metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iodido­bis­­(morpholine-4-carbodi­thio­ato-κ2S,S′)(1,10-phenanthroline-κ2N,N′)bis­­muth(III)

aDepartment of Chemistry and Chemical Engineering, Lvliang University, Lishi Shanxi 033000, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lifeng1982@163.com

(Received 26 November 2013; accepted 11 December 2013; online 14 December 2013)

The title compound, [Bi(C4H8NOS2)2I(C12H8N2)], is monomeric, with the BiIII atom chelated by the two S atoms of two morpholine-4-carbodi­thio­ate ligands and the two N atoms of a 1,10-phenanthroline ligand. An iodide ligand completes the coordination sphere, with the seven-coordinate BiIII atom adopting a highly distorted monocapped octa­hedral geometry.

Related literature

For di­thio­carbamates as ligands to transition metals, see: Xu et al. (2001[Xu, L. Z., Zhao, P. S. & Zhang, S. S. (2001). Chin. J. Chem. 19, 436-440.]); Bardaji et al. (1994[Bardaji, M., Connelly, N. G., Gimeno, M. C., Jimenez, J., Jones, P. G., Laguna, A. & Laguna, M. (1994). J. Chem. Soc. Dalton Trans. pp. 1163-1168.]). For bis­muth(III)–di­thio­carbamate complexes, see: Yin et al. (2003[Yin, H. D., Wang, C. H. & Xing, Q. J. (2003). Chin. J. Inorg. Chem. 19, 955-958.]). For related Bi/N structures, see: Baraanyi et al. (1977[Baraanyi, A. D., Cook, J. & Onyszchuk, M. (1977). Inorg. Nucl. Chem. Lett. 13, 385-394.]).

[Scheme 1]

Experimental

Crystal data
  • [Bi(C4H8NOS2)2I(C12H8N2)]

  • Mr = 836.62

  • Monoclinic, P 21 /c

  • a = 14.782 (4) Å

  • b = 10.883 (3) Å

  • c = 18.030 (4) Å

  • β = 100.035 (4)°

  • V = 2856.2 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.57 mm−1

  • T = 298 K

  • 0.52 × 0.42 × 0.13 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.111, Tmax = 0.440

  • 14581 measured reflections

  • 5013 independent reflections

  • 3883 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.00

  • 5013 reflections

  • 307 parameters

  • 162 restraints

  • H-atom parameters constrained

  • Δρmax = 2.14 e Å−3

  • Δρmin = −1.18 e Å−3

Table 1
Selected bond lengths (Å)

Bi1—S3 2.683 (2)
Bi1—S1 2.7032 (18)
Bi1—N3 2.738 (6)
Bi1—S2 2.775 (2)
Bi1—N4 2.831 (6)
Bi1—S4 2.962 (2)
Bi1—I1 3.1043 (9)

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dithiocarbamates have been known as effective ligands for transition metal ions for many years. They can form chelates (Xu et al., 2001) or act as bridging ligands (Bardaji et al., 1994). However, the chemistry of main-group metal complexes with dithiocarbamates has been less extensively studied, and only a few reports describing bismuth(III) dithiocarbamate complexes have appeared (Yin et al., 2003). As a continuation of our interest in sulfur-containing ligands, we report here the synthesis and structure of the title compound, (I).

The title compound, (I), is monomeric, with the Bi atom chelated by the S atoms of two morpholine-4-carbodithioate ligands and the two N atoms of 1,10-phenanthroline. An iodido ligand completes the coordination environment of the seven coordinate Bi atom (Fig. 1). The Bi atom is in a capped octahedral environment, with atoms S3 and N3 in axial positions, and atoms S1, S2, S4 and I1 in the equatorial plane. The remaining N atom (N4) of the 1,10-phenanthroline ligand caps the S2/S4/N3 face of this octahedron, giving a highly distorted capped octahedral coordination geometry. One of the bidentate pyrrolidinyldithiocarbamate ligands forms a significantly longer Bi—S bond [Bi1—S4 = 2.962 (2) Å] than the others in the complex. This variation in coordination strength is also signalled by the fact that the C7—S4 bond is significantly shorter than the other C—S bonds, suggesting some delocalization in the system. In addition, the chelating phenanthroline ligand is bound to the Bi atom through both of its N atoms. The Bi1—N3 and Bi1—N4 distances fall in the same range as in other Bi/N complexes (Baraanyi et al., 1977).

