[Journal logo]

Volume 70 
Part 1 
Pages o83-o84  
January 2014  

Received 28 November 2013
Accepted 8 December 2013
Online 21 December 2013

Key indicators
Single-crystal X-ray study
T = 123 K
Mean [sigma](C-C) = 0.006 Å
Disorder in main residue
R = 0.042
wR = 0.096
Data-to-parameter ratio = 16.0
Details
Open access

1-(2,3-Di­hydroxy­prop­yl)-4-{2-[4-(di­methyl­amino)­phen­yl]vin­yl}pyridinium chloride

aCallaghan Innovation, PO Box 31-310, Lower Hutt, New Zealand
Correspondence e-mail: g.gainsford@irl.cri.nz

The title compound, C18H23N2O2+·Cl-, crystallizes with two independent cations and anions per cell. Each cation has twofold rotational disorder about the linking vinyl groups but with unequal occupancies [0.963 (5):0.037 (5) and 0.860 (8):0.140 (8)]. The two independent cations are close to being related by an inversion centre but the data does not support the expected centrosymmetric space-group assignment. The conclusion is that the differing rotational disorder has lead to an overall non-centrosymmetric lattice. In the crystal, the mol­ecules pack in layers parallel to (133) and (-13-3), chain-linked with motif C12(7) by the di­hydroxy­propyl O-H...Cl...H-O hydrogen bonds. Other lattice binding is provided by O-H...Cl, C-H...Cl and C-H...N inter­actions.

Related literature

For applications of organic push-pull chromophores, see: Kay et al. (2004[Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321-1330.]); Bass et al. (2001[Bass, M., Enoch, J. M., Stryland, E. W. V. & Wolfe, W. L. (2001). In Handbook of Optics IV: Fibre Optics and Nonlinear Optics. New York: Academic Press.]); Prasad et al. (1988[Prasad, P. N. & Ulrich, D. R. (1988). In Nonlinear Optical and Electro active Polymers. New York: Plenum.]). For a related example of rotational disorder, see: Moreno-Fuquen et al. (2009[Moreno-Fuquen, R., Dvries, R., Theodoro, J. & Ellena, J. (2009). Acta Cryst. E65, o1371.]). For details of the synthesis, see: Kay et al. (2001[Kay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Barnes, T. H., McKinnie, I. T. & Wyss, C. P. (2001). J. Mater. Chem. 11, 996-1002.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C18H23N2O2+·Cl-

  • Mr = 334.83

  • Monoclinic, P 21

  • a = 8.4452 (3) Å

  • b = 13.2433 (5) Å

  • c = 15.3649 (6) Å

  • [beta] = 100.077 (3)°

  • V = 1691.94 (11) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.24 mm-1

  • T = 123 K

  • 0.55 × 0.10 × 0.09 mm

Data collection
  • Bruker-Nonius APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.651, Tmax = 0.746

  • 38193 measured reflections

  • 7581 independent reflections

  • 5545 reflections with I > 2[sigma](I)

  • Rint = 0.063

Refinement
  • R[F2 > 2[sigma](F2)] = 0.042

  • wR(F2) = 0.096

  • S = 1.02

  • 7581 reflections

  • 474 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.18 e Å-3

  • [Delta][rho]min = -0.20 e Å-3

  • Absolute structure: Flack parameter determined using 2152 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.07 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1O...Cl1 0.83 (3) 2.20 (3) 3.024 (3) 174 (4)
O2-H2O...Cl1i 0.83 (3) 2.27 (3) 3.086 (3) 169 (4)
C2-H2...O2'i 0.95 2.40 3.222 (5) 145
C5A-H5A...Cl2ii 0.95 2.78 3.687 (5) 159
C8-H8A...N2ii 0.99 2.65 3.637 (5) 176
O1'-H1O'...Cl2 0.84 (3) 2.25 (3) 3.083 (3) 171 (4)
O2'-H2O'...Cl2iii 0.83 (3) 2.29 (3) 3.104 (3) 169 (4)
C6'-H6'...O2iii 0.95 2.40 3.236 (6) 147
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5376 ).


Acknowledgements

This work was supported by the New Zealand Foundation for Science and Innovation grant (contract C08X0704). We thank Dr C. Fitchett of the University of Canterbury, New Zealand, for the data collection.

References

Bass, M., Enoch, J. M., Stryland, E. W. V. & Wolfe, W. L. (2001). In Handbook of Optics IV: Fibre Optics and Nonlinear Optics. New York: Academic Press.
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  [CrossRef] [ChemPort] [Web of Science]
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.  [CrossRef] [IUCr Journals]
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Kay, A. J., Woolhouse, A. D., Gainsford, G. J., Haskell, T. G., Barnes, T. H., McKinnie, I. T. & Wyss, C. P. (2001). J. Mater. Chem. 11, 996-1002.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater. Chem. 14, 1321-1330.  [Web of Science] [CrossRef] [ChemPort]
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Moreno-Fuquen, R., Dvries, R., Theodoro, J. & Ellena, J. (2009). Acta Cryst. E65, o1371.  [CSD] [CrossRef] [IUCr Journals]
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.  [CrossRef] [ChemPort] [IUCr Journals]
Prasad, P. N. & Ulrich, D. R. (1988). In Nonlinear Optical and Electro active Polymers. New York: Plenum.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2014). E70, o83-o84   [ doi:10.1107/S1600536813033254 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.