H2B0.9900N1—H1D0.9100
C3—C41.489 (6)N1—H1E0.9100
C3—H3A0.9900
Cl4—Pt1—Cl4i178.46 (7)C6—C5—H5B110.1
Cl4—Pt1—Cl3i91.73 (4)H5A—C5—H5B108.4
Cl4i—Pt1—Cl3i88.29 (4)O4—C6—C5109.2 (4)
Cl4—Pt1—Cl388.29 (4)O4—C6—H6A109.8
Cl4i—Pt1—Cl391.73 (4)C5—C6—H6A109.8
Cl3i—Pt1—Cl3178.52 (7)O4—C6—H6B109.8
Cl4—Pt1—Cl290.77 (4)C5—C6—H6B109.8
Cl4i—Pt1—Cl290.77 (4)H6A—C6—H6B108.3
Cl3i—Pt1—Cl289.26 (4)O4—C7—C8109.0 (4)
Cl3—Pt1—Cl289.26 (4)O4—C7—H7A109.9
Cl4—Pt1—Cl189.23 (4)C8—C7—H7A109.9
Cl4i—Pt1—Cl189.23 (4)O4—C7—H7B109.9
Cl3i—Pt1—Cl190.74 (4)C8—C7—H7B109.9
Cl3—Pt1—Cl190.74 (4)H7A—C7—H7B108.3
Cl2—Pt1—Cl1180.000 (1)O5—C8—C7109.6 (4)
C1—O1—C12112.5 (4)O5—C8—H8A109.8
C3—O2—C2111.9 (4)C7—C8—H8A109.8
C5—O3—C4112.5 (3)O5—C8—H8B109.8
C6—O4—C7110.3 (4)C7—C8—H8B109.8
C9—O5—C8110.9 (3)H8A—C8—H8B108.2
C10—O6—C11110.8 (3)O5—C9—C10108.7 (4)
N1—O7—H7O109.5O5—C9—H9A109.9
O1—C1—C2108.9 (4)C10—C9—H9A109.9
O1—C1—H1A109.9O5—C9—H9B109.9
C2—C1—H1A109.9C10—C9—H9B109.9
O1—C1—H1B109.9H9A—C9—H9B108.3
C2—C1—H1B109.9O6—C10—C9108.6 (4)
H1A—C1—H1B108.3O6—C10—H10A110.0
O2—C2—C1108.2 (4)C9—C10—H10A110.0
O2—C2—H2A110.1O6—C10—H10B110.0
C1—C2—H2A110.1C9—C10—H10B110.0
O2—C2—H2B110.1H10A—C10—H10B108.3
C1—C2—H2B110.1O6—C11—C12108.8 (4)
H2A—C2—H2B108.4O6—C11—H11A109.9
O2—C3—C4109.5 (4)C12—C11—H11A109.9
O2—C3—H3A109.8O6—C11—H11B109.9
C4—C3—H3A109.8C12—C11—H11B109.9
O2—C3—H3B109.8H11A—C11—H11B108.3
C4—C3—H3B109.8O1—C12—C11108.6 (4)
H3A—C3—H3B108.2O1—C12—H12A110.0
O3—C4—C3108.7 (4)C11—C12—H12A110.0
O3—C4—H4A109.9O1—C12—H12B110.0
C3—C4—H4A109.9C11—C12—H12B110.0
O3—C4—H4B109.9H12A—C12—H12B108.4
C3—C4—H4B109.9O7—N1—H1C109.5
H4A—C4—H4B108.3O7—N1—H1D109.5
O3—C5—C6108.1 (4)H1C—N1—H1D109.5
O3—C5—H5A110.1O7—N1—H1E109.5
C6—C5—H5A110.1H1C—N1—H1E109.5
O3—C5—H5B110.1H1D—N1—H1E109.5
Symmetry code: (i) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7O···Cl40.842.443.237 (4)159
O7—H7O···Cl30.842.693.184 (4)119
N1—H1C···O10.911.902.811 (5)177
N1—H1D···O30.912.022.849 (5)152
N1—H1D···O40.912.543.006 (5)113
N1—H1E···O50.911.952.856 (6)172
N1—H1E···O60.912.583.039 (5)112
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7O···Cl40.842.443.237 (4)158.6
O7—H7O···Cl30.842.693.184 (4)119.3
N1—H1C···O10.911.902.811 (5)177.3
N1—H1D···O30.912.022.849 (5)151.6
N1—H1D···O40.912.543.006 (5)112.5
N1—H1E···O50.911.952.856 (6)172.2
N1—H1E···O60.912.583.039 (5)111.9
Acknowledgements top

The authors are grateful to the Russian Fund for Basic Research for grant 11–03-90417, Saint Petersburg State University for a research grant (2011–2013), and the Ministry of Education and Science of the Russian Federation for the Scholarship of the President of the Russian Federation for Students and PhD Students Training Abroad (2013–2014).

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Bulatov, E. Yu., Chulkova, T. G., Haukka, M. & Kukushkin, V. Yu. (2012). J. Chem. Crystallogr. 42, 352–355.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Saalfrank, R. W. & Demleitner, B. (1999). In Transition Metals in Supramolecular Chemistry, edited by J. P. Sauvage, ch. 1, pp. 1–52. Chichester: Wiley & Sons.

Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.