Related literature top

For dithiocarbamamates as ligands to transition metals, see: Xu et al. (2001); Bardaji et al. (1994). For bismuth(III)–dithiocarbamate complexes, see: Yin et al. (2003). For related Bi/N structures, see: Baraanyi et al. (1977).

Experimental top

To a stirred solution of BiI3 (0.15 mmol) in acetonitrile (ca 20 ml), phenanthroline (0.15 mmol) and sodium morpholine-4-carbodithioate (0.30 mmol) were added. A yellow coloured solution was obtained and, after concentration and cooling, small yellow crystals of the title compound were obtained. These were collected and dried in a vacuum [yield 82%, m.p. 452 K]. Analysis calculated for C24H28BiIN4S4: C 34.45, H 3.37, N 6.70%; found: C 32.78, H 3.24, N 6.77%.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms [C—H = 0.93 Å and Uiso=1.2Ueq (C) for aromatic, C—H =0.97 Å and Uiso = 1.2Ueq (C) for CH2 H atoms].

Structure description top

Dithiocarbamates have been known as effective ligands for transition metal ions for many years. They can form chelates (Xu et al., 2001) or act as bridging ligands (Bardaji et al., 1994). However, the chemistry of main-group metal complexes with dithiocarbamates has been less extensively studied, and only a few reports describing bismuth(III) dithiocarbamate complexes have appeared (Yin et al., 2003). As a continuation of our interest in sulfur-containing ligands, we report here the synthesis and structure of the title compound, (I).

The title compound, (I), is monomeric, with the Bi atom chelated by the S atoms of two morpholine-4-carbodithioate ligands and the two N atoms of 1,10-phenanthroline. An iodido ligand completes the coordination environment of the seven coordinate Bi atom (Fig. 1). The Bi atom is in a capped octahedral environment, with atoms S3 and N3 in axial positions, and atoms S1, S2, S4 and I1 in the equatorial plane. The remaining N atom (N4) of the 1,10-phenanthroline ligand caps the S2/S4/N3 face of this octahedron, giving a highly distorted capped octahedral coordination geometry. One of the bidentate pyrrolidinyldithiocarbamate ligands forms a significantly longer Bi—S bond [Bi1—S4 = 2.962 (2) Å] than the others in the complex. This variation in coordination strength is also signalled by the fact that the C7—S4 bond is significantly shorter than the other C—S bonds, suggesting some delocalization in the system. In addition, the chelating phenanthroline ligand is bound to the Bi atom through both of its N atoms. The Bi1—N3 and Bi1—N4 distances fall in the same range as in other Bi/N complexes (Baraanyi et al., 1977).

For dithiocarbamamates as ligands to transition metals, see: Xu et al. (2001); Bardaji et al. (1994). For bismuth(III)–dithiocarbamate complexes, see: Yin et al. (2003). For related Bi/N structures, see: Baraanyi et al. (1977).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity.
Iodidobis(morpholine-4-carbodithioato-κ2S,S')(1,10-phenanthroline-κ2N,N')bismuth(III) top
Crystal data top
[Bi(C4H8NOS2)2I(C12H8N2)]F(000) = 1600
Mr = 836.62Dx = 1.946 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4986 reflections
a = 14.782 (4) Åθ = 2.2–25.8°
b = 10.883 (3) ŵ = 7.57 mm1
c = 18.030 (4) ÅT = 298 K
β = 100.035 (4)°Block, orange-red
V = 2856.2 (12) Å30.52 × 0.42 × 0.13 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
5013 independent reflections
Radiation source: fine-focus sealed tube3883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.111, Tmax = 0.440k = 1212
14581 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0573P)2 + 0.7329P]
where P = (Fo2 + 2Fc2)/3
5013 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 2.14 e Å3
162 restraintsΔρmin = 1.18 e Å3
Crystal data top
[Bi(C4H8NOS2)2I(C12H8N2)]V = 2856.2 (12) Å3
Mr = 836.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.782 (4) ŵ = 7.57 mm1
b = 10.883 (3) ÅT = 298 K
c = 18.030 (4) Å0.52 × 0.42 × 0.13 mm
β = 100.035 (4)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5013 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3883 reflections with I > 2σ(I)
Tmin = 0.111, Tmax = 0.440Rint = 0.051
14581 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036162 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.00Δρmax = 2.14 e Å3
5013 reflectionsΔρmin = 1.18 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.239399 (17)0.06921 (2)0.229937 (14)0.04234 (11)
I10.14675 (4)0.32613 (5)0.21768 (3)0.06751 (18)
N10.5244 (5)0.0651 (5)0.1730 (4)0.0645 (17)
N20.2870 (4)0.0260 (6)0.4879 (3)0.0530 (15)
N30.1809 (4)0.0545 (5)0.0775 (3)0.0480 (14)
N40.1352 (4)0.1340 (5)0.1647 (3)0.0527 (15)
S10.38192 (12)0.19983 (16)0.19532 (10)0.0474 (4)
S20.38367 (15)0.07187 (17)0.19689 (14)0.0632 (6)
S30.33747 (13)0.1194 (2)0.36628 (11)0.0568 (5)
S40.17373 (15)0.0365 (2)0.36236 (12)0.0680 (6)
C10.4392 (5)0.0635 (6)0.1872 (4)0.0510 (17)
C20.5748 (6)0.1789 (8)0.1643 (6)0.075 (2)
H2A0.53780.24890.17360.090*
H2B0.63100.18050.20110.090*
C30.5971 (7)0.1885 (8)0.0886 (6)0.088 (2)
H3A0.63220.26280.08460.106*
H3B0.54090.19290.05170.106*
C40.6531 (9)0.0761 (9)0.0728 (8)0.105 (3)
H4A0.71200.07630.10650.126*
H4B0.66440.07920.02150.126*
C50.5999 (8)0.0423 (9)0.0847 (6)0.091 (3)
H5A0.54430.04630.04710.110*
H5B0.63730.11320.07800.110*
C60.5759 (7)0.0457 (8)0.1590 (6)0.078 (2)
H6A0.63140.05150.19650.093*
H6B0.53890.11800.16360.093*
C70.2667 (5)0.0334 (6)0.4124 (4)0.0460 (16)
C80.3662 (6)0.0842 (7)0.5339 (4)0.060 (2)
H8A0.34530.14270.56780.072*
H8B0.40070.12890.50150.072*
C90.4270 (6)0.0084 (8)0.5785 (5)0.066 (2)
H9A0.47730.03340.61030.079*
H9B0.45290.06170.54450.079*
C100.3754 (7)0.0844 (8)0.6265 (5)0.078 (3)
H10A0.35710.03300.66530.093*
H10B0.41520.14870.65110.093*
C110.2915 (7)0.1413 (8)0.5798 (5)0.076 (3)
H11A0.25590.18260.61280.091*
H11B0.31040.20240.54650.091*
C120.2312 (6)0.0449 (9)0.5330 (4)0.071 (3)
H12A0.18110.08520.49990.085*
H12B0.20500.00990.56600.085*
C130.1992 (5)0.1464 (8)0.0334 (5)0.060 (2)
H130.23240.21300.05610.072*
C140.1719 (6)0.1489 (9)0.0440 (5)0.066 (2)
H140.18680.21540.07190.079*
C150.1235 (5)0.0534 (8)0.0783 (4)0.059 (2)
H150.10500.05370.13030.070*
C160.1010 (5)0.0468 (7)0.0353 (4)0.0534 (19)
C170.1315 (4)0.0417 (6)0.0438 (4)0.0435 (16)
C180.1079 (4)0.1412 (6)0.0895 (4)0.0448 (16)
C190.0559 (5)0.2401 (7)0.0535 (5)0.056 (2)
C200.0328 (6)0.3350 (7)0.1006 (6)0.069 (2)
H200.00140.40210.07960.083*
C210.0604 (6)0.3282 (7)0.1759 (6)0.074 (3)
H210.04500.39000.20710.088*
C220.1124 (6)0.2273 (8)0.2064 (5)0.072 (2)
H220.13230.22480.25820.087*
C230.0497 (5)0.1488 (9)0.0675 (5)0.066 (2)
H230.03040.15110.11940.080*
C240.0282 (6)0.2412 (8)0.0262 (5)0.069 (2)
H240.00520.30740.04940.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.04840 (17)0.03802 (17)0.03946 (17)0.00219 (11)0.00451 (12)0.00165 (11)
I10.0847 (4)0.0605 (4)0.0538 (3)0.0195 (3)0.0024 (3)0.0045 (2)
N10.068 (4)0.046 (3)0.086 (4)0.001 (3)0.031 (3)0.001 (3)
N20.065 (4)0.056 (4)0.036 (3)0.010 (3)0.002 (3)0.003 (3)
N30.051 (3)0.048 (4)0.045 (3)0.006 (3)0.006 (3)0.001 (3)
N40.066 (4)0.045 (4)0.050 (4)0.011 (3)0.016 (3)0.001 (3)
S10.0550 (10)0.0340 (9)0.0541 (11)0.0003 (8)0.0121 (8)0.0044 (8)
S20.0688 (13)0.0349 (10)0.0890 (16)0.0004 (9)0.0228 (12)0.0065 (9)
S30.0581 (11)0.0625 (12)0.0457 (11)0.0173 (10)0.0026 (9)0.0103 (9)
S40.0658 (13)0.0913 (16)0.0444 (11)0.0299 (12)0.0026 (10)0.0025 (11)
C10.061 (4)0.039 (4)0.055 (4)0.003 (3)0.013 (3)0.007 (3)
C20.080 (5)0.057 (4)0.094 (5)0.004 (4)0.034 (4)0.000 (4)
C30.108 (6)0.065 (5)0.100 (6)0.010 (5)0.040 (5)0.014 (4)
C40.122 (7)0.084 (6)0.124 (7)0.021 (5)0.063 (6)0.012 (5)
C50.112 (6)0.065 (5)0.103 (6)0.023 (5)0.033 (5)0.004 (5)
C60.084 (5)0.059 (4)0.098 (5)0.014 (4)0.038 (4)0.008 (4)
C70.043 (4)0.044 (4)0.051 (4)0.003 (3)0.008 (3)0.007 (3)
C80.074 (5)0.059 (5)0.040 (4)0.004 (4)0.010 (4)0.001 (4)
C90.061 (5)0.070 (6)0.060 (5)0.001 (4)0.007 (4)0.010 (4)
C100.087 (7)0.083 (7)0.061 (6)0.003 (5)0.005 (5)0.025 (5)
C110.099 (7)0.072 (6)0.060 (6)0.020 (5)0.021 (5)0.012 (5)
C120.069 (5)0.106 (7)0.039 (4)0.018 (5)0.012 (4)0.009 (4)
C130.057 (5)0.060 (5)0.061 (5)0.008 (4)0.003 (4)0.017 (4)
C140.063 (5)0.081 (6)0.055 (5)0.007 (4)0.014 (4)0.021 (5)
C150.056 (5)0.082 (6)0.036 (4)0.014 (4)0.005 (4)0.006 (4)
C160.041 (4)0.074 (5)0.046 (4)0.012 (4)0.008 (3)0.003 (4)
C170.037 (3)0.050 (4)0.045 (4)0.007 (3)0.012 (3)0.001 (3)
C180.038 (4)0.042 (4)0.055 (5)0.003 (3)0.010 (3)0.004 (3)
C190.045 (4)0.049 (5)0.076 (6)0.001 (3)0.012 (4)0.018 (4)
C200.070 (5)0.043 (5)0.094 (7)0.016 (4)0.015 (5)0.024 (5)
C210.090 (6)0.039 (5)0.097 (8)0.014 (4)0.029 (6)0.007 (5)
C220.098 (7)0.059 (5)0.063 (6)0.010 (5)0.024 (5)0.007 (4)
C230.057 (5)0.075 (6)0.063 (5)0.003 (4)0.001 (4)0.023 (5)
C240.057 (5)0.062 (6)0.083 (7)0.003 (4)0.004 (4)0.028 (5)
Geometric parameters (Å, º) top
Bi1—S32.683 (2)C8—C91.489 (11)
Bi1—S12.7032 (18)C8—H8A0.9700
Bi1—N32.738 (6)C8—H8B0.9700
Bi1—S22.775 (2)C9—C101.499 (11)
Bi1—N42.831 (6)C9—H9A0.9700
Bi1—S42.962 (2)C9—H9B0.9700
Bi1—I13.1043 (9)C10—C111.506 (13)
N1—C11.328 (9)C10—H10A0.9700
N1—C21.468 (10)C10—H10B0.9700
N1—C61.472 (10)C11—C121.532 (12)
N2—C71.344 (9)C11—H11A0.9700
N2—C81.456 (10)C11—H11B0.9700
N2—C121.472 (9)C12—H12A0.9700
N3—C131.335 (9)C12—H12B0.9700
N3—C171.358 (9)C13—C141.383 (11)
N4—C221.341 (10)C13—H130.9300
N4—C181.347 (9)C14—C151.349 (11)
S1—C11.727 (7)C14—H140.9300
S2—C11.710 (7)C15—C161.411 (11)
S3—C71.722 (7)C15—H150.9300
S4—C71.689 (7)C16—C231.411 (11)
C2—C31.463 (13)C16—C171.420 (10)
C2—H2A0.9700C17—C181.440 (9)
C2—H2B0.9700C18—C191.413 (10)
C3—C41.531 (12)C19—C201.416 (11)
C3—H3A0.9700C19—C241.424 (11)
C3—H3B0.9700C20—C211.350 (13)
C4—C51.544 (13)C20—H200.9300
C4—H4A0.9700C21—C221.397 (11)
C4—H4B0.9700C21—H210.9300
C5—C61.445 (13)C22—H220.9300
C5—H5A0.9700C23—C241.323 (12)
C5—H5B0.9700C23—H230.9300
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700
S3—Bi1—S177.65 (6)N2—C7—S4122.1 (5)
S3—Bi1—N3163.15 (13)N2—C7—S3118.4 (5)
S1—Bi1—N385.50 (13)S4—C7—S3119.5 (4)
S3—Bi1—S289.80 (7)N2—C8—C9111.3 (7)
S1—Bi1—S265.31 (6)N2—C8—H8A109.4
N3—Bi1—S282.66 (13)C9—C8—H8A109.4
S3—Bi1—N4135.03 (13)N2—C8—H8B109.4
S1—Bi1—N4134.78 (12)C9—C8—H8B109.4
N3—Bi1—N458.91 (17)H8A—C8—H8B108.0
S2—Bi1—N482.04 (13)C8—C9—C10111.4 (7)
S3—Bi1—S462.69 (6)C8—C9—H9A109.3
S1—Bi1—S4140.22 (6)C10—C9—H9A109.3
N3—Bi1—S4134.08 (12)C8—C9—H9B109.3
S2—Bi1—S4109.28 (7)C10—C9—H9B109.3
N4—Bi1—S478.49 (12)H9A—C9—H9B108.0
S3—Bi1—I192.47 (5)C9—C10—C11110.9 (7)
S1—Bi1—I182.06 (4)C9—C10—H10A109.5
N3—Bi1—I185.58 (12)C11—C10—H10A109.5
S2—Bi1—I1145.99 (4)C9—C10—H10B109.5
N4—Bi1—I1118.20 (13)C11—C10—H10B109.5
S4—Bi1—I1101.82 (5)H10A—C10—H10B108.1
C1—N1—C2123.2 (6)C10—C11—C12111.7 (7)
C1—N1—C6124.0 (6)C10—C11—H11A109.3
C2—N1—C6112.7 (7)C12—C11—H11A109.3
C7—N2—C8124.4 (6)C10—C11—H11B109.3
C7—N2—C12122.9 (6)C12—C11—H11B109.3
C8—N2—C12112.7 (6)H11A—C11—H11B107.9
C13—N3—C17117.4 (6)N2—C12—C11109.6 (7)
C13—N3—Bi1119.6 (5)N2—C12—H12A109.8
C17—N3—Bi1123.1 (4)C11—C12—H12A109.8
C22—N4—C18117.3 (7)N2—C12—H12B109.8
C22—N4—Bi1122.0 (5)C11—C12—H12B109.8
C18—N4—Bi1120.6 (4)H12A—C12—H12B108.2
C1—S1—Bi188.9 (2)N3—C13—C14124.3 (8)
C1—S2—Bi186.9 (3)N3—C13—H13117.9
C7—S3—Bi193.2 (3)C14—C13—H13117.9
C7—S4—Bi184.6 (2)C15—C14—C13119.0 (8)
N1—C1—S2121.3 (5)C15—C14—H14120.5
N1—C1—S1120.0 (5)C13—C14—H14120.5
S2—C1—S1118.7 (4)C14—C15—C16120.1 (7)
C3—C2—N1111.2 (8)C14—C15—H15120.0
C3—C2—H2A109.4C16—C15—H15120.0
N1—C2—H2A109.4C23—C16—C15122.9 (8)
C3—C2—H2B109.4C23—C16—C17119.9 (8)
N1—C2—H2B109.4C15—C16—C17117.2 (7)
H2A—C2—H2B108.0N3—C17—C16122.1 (7)
C2—C3—C4109.5 (8)N3—C17—C18119.2 (6)
C2—C3—H3A109.8C16—C17—C18118.7 (7)
C4—C3—H3A109.8N4—C18—C19123.4 (7)
C2—C3—H3B109.8N4—C18—C17118.2 (6)
C4—C3—H3B109.8C19—C18—C17118.4 (7)
H3A—C3—H3B108.2C18—C19—C20116.6 (8)
C3—C4—C5109.6 (8)C18—C19—C24120.6 (8)
C3—C4—H4A109.7C20—C19—C24122.8 (8)
C5—C4—H4A109.7C21—C20—C19120.1 (7)
C3—C4—H4B109.7C21—C20—H20120.0
C5—C4—H4B109.7C19—C20—H20120.0
H4A—C4—H4B108.2C20—C21—C22119.2 (8)
C6—C5—C4111.3 (9)C20—C21—H21120.4
C6—C5—H5A109.4C22—C21—H21120.4
C4—C5—H5A109.4N4—C22—C21123.3 (9)
C6—C5—H5B109.4N4—C22—H22118.3
C4—C5—H5B109.4C21—C22—H22118.3
H5A—C5—H5B108.0C24—C23—C16122.1 (8)
C5—C6—N1110.8 (8)C24—C23—H23119.0
C5—C6—H6A109.5C16—C23—H23119.0
N1—C6—H6A109.5C23—C24—C19120.4 (8)
C5—C6—H6B109.5C23—C24—H24119.8
N1—C6—H6B109.5C19—C24—H24119.8
H6A—C6—H6B108.1
Selected bond lengths (Å) top
Bi1—S32.683 (2)Bi1—N42.831 (6)
Bi1—S12.7032 (18)Bi1—S42.962 (2)
Bi1—N32.738 (6)Bi1—I13.1043 (9)
Bi1—S22.775 (2)
 

Acknowledgements

We acknowledge financial support from the Luliang University Campus Youth Foundation.

References

First citationBaraanyi, A. D., Cook, J. & Onyszchuk, M. (1977). Inorg. Nucl. Chem. Lett. 13, 385–394.  CrossRef Web of Science Google Scholar
First citationBardaji, M., Connelly, N. G., Gimeno, M. C., Jimenez, J., Jones, P. G., Laguna, A. & Laguna, M. (1994). J. Chem. Soc. Dalton Trans. pp. 1163–1168.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationXu, L. Z., Zhao, P. S. & Zhang, S. S. (2001). Chin. J. Chem. 19, 436–440.  CrossRef CAS Google Scholar
First citationYin, H. D., Wang, C. H. & Xing, Q. J. (2003). Chin. J. Inorg. Chem. 19, 955–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds