organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-2-(4-Eth­­oxy­phen­yl)ethen­yl]-1-methyl­quinolinium 4-fluoro­benzene­sulfonate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 22 November 2013; accepted 29 November 2013; online 4 December 2013)

In the structure of the title salt, C20H20NO+·C6H4FO3S, the 4-(eth­oxy­phen­yl)ethenyl unit is disordered over two positions with a refined site-occupancy ratio of 0.610 (6):0.390 (6). The cation is nearly planar, the dihedral angle between the quinolinium and benzene rings being 6.7 (4) and 1.7 (7)° for the major and minor components, respectively. The eth­oxy group is essentially coplanar with the benzene ring [C—O—C—Cmethy = 177.1 (8) and 177.8 (12)° for the major and minor components, respectively]. In the crystal, cations and anions are linked into chains along the b-axis direction by C—H⋯Osulfon­yl weak inter­actions. These chains are further connected into sheets parallel to (001) by C—H⋯Osulfon­yl weak inter­actions. The chains are also stacked along the a axis through ππ inter­actions involving the quinolinium and benzene rings [centroid–centroid distances = 3.636 (5) Å for the major component and 3.800 (9) Å for the minor component]. C—H⋯π inter­actions are also present.

Related literature

For background to the bioactivity and non-linear optical properties of quinolinium derivatives, see: Chanawanno et al. (2010[Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.]); Hopkins et al. (2005[Hopkins, K. L., Davies, R. H. & Threfall, E. J. (2005). Int. J. Antimicrob. Agents, 25, 358-373.]); Musiol et al. (2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]); O'Donnell et al. (2010[O'Donnell, F., Smyth, T. J. P., Ramachandran, V. N. & Smyth, W. F. (2010). Int. J. Antimicrob. Agents, 35, 30-38.]); Ruanwas et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padakid, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]). For related structures, see: Chantrapromma et al. (2011[Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2011). Acta Cryst. E67, o515-o516.]); Fun et al. (2010[Fun, H.-K., Chanawanno, K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o938-o939.]); Ruanwas et al. (2010[Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padakid, M. & Isloor, A. M. (2010). Synth. Met. 160, 819-824.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20NO+·C6H4FO3S

  • Mr = 465.52

  • Monoclinic, P 21 /n

  • a = 6.4366 (3) Å

  • b = 9.8909 (5) Å

  • c = 34.3628 (15) Å

  • β = 95.102 (2)°

  • V = 2179.00 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.37 × 0.12 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.991

  • 19050 measured reflections

  • 4993 independent reflections

  • 3609 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.154

  • S = 1.09

  • 4993 reflections

  • 392 parameters

  • 418 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 and Cg5 are the centroids of the C12B–C17B and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O2i 0.93 2.55 3.456 (4) 166
C8—H8A⋯O4ii 0.93 2.41 3.306 (3) 161
C10—H10A⋯O3 0.96 2.55 3.483 (4) 164
C11A—H11A⋯O4ii 0.93 2.52 3.408 (19) 159
C17A—H17A⋯O3 0.93 2.58 3.510 (10) 177
C20—H20B⋯O2i 0.96 2.53 3.441 (4) 158
C20—H20C⋯O3 0.96 2.44 3.085 (4) 124
C25—H25A⋯O4iii 0.93 2.55 3.264 (4) 134
C13A—H13ACg5ii 0.93 2.82 3.575 (10) 139
C16A—H16ACg5 0.93 2.98 3.826 (9) 151
C19A—H19BCg4iii 0.96 2.99 3.862 (11) 152
C13B—H13BCg5ii 0.93 2.95 3.765 (16) 147
C16B—H16BCg5 0.93 2.70 3.562 (13) 155
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Quinolinium derivatives were reported to possess interesting bioactivities and pharmacological activities (Chanawanno et al., 2010; Hopkins et al., 2005; Musiol et al., 2006; O'Donnell et al., 2010), including non-linear optic properties (Ruanwas et al., 2010). During the course of our research on the antibacterial activity of pyridinium and quinolinium salts, the title quinolinium salt (I) was synthesized in order to study the effect of the anion counter-part on its antibacterial activity because its starting quinolinium iodide salt (Chanawanno et al., 2010) was found to be very active against the methicillin-resistant Staphylococcus aureus with a MIC value of 2.34 µg/ml. Herein the synthesis and crystal structure of (I) are reported.

In the title salt (Fig. 1), C20H20NO+.C6H4FSO3-, the 4-(ethoxyphenyl)ethenyl unit is disordered over two positions with a refined site-occupancy ratio of 0.610 (6):0.390 (6). The cation exists in an E configuration with respect to the ethenyl bond [C10 C11 = 1.326 (18) Å for the major A component and 1.38 (3) Å for the minor B component] and torsion angle C9—C10—C11—C12 = -178.3 (12) ° for the major A component, and -179.0 (19)° for the minor B component. The 1-methylquinolinium ring system is planar with a rms deviation of 0.0199 (3) Å for the eleven non-H atoms. The cation is planar with dihedral angles between the N1/C1–C9 quinolinium and C12–C17 benzene rings of 6.7 (4) and 1.7 (7)° for the major A and minor B components, respectively. The ethoxy unit is disordered over two positions in such a way that the major A and minor B components are related by a 180° rotation. Moreover the ethoxy unit is co-planar with the attached benzene ring as indicated by the torsion angles C16–C15–O1–C18 = 2.5 (15)° and C15–O1–C18–C19 = 177.1 (8)° for the major A component. The corresponding values are 180.0 (14) and 177.8 (12)° for the minor B component. Bond distances in both cation and anion have normal values (Allen et al., 1987) and are comparable to those observed in related structures (Chantrapromma et al., 2011; Fun et al., 2010; Ruanwas et al., 2010).

In the crystal packing (Fig. 2), cations and anions are linked into chains along the b axis by C—H···Osulfonyl weak interactions. These chains are further connected into sheets parallel to the (001) plane by C—H···Osulfonyl weak interactions (Table 1), and these chains are also stacked by ππ interactions involving quinolinium and benzene rings (Fig. 3) with separations Cg1···Cg3i = 3.636 (5) Å in the major component A and Cg1···Cg4i = 3.800 (9) Å in the minor component B (symmetry code as in Table 1); Cg1, Cg3 and Cg4 are the centroids of the N1/C1/C6–C9, C12A–C17A and C12B–C17B rings, respectively. C—H···π interactions (Table 1) are also present.

Related literature top

For background to the bioactivity and non-linear optical properties of quinolinium derivatives, see: Chanawanno et al. (2010); Hopkins et al. (2005); Musiol et al. (2006); O'Donnell et al. (2010); Ruanwas et al. (2010). For related structures, see: Chantrapromma et al. (2011); Fun et al. (2010); Ruanwas et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by dissolving silver(I) 4-fluorobenzenesulfonate (0.20 g, 0.71 mmol) in methanol (20 ml) which upon heating was added to a solution of 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylquinolinium iodide (Fun et al., 2010) (0.29 g, 0.71 mmol) in hot methanol (30 ml). The mixture turned yellow and cloudy immediately. After stirring for 0.5 h, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give a yellow solid. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after a few weeks.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and CH, 0.97 Å for CH2 and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The 4-(ethoxyphenyl)-ethenyl unit is disordered over two sites with refined site occupancies ratio 0.610 (6):0.390 (6). Similarity and simulation restraints were applied.

Structure description top

Quinolinium derivatives were reported to possess interesting bioactivities and pharmacological activities (Chanawanno et al., 2010; Hopkins et al., 2005; Musiol et al., 2006; O'Donnell et al., 2010), including non-linear optic properties (Ruanwas et al., 2010). During the course of our research on the antibacterial activity of pyridinium and quinolinium salts, the title quinolinium salt (I) was synthesized in order to study the effect of the anion counter-part on its antibacterial activity because its starting quinolinium iodide salt (Chanawanno et al., 2010) was found to be very active against the methicillin-resistant Staphylococcus aureus with a MIC value of 2.34 µg/ml. Herein the synthesis and crystal structure of (I) are reported.

In the title salt (Fig. 1), C20H20NO+.C6H4FSO3-, the 4-(ethoxyphenyl)ethenyl unit is disordered over two positions with a refined site-occupancy ratio of 0.610 (6):0.390 (6). The cation exists in an E configuration with respect to the ethenyl bond [C10 C11 = 1.326 (18) Å for the major A component and 1.38 (3) Å for the minor B component] and torsion angle C9—C10—C11—C12 = -178.3 (12) ° for the major A component, and -179.0 (19)° for the minor B component. The 1-methylquinolinium ring system is planar with a rms deviation of 0.0199 (3) Å for the eleven non-H atoms. The cation is planar with dihedral angles between the N1/C1–C9 quinolinium and C12–C17 benzene rings of 6.7 (4) and 1.7 (7)° for the major A and minor B components, respectively. The ethoxy unit is disordered over two positions in such a way that the major A and minor B components are related by a 180° rotation. Moreover the ethoxy unit is co-planar with the attached benzene ring as indicated by the torsion angles C16–C15–O1–C18 = 2.5 (15)° and C15–O1–C18–C19 = 177.1 (8)° for the major A component. The corresponding values are 180.0 (14) and 177.8 (12)° for the minor B component. Bond distances in both cation and anion have normal values (Allen et al., 1987) and are comparable to those observed in related structures (Chantrapromma et al., 2011; Fun et al., 2010; Ruanwas et al., 2010).

In the crystal packing (Fig. 2), cations and anions are linked into chains along the b axis by C—H···Osulfonyl weak interactions. These chains are further connected into sheets parallel to the (001) plane by C—H···Osulfonyl weak interactions (Table 1), and these chains are also stacked by ππ interactions involving quinolinium and benzene rings (Fig. 3) with separations Cg1···Cg3i = 3.636 (5) Å in the major component A and Cg1···Cg4i = 3.800 (9) Å in the minor component B (symmetry code as in Table 1); Cg1, Cg3 and Cg4 are the centroids of the N1/C1/C6–C9, C12A–C17A and C12B–C17B rings, respectively. C—H···π interactions (Table 1) are also present.

For background to the bioactivity and non-linear optical properties of quinolinium derivatives, see: Chanawanno et al. (2010); Hopkins et al. (2005); Musiol et al. (2006); O'Donnell et al. (2010); Ruanwas et al. (2010). For related structures, see: Chantrapromma et al. (2011); Fun et al. (2010); Ruanwas et al. (2010). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of the major component of the title compound viewed approximately along the a axis. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. ππ interaction between aromatic rings of the cations of the major component. H-atoms of the cations not involved in hydrogen bonds are omitted for clarity.
2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-fluorobenzenesulfonate top
Crystal data top
C20H20NO+·C6H4FO3SF(000) = 976
Mr = 465.52Dx = 1.419 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4993 reflections
a = 6.4366 (3) Åθ = 2.1–27.5°
b = 9.8909 (5) ŵ = 0.19 mm1
c = 34.3628 (15) ÅT = 100 K
β = 95.102 (2)°Plate, yellow
V = 2179.00 (18) Å30.37 × 0.12 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4993 independent reflections
Radiation source: sealed tube3609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
φ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.932, Tmax = 0.991k = 1211
19050 measured reflectionsl = 4444
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0388P)2 + 4.3613P]
where P = (Fo2 + 2Fc2)/3
4993 reflections(Δ/σ)max < 0.001
392 parametersΔρmax = 0.39 e Å3
418 restraintsΔρmin = 0.49 e Å3
Crystal data top
C20H20NO+·C6H4FO3SV = 2179.00 (18) Å3
Mr = 465.52Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.4366 (3) ŵ = 0.19 mm1
b = 9.8909 (5) ÅT = 100 K
c = 34.3628 (15) Å0.37 × 0.12 × 0.05 mm
β = 95.102 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4993 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3609 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.991Rint = 0.060
19050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065418 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.09Δρmax = 0.39 e Å3
4993 reflectionsΔρmin = 0.49 e Å3
392 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N11.5593 (3)0.1235 (2)0.18311 (7)0.0173 (5)
C11.7488 (4)0.0857 (3)0.20382 (8)0.0170 (6)
C21.8922 (4)0.1828 (3)0.22024 (9)0.0211 (6)
H2A1.86550.27480.21730.025*
C32.0733 (4)0.1375 (3)0.24085 (9)0.0233 (6)
H3A2.16600.20080.25240.028*
C42.1223 (4)0.0006 (3)0.24491 (9)0.0214 (6)
H4A2.24600.02670.25870.026*
C51.9854 (4)0.0928 (3)0.22830 (9)0.0205 (6)
H5A2.01820.18420.23030.025*
C61.7957 (4)0.0528 (3)0.20815 (8)0.0184 (6)
C71.6492 (4)0.1489 (3)0.19255 (9)0.0191 (6)
H7A1.67900.24060.19520.023*
C81.4663 (4)0.1090 (3)0.17380 (9)0.0198 (6)
H8A1.36980.17380.16440.024*
C91.4191 (4)0.0300 (3)0.16827 (8)0.0163 (5)
C101.2247 (4)0.0745 (3)0.14715 (9)0.0197 (6)
H10A1.19590.16930.14420.024*0.610 (6)
H10B1.19710.16990.14660.024*0.390 (6)
C201.5120 (5)0.2681 (3)0.17700 (10)0.0245 (7)
H20A1.49120.28650.14950.037*
H20B1.62620.32130.18840.037*
H20C1.38760.29050.18910.037*
O1A0.3281 (9)0.0972 (6)0.04235 (19)0.0386 (14)0.610 (6)
C11A1.086 (2)0.0139 (19)0.1318 (6)0.0169 (19)0.610 (6)
H11A1.11560.10530.13560.020*0.610 (6)
C12A0.889 (2)0.0214 (10)0.1092 (4)0.0174 (16)0.610 (6)
C13A0.7675 (19)0.0815 (10)0.0915 (5)0.0235 (16)0.610 (6)
H13A0.81050.17080.09500.028*0.610 (6)
C14A0.5834 (16)0.0542 (8)0.0687 (4)0.0250 (16)0.610 (6)
H14A0.50680.12440.05650.030*0.610 (6)
C15A0.5146 (15)0.0770 (8)0.0641 (4)0.0246 (16)0.610 (6)
C16A0.6277 (15)0.1820 (9)0.0829 (3)0.0246 (18)0.610 (6)
H16A0.57890.27030.08050.030*0.610 (6)
C17A0.8141 (15)0.1543 (10)0.1054 (3)0.0190 (18)0.610 (6)
H17A0.88910.22460.11790.023*0.610 (6)
C18A0.2520 (9)0.2376 (8)0.03791 (18)0.0459 (17)0.610 (6)
H18A0.35560.29330.02670.055*0.610 (6)
H18B0.22710.27450.06320.055*0.610 (6)
C19A0.0542 (11)0.2371 (11)0.0117 (2)0.061 (2)0.610 (6)
H19A0.00530.32620.01080.092*0.610 (6)
H19B0.04230.17450.02160.092*0.610 (6)
H19C0.08320.21040.01410.092*0.610 (6)
O1B0.3343 (14)0.1530 (7)0.0407 (3)0.0238 (16)0.390 (6)
C11B1.076 (4)0.005 (3)0.1270 (9)0.019 (3)0.390 (6)
H11B1.10130.09800.12720.023*0.390 (6)
C12B0.883 (3)0.0408 (17)0.1054 (8)0.019 (2)0.390 (6)
C13B0.748 (3)0.0595 (16)0.0880 (7)0.022 (2)0.390 (6)
H13B0.78420.15040.09030.026*0.390 (6)
C14B0.561 (3)0.0215 (13)0.0672 (6)0.022 (2)0.390 (6)
H14B0.46920.08720.05640.027*0.390 (6)
C15B0.512 (2)0.1117 (12)0.0627 (6)0.0188 (19)0.390 (6)
C16B0.647 (2)0.2108 (13)0.0783 (5)0.020 (2)0.390 (6)
H16B0.61250.30160.07470.024*0.390 (6)
C17B0.831 (2)0.1749 (15)0.0993 (5)0.017 (2)0.390 (6)
H17B0.92090.24210.10940.020*0.390 (6)
C18B0.1886 (13)0.0568 (9)0.0237 (3)0.038 (2)0.390 (6)
H18C0.13790.00080.04360.046*0.390 (6)
H18D0.25300.00050.00500.046*0.390 (6)
C19B0.0125 (13)0.1380 (12)0.0035 (3)0.038 (2)0.390 (6)
H19D0.09270.07780.00800.057*0.390 (6)
H19E0.06470.19290.01650.057*0.390 (6)
H19F0.04680.19500.02230.057*0.390 (6)
S10.97568 (10)0.53446 (7)0.16403 (2)0.02062 (19)
F10.3508 (3)0.6116 (3)0.03020 (7)0.0605 (7)
O20.8648 (3)0.5242 (2)0.19899 (6)0.0262 (5)
O31.0931 (3)0.4139 (2)0.15628 (7)0.0337 (6)
O41.0969 (3)0.6584 (2)0.16254 (6)0.0261 (5)
C210.7812 (4)0.5484 (3)0.12372 (9)0.0223 (6)
C220.8393 (5)0.5361 (4)0.08595 (10)0.0331 (8)
H22A0.97630.51410.08200.040*
C230.6945 (5)0.5564 (4)0.05408 (11)0.0436 (10)
H23A0.73200.54880.02870.052*
C240.4930 (5)0.5883 (4)0.06144 (11)0.0378 (9)
C250.4299 (5)0.5984 (3)0.09833 (10)0.0286 (7)
H25A0.29220.61910.10210.034*
C260.5755 (4)0.5771 (3)0.12989 (9)0.0212 (6)
H26A0.53550.58190.15520.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0140 (11)0.0130 (11)0.0247 (13)0.0001 (8)0.0009 (9)0.0002 (10)
C10.0109 (12)0.0221 (13)0.0181 (15)0.0002 (10)0.0016 (10)0.0002 (11)
C20.0206 (14)0.0151 (13)0.0278 (17)0.0008 (11)0.0031 (12)0.0024 (12)
C30.0174 (14)0.0256 (15)0.0268 (17)0.0101 (12)0.0008 (12)0.0069 (13)
C40.0159 (13)0.0268 (16)0.0209 (16)0.0014 (11)0.0011 (11)0.0017 (12)
C50.0213 (14)0.0170 (13)0.0231 (16)0.0033 (11)0.0013 (12)0.0011 (12)
C60.0154 (13)0.0196 (14)0.0201 (15)0.0023 (11)0.0006 (11)0.0027 (12)
C70.0193 (14)0.0132 (13)0.0250 (16)0.0004 (10)0.0031 (11)0.0014 (11)
C80.0167 (13)0.0167 (13)0.0261 (17)0.0056 (11)0.0019 (12)0.0019 (12)
C90.0100 (12)0.0209 (13)0.0184 (14)0.0014 (11)0.0026 (10)0.0023 (12)
C100.0144 (13)0.0206 (14)0.0242 (16)0.0010 (11)0.0020 (11)0.0012 (12)
C200.0198 (14)0.0152 (13)0.0371 (19)0.0009 (11)0.0052 (13)0.0016 (13)
O1A0.019 (2)0.065 (3)0.030 (2)0.010 (3)0.0085 (17)0.005 (3)
C11A0.013 (3)0.019 (3)0.018 (5)0.005 (2)0.001 (3)0.003 (3)
C12A0.013 (2)0.024 (3)0.015 (3)0.006 (2)0.000 (2)0.004 (3)
C13A0.018 (3)0.026 (3)0.026 (3)0.003 (2)0.006 (2)0.005 (3)
C14A0.019 (3)0.027 (3)0.029 (3)0.004 (3)0.003 (2)0.002 (3)
C15A0.016 (2)0.035 (4)0.022 (2)0.006 (3)0.003 (2)0.003 (3)
C16A0.019 (3)0.026 (4)0.030 (3)0.010 (3)0.005 (2)0.008 (3)
C17A0.014 (3)0.025 (4)0.018 (3)0.000 (2)0.004 (2)0.003 (3)
C18A0.029 (3)0.077 (4)0.030 (3)0.035 (3)0.002 (2)0.009 (3)
C19A0.037 (3)0.110 (6)0.036 (4)0.033 (4)0.006 (3)0.005 (4)
O1B0.021 (3)0.023 (3)0.026 (3)0.008 (3)0.006 (2)0.003 (3)
C11B0.018 (4)0.022 (5)0.017 (5)0.004 (4)0.000 (4)0.002 (4)
C12B0.011 (3)0.027 (4)0.019 (4)0.000 (3)0.001 (3)0.003 (3)
C13B0.021 (4)0.018 (4)0.025 (4)0.003 (3)0.001 (3)0.003 (4)
C14B0.019 (4)0.025 (4)0.021 (3)0.002 (4)0.008 (3)0.001 (4)
C15B0.015 (3)0.022 (4)0.019 (3)0.006 (3)0.002 (3)0.004 (3)
C16B0.015 (3)0.019 (4)0.026 (4)0.001 (3)0.005 (3)0.005 (3)
C17B0.013 (3)0.015 (4)0.023 (4)0.001 (3)0.004 (3)0.008 (3)
C18B0.031 (4)0.046 (4)0.036 (4)0.007 (3)0.002 (3)0.002 (4)
C19B0.017 (4)0.057 (5)0.039 (5)0.006 (4)0.007 (3)0.013 (4)
S10.0126 (3)0.0153 (3)0.0329 (4)0.0008 (3)0.0040 (3)0.0043 (3)
F10.0400 (13)0.096 (2)0.0406 (14)0.0180 (13)0.0222 (10)0.0190 (13)
O20.0217 (10)0.0269 (11)0.0298 (13)0.0014 (9)0.0015 (9)0.0035 (10)
O30.0195 (11)0.0232 (11)0.0559 (16)0.0070 (9)0.0105 (10)0.0129 (11)
O40.0193 (10)0.0225 (11)0.0355 (13)0.0056 (8)0.0031 (9)0.0040 (9)
C210.0145 (13)0.0160 (13)0.0353 (18)0.0031 (11)0.0050 (12)0.0068 (13)
C220.0163 (14)0.049 (2)0.0331 (19)0.0027 (14)0.0005 (13)0.0184 (17)
C230.0313 (18)0.067 (3)0.032 (2)0.0029 (18)0.0008 (15)0.0210 (19)
C240.0289 (17)0.048 (2)0.033 (2)0.0046 (16)0.0146 (15)0.0118 (17)
C250.0139 (14)0.0277 (16)0.043 (2)0.0015 (12)0.0054 (13)0.0066 (15)
C260.0171 (13)0.0151 (13)0.0311 (17)0.0014 (11)0.0011 (12)0.0029 (12)
Geometric parameters (Å, º) top
N1—C91.359 (3)C18A—H18A0.9700
N1—C11.407 (3)C18A—H18B0.9700
N1—C201.473 (3)C19A—H19A0.9600
C1—C61.407 (4)C19A—H19B0.9600
C1—C21.414 (4)C19A—H19C0.9600
C2—C31.383 (4)O1B—C15B1.375 (11)
C2—H2A0.9300O1B—C18B1.425 (10)
C3—C41.394 (4)C11B—C12B1.463 (12)
C3—H3A0.9300C11B—H11B0.9300
C4—C51.366 (4)C12B—C17B1.380 (12)
C4—H4A0.9300C12B—C13B1.417 (12)
C5—C61.406 (4)C13B—C14B1.399 (12)
C5—H5A0.9300C13B—H13B0.9300
C6—C71.411 (4)C14B—C15B1.360 (11)
C7—C81.350 (4)C14B—H14B0.9300
C7—H7A0.9300C15B—C16B1.385 (11)
C8—C91.418 (4)C16B—C17B1.377 (11)
C8—H8A0.9300C16B—H16B0.9300
C9—C101.457 (4)C17B—H17B0.9300
C10—C11A1.326 (18)C18B—C19B1.506 (10)
C10—C11B1.38 (3)C18B—H18C0.9700
C10—H10A0.9600C18B—H18D0.9700
C10—H10B0.9600C19B—H19D0.9600
C20—H20A0.9600C19B—H19E0.9600
C20—H20B0.9600C19B—H19F0.9600
C20—H20C0.9600S1—O31.449 (2)
O1A—C15A1.371 (7)S1—O21.454 (2)
O1A—C18A1.475 (8)S1—O41.457 (2)
C11A—C12A1.467 (8)S1—C211.788 (3)
C11A—H11A0.9300F1—C241.367 (4)
C12A—C13A1.392 (8)C21—C221.388 (5)
C12A—C17A1.403 (8)C21—C261.389 (4)
C13A—C14A1.388 (8)C22—C231.388 (5)
C13A—H13A0.9300C22—H22A0.9300
C14A—C15A1.375 (8)C23—C241.380 (5)
C14A—H14A0.9300C23—H23A0.9300
C15A—C16A1.394 (9)C24—C251.369 (5)
C16A—C17A1.394 (8)C25—C261.385 (4)
C16A—H16A0.9300C25—H25A0.9300
C17A—H17A0.9300C26—H26A0.9300
C18A—C19A1.492 (8)
C9—N1—C1121.7 (2)C12A—C17A—H17A119.7
C9—N1—C20119.0 (2)O1A—C18A—C19A108.5 (6)
C1—N1—C20119.3 (2)O1A—C18A—H18A110.0
C6—C1—N1118.7 (2)C19A—C18A—H18A110.0
C6—C1—C2119.5 (2)O1A—C18A—H18B110.0
N1—C1—C2121.8 (2)C19A—C18A—H18B110.0
C3—C2—C1118.3 (3)H18A—C18A—H18B108.4
C3—C2—H2A120.8C15B—O1B—C18B120.8 (8)
C1—C2—H2A120.8C10—C11B—C12B127 (2)
C2—C3—C4122.6 (3)C10—C11B—H11B116.7
C2—C3—H3A118.7C12B—C11B—H11B116.7
C4—C3—H3A118.7C17B—C12B—C13B118.3 (11)
C5—C4—C3118.9 (3)C17B—C12B—C11B124.3 (14)
C5—C4—H4A120.6C13B—C12B—C11B117.2 (13)
C3—C4—H4A120.6C14B—C13B—C12B119.8 (11)
C4—C5—C6121.0 (3)C14B—C13B—H13B120.1
C4—C5—H5A119.5C12B—C13B—H13B120.1
C6—C5—H5A119.5C15B—C14B—C13B119.8 (11)
C5—C6—C1119.6 (2)C15B—C14B—H14B120.1
C5—C6—C7121.3 (3)C13B—C14B—H14B120.1
C1—C6—C7119.1 (2)C14B—C15B—O1B121.5 (10)
C8—C7—C6120.6 (3)C14B—C15B—C16B120.8 (10)
C8—C7—H7A119.7O1B—C15B—C16B117.6 (9)
C6—C7—H7A119.7C17B—C16B—C15B120.0 (10)
C7—C8—C9121.0 (2)C17B—C16B—H16B120.0
C7—C8—H8A119.5C15B—C16B—H16B120.0
C9—C8—H8A119.5C16B—C17B—C12B121.1 (11)
N1—C9—C8118.8 (2)C16B—C17B—H17B119.5
N1—C9—C10119.6 (2)C12B—C17B—H17B119.5
C8—C9—C10121.6 (2)O1B—C18B—C19B105.9 (8)
C11A—C10—C9121.2 (6)O1B—C18B—H18C110.6
C11B—C10—C9127.1 (10)C19B—C18B—H18C110.6
C11A—C10—H10A119.1O1B—C18B—H18D110.6
C11B—C10—H10A112.9C19B—C18B—H18D110.6
C9—C10—H10A119.8H18C—C18B—H18D108.7
C11A—C10—H10B121.6C18B—C19B—H19D109.5
C11B—C10—H10B115.8C18B—C19B—H19E109.5
C9—C10—H10B117.1H19D—C19B—H19E109.5
N1—C20—H20A109.5C18B—C19B—H19F109.5
N1—C20—H20B109.5H19D—C19B—H19F109.5
H20A—C20—H20B109.5H19E—C19B—H19F109.5
N1—C20—H20C109.5O3—S1—O2113.38 (14)
H20A—C20—H20C109.5O3—S1—O4113.36 (13)
H20B—C20—H20C109.5O2—S1—O4113.04 (13)
C15A—O1A—C18A117.4 (6)O3—S1—C21105.18 (13)
C10—C11A—C12A124.9 (12)O2—S1—C21106.51 (13)
C10—C11A—H11A117.5O4—S1—C21104.35 (13)
C12A—C11A—H11A117.5C22—C21—C26120.1 (3)
C13A—C12A—C17A117.9 (7)C22—C21—S1119.3 (2)
C13A—C12A—C11A118.9 (8)C26—C21—S1120.6 (2)
C17A—C12A—C11A123.2 (9)C21—C22—C23120.5 (3)
C14A—C13A—C12A121.6 (7)C21—C22—H22A119.8
C14A—C13A—H13A119.2C23—C22—H22A119.8
C12A—C13A—H13A119.2C24—C23—C22117.7 (3)
C15A—C14A—C13A119.9 (7)C24—C23—H23A121.2
C15A—C14A—H14A120.0C22—C23—H23A121.2
C13A—C14A—H14A120.0F1—C24—C25118.8 (3)
O1A—C15A—C14A117.2 (7)F1—C24—C23118.0 (3)
O1A—C15A—C16A122.7 (7)C25—C24—C23123.2 (3)
C14A—C15A—C16A120.0 (7)C24—C25—C26118.5 (3)
C15A—C16A—C17A119.9 (7)C24—C25—H25A120.7
C15A—C16A—H16A120.0C26—C25—H25A120.7
C17A—C16A—H16A120.0C25—C26—C21120.0 (3)
C16A—C17A—C12A120.5 (7)C25—C26—H26A120.0
C16A—C17A—H17A119.7C21—C26—H26A120.0
C9—N1—C1—C61.9 (4)O1A—C15A—C16A—C17A178.5 (10)
C20—N1—C1—C6177.6 (3)C14A—C15A—C16A—C17A2.1 (16)
C9—N1—C1—C2178.2 (3)C15A—C16A—C17A—C12A0.1 (15)
C20—N1—C1—C22.4 (4)C13A—C12A—C17A—C16A3.0 (17)
C6—C1—C2—C31.3 (4)C11A—C12A—C17A—C16A178.8 (13)
N1—C1—C2—C3178.7 (3)C15A—O1A—C18A—C19A177.1 (8)
C1—C2—C3—C42.1 (5)C11A—C10—C11B—C12B140 (19)
C2—C3—C4—C50.7 (5)C9—C10—C11B—C12B179.0 (19)
C3—C4—C5—C61.5 (5)C10—C11B—C12B—C17B6 (4)
C4—C5—C6—C12.2 (4)C10—C11B—C12B—C13B178 (3)
C4—C5—C6—C7176.9 (3)C17B—C12B—C13B—C14B4 (3)
N1—C1—C6—C5179.2 (3)C11B—C12B—C13B—C14B180 (2)
C2—C1—C6—C50.8 (4)C12B—C13B—C14B—C15B2 (3)
N1—C1—C6—C71.7 (4)C13B—C14B—C15B—O1B176.6 (19)
C2—C1—C6—C7178.4 (3)C13B—C14B—C15B—C16B0 (3)
C5—C6—C7—C8179.0 (3)C18B—O1B—C15B—C14B3 (2)
C1—C6—C7—C80.2 (4)C18B—O1B—C15B—C16B180.0 (14)
C6—C7—C8—C91.9 (5)C14B—C15B—C16B—C17B1 (3)
C1—N1—C9—C80.2 (4)O1B—C15B—C16B—C17B177.5 (16)
C20—N1—C9—C8179.3 (3)C15B—C16B—C17B—C12B1 (3)
C1—N1—C9—C10179.8 (3)C13B—C12B—C17B—C16B3 (3)
C20—N1—C9—C100.7 (4)C11B—C12B—C17B—C16B180 (2)
C7—C8—C9—N11.7 (4)C15B—O1B—C18B—C19B177.8 (12)
C7—C8—C9—C10178.3 (3)O3—S1—C21—C2248.2 (3)
N1—C9—C10—C11A178.9 (12)O2—S1—C21—C22168.8 (2)
C8—C9—C10—C11A1.0 (12)O4—S1—C21—C2271.3 (3)
N1—C9—C10—C11B173 (2)O3—S1—C21—C26134.5 (2)
C8—C9—C10—C11B7 (2)O2—S1—C21—C2613.9 (3)
C11B—C10—C11A—C12A36 (15)O4—S1—C21—C26105.9 (2)
C9—C10—C11A—C12A178.3 (12)C26—C21—C22—C232.0 (5)
C10—C11A—C12A—C13A173.8 (18)S1—C21—C22—C23175.2 (3)
C10—C11A—C12A—C17A8 (2)C21—C22—C23—C240.3 (6)
C17A—C12A—C13A—C14A4 (2)C22—C23—C24—F1178.5 (3)
C11A—C12A—C13A—C14A177.8 (15)C22—C23—C24—C251.1 (6)
C12A—C13A—C14A—C15A2 (2)F1—C24—C25—C26178.9 (3)
C18A—O1A—C15A—C14A179.0 (10)C23—C24—C25—C260.7 (6)
C18A—O1A—C15A—C16A2.5 (15)C24—C25—C26—C211.1 (4)
C13A—C14A—C15A—O1A177.8 (12)C22—C21—C26—C252.4 (4)
C13A—C14A—C15A—C16A1.2 (18)S1—C21—C26—C25174.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the C12B–C17B and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.553.456 (4)166
C8—H8A···O4ii0.932.413.306 (3)161
C10—H10A···O30.962.553.483 (4)164
C11A—H11A···O4ii0.932.523.408 (19)159
C17A—H17A···O30.932.583.510 (10)177
C20—H20B···O2i0.962.533.441 (4)158
C20—H20C···O30.962.443.085 (4)124
C25—H25A···O4iii0.932.553.264 (4)134
C13A—H13A···Cg5ii0.932.823.575 (10)139
C16A—H16A···Cg50.932.983.826 (9)151
C19A—H19B···Cg4iii0.962.993.862 (11)152
C13B—H13B···Cg5ii0.932.953.765 (16)147
C16B—H16B···Cg50.932.703.562 (13)155
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg4 and Cg5 are the centroids of the C12B–C17B and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O2i0.932.553.456 (4)166
C8—H8A···O4ii0.932.413.306 (3)161
C10—H10A···O30.962.553.483 (4)164
C11A—H11A···O4ii0.932.523.408 (19)159
C17A—H17A···O30.932.583.510 (10)177
C20—H20B···O2i0.962.533.441 (4)158
C20—H20C···O30.962.443.085 (4)124
C25—H25A···O4iii0.932.553.264 (4)134
C13A—H13A···Cg5ii0.932.823.575 (10)139
C16A—H16A···Cg50.932.983.826 (9)151
C19A—H19B···Cg4iii0.962.993.862 (11)152
C13B—H13B···Cg5ii0.932.953.765 (16)147
C16B—H16B···Cg50.932.703.562 (13)155
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

The authors thank Prince of Songkla University for a research grant. They also thank the Universiti Sains Malaysia for the APEX DE2012 grant No. 1002/PFIZIK/910323.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChantrapromma, S., Chanawanno, K. & Fun, H.-K. (2011). Acta Cryst. E67, o515–o516.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Chanawanno, K., Kobkeatthawin, T. & Chantrapromma, S. (2010). Acta Cryst. E66, o938–o939.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHopkins, K. L., Davies, R. H. & Threfall, E. J. (2005). Int. J. Antimicrob. Agents, 25, 358–373.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Halina, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationO'Donnell, F., Smyth, T. J. P., Ramachandran, V. N. & Smyth, W. F. (2010). Int. J. Antimicrob. Agents, 35, 30–38.  Web of Science PubMed CAS Google Scholar
First citationRuanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padakid, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds