supplementary materials


tk5276 scheme

Acta Cryst. (2014). E70, m14-m15    [ doi:10.1107/S1600536813032480 ]

Tri-[mu]-chlorido-bis­[([eta]5-penta­methyl­cyclo­penta­dien­yl)rhodium(III)] hexa­fluorido­phosphate from synchrotron radiation

L. Ezzedinloo, S. Shrestha, M. Bhadbhade and S. Colbran

Abstract top

In the title complex salt, [{([eta]5-C5Me5)Rh}2([mu]-Cl)3]PF6, the dinuclear, single-charged cation is formed by the cojoining of two classic ([eta]5-C5Me5)RhCl3 `piano-stool' units by bridging of the three choride ligand `legs'. The crystal structure shows several close H...F contacts between the hexa­fluorido­phosphate counter-ions and the C5Me5 ligands.

Complexes of the (η5-C5Me5)Rh(III) group, modified by innumerable co-ligands, exhibit a diverse and very useful chemistry, particularly as homogeneous catalysts; see for example: McSkimming et al. (2013), Brewster et al. (2013), Yu, Wan, Li (2013), Yu, Yu, Xiao, et al. (2013), Becerra et al. (2013) and Gupta et al. (2013). Typically, (η5-C5Me5)Rh(III) complexes are made from reactions of the precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969 and Booth et al., 1969) with the co-ligand of choice followed by anion metathesis, frequently using a simple PF6- salt, to assist isolation and purification of the targeted complex. The title complex salt, [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6], is a very common side product. top

Experimental top

Synthesis and crystallization top

Precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969 and Booth et al., 1969) was dissolved in methanol and treated with a saturated aqueous solution of K[PF6]. The orange precipitate was collected, and was recrystallized from acetone–methanol overnight at 4 °C to afford the thin orange crystalline needles of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] that were used for this X-ray crystal structure determination.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were geometrically placed (C—H = 0.96 Å) and refined as riding with Uiso(H) = 1.25Ueq(C).

Results and discussion top

Fig. 1 presents a view of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation and the [PF6]- anion. In the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation, the two independent RhIII ions each exhibit pseudo-o­cta­hedral geometry with a C5Me5 group occupying three coordination sites and three bridging chlorido ligands the other three. The Rh–centroid (C5) distances are 2.12 and 2.15 Å and the mean Rh–Cl(bridge) bond length is 2.455 Å. The intra­molecular Rh–Rh distance is 3.21 Å, consistent with the absence of a metal–metal bond as predicted by the 18-electron rule, and the mean Rh–Cl–Rh angle is noticeably acute at 82°.

Fig. 2 presents a 'ball-and-stick view' of the packing of the ions in the crystal structure. The hexafluoridophosphate counterions lie in layers parallel to the b-axis that inter­leave between layers of the cations. There are close C—H···F contacts, Table 1, between the [PF6]- ions and the methyl groups of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cations.

Related literature top

Complexes of the (η5-C5Me5)RhIII group, modified by innumerable co-ligands, exhibit a diverse and very useful chemistry, particularly as homogeneous catalysts, see, for example: McSkimming et al. (2013); Brewster et al. (2013), Yu, Wan & Li (2013), Yu, Yu, Xiao, et al. (2013), Becerra et al. (2013); Gupta et al. (2013). The title complex salt, [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6], is a commonly encountered impurity produced in reactions of the much-used RhIII precursor [(η5-C5Me5)RhCl2]2 (Kang et al., 1969; Booth et al., 1969). [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] was first reported by Koelle (1990), and often (co-)crystallizes with or instead of the desired product of a reaction employing [(η5-C5Me5)RhCl2]2 and anion metathesis with a simple [PF6]- salt. The unit-cell parameters for [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] are not available and, therefore, we report its crystal structure herein. Several crystal structures of the [{(η5-C5Me5)Rh}2(µ-Cl)3]+ cation with other counter-ions have been reported, including salts with [PtCl5(CH3CONH2)]- and [PtCl6]2- (Umakoshi et al., 1991), [{(C6F5)2Pd(µ-Cl)}2]2- (Ara et al., 2001), and BF4- (Liu et al., 2004) anions.

Computing details top

Data collection: BLU-ICE (McPhillips et al., 2002); cell refinement: XDS (Kabsch, 1993); data reduction: XDS (Kabsch, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and OLEX-2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2013); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] showing 50% displacement ellipsoids at 100 K and the atom labelling scheme.
[Figure 2] Fig. 2. View of the crystal structure of [{(η5-C5Me5)Rh}2(µ-Cl)3][PF6] illustrating the segregation of cations and anions into interleaved layers packed parallel to the b-axis and with the shorter H···F cation-anion contacts highlighted by dashed lines.
Tri-µ-chlorido-bis[(η5-pentamethylcyclopentadienyl)rhodium(III)] hexafluoridophosphate top
Crystal data top
[Rh2(C10H15)2Cl3]PF6Z = 2
Mr = 727.58F(000) = 720
Triclinic, P1Dx = 1.836 Mg m3
a = 8.0970 (16) ÅSynchrotron radiation, λ = 0.71073 Å
b = 12.604 (3) ÅCell parameters from 9980 reflections
c = 14.441 (3) Åθ = 2.5–22.5°
α = 64.28 (3)°µ = 1.67 mm1
β = 82.42 (3)°T = 100 K
γ = 86.70 (3)°Plate, yellow
V = 1316.1 (6) Å30.02 × 0.02 × 0.01 mm
Data collection top
3-BM1 Australian Synchrotron
diffractometer
4064 reflections with I > 2σ(I)
Radiation source: Synchrotron BMRint = 0.021
Si<111> monochromatorθmax = 25.0°, θmin = 1.8°
Phi Scan scansh = 99
15787 measured reflectionsk = 1414
4158 independent reflectionsl = 1717
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.018P)2 + 3.0381P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4158 reflectionsΔρmax = 1.03 e Å3
299 parametersΔρmin = 0.57 e Å3
Crystal data top
[Rh2(C10H15)2Cl3]PF6γ = 86.70 (3)°
Mr = 727.58V = 1316.1 (6) Å3
Triclinic, P1Z = 2
a = 8.0970 (16) ÅSynchrotron radiation, λ = 0.71073 Å
b = 12.604 (3) ŵ = 1.67 mm1
c = 14.441 (3) ÅT = 100 K
α = 64.28 (3)°0.02 × 0.02 × 0.01 mm
β = 82.42 (3)°
Data collection top
3-BM1 Australian Synchrotron
diffractometer
Rint = 0.021
15787 measured reflectionsθmax = 25.0°
4158 independent reflectionsStandard reflections: 0
4064 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.060Δρmax = 1.03 e Å3
S = 1.09Δρmin = 0.57 e Å3
4158 reflectionsAbsolute structure: ?
299 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 is against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2; conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh1A0.10004 (3)0.61463 (2)0.24284 (2)0.01511 (8)
C1A0.1288 (4)0.7995 (2)0.1858 (2)0.0193 (6)
C2A0.0856 (4)0.7501 (2)0.2954 (2)0.0204 (6)
C3A0.0722 (4)0.6920 (2)0.3203 (3)0.0216 (6)
C4A0.1288 (4)0.7091 (2)0.2238 (2)0.0205 (6)
C5A0.0069 (4)0.7767 (2)0.1414 (2)0.0195 (6)
C6A0.2816 (4)0.8692 (3)0.1264 (3)0.0270 (7)
H6AA0.37260.84140.16750.041*
H6AB0.26160.95090.11020.041*
H6AC0.30890.86020.06350.041*
C7A0.1867 (4)0.7580 (3)0.3717 (3)0.0290 (7)
H7AA0.16210.69180.43760.044*
H7AB0.15990.82960.37860.044*
H7AC0.30300.75760.34780.044*
C8A0.1641 (4)0.6277 (3)0.4248 (3)0.0288 (7)
H8AA0.21670.55960.42830.043*
H8AB0.24730.67840.43800.043*
H8AC0.08770.60350.47580.043*
C9A0.2884 (4)0.6647 (3)0.2138 (3)0.0283 (7)
H9AA0.27740.65440.15120.043*
H9AB0.37540.72050.21160.043*
H9AC0.31550.59060.27210.043*
C10A0.0175 (4)0.8173 (3)0.0292 (3)0.0258 (7)
H10A0.09270.82430.00690.039*
H10B0.07200.89250.00250.039*
H10C0.08000.76130.01930.039*
Cl10.34572 (8)0.51534 (6)0.32353 (6)0.02165 (16)
Cl20.21608 (12)0.55011 (7)0.11061 (6)0.0337 (2)
Cl30.00889 (8)0.40972 (6)0.32708 (6)0.02133 (16)
Rh1B0.27583 (3)0.37186 (2)0.26318 (2)0.01627 (8)
C1B0.5043 (4)0.2970 (2)0.2305 (2)0.0200 (6)
C2B0.4541 (4)0.2404 (2)0.3399 (2)0.0208 (6)
C3B0.2944 (4)0.1876 (2)0.3568 (3)0.0230 (6)
C4B0.2479 (4)0.2083 (2)0.2568 (3)0.0226 (6)
C5B0.3795 (4)0.2738 (2)0.1797 (2)0.0212 (6)
C6B0.6637 (4)0.3625 (3)0.1790 (3)0.0250 (7)
H6BA0.64650.42360.11220.038*
H6BB0.74760.30910.17100.038*
H6BC0.69950.39680.22080.038*
C7B0.5525 (4)0.2373 (3)0.4214 (3)0.0254 (7)
H7BA0.61120.31030.39670.038*
H7BB0.63090.17350.43730.038*
H7BC0.47850.22600.48260.038*
C8B0.1955 (4)0.1180 (3)0.4585 (3)0.0305 (7)
H8BA0.22700.14000.50950.046*
H8BB0.21660.03560.47910.046*
H8BC0.07900.13360.45230.046*
C9B0.0951 (4)0.1628 (3)0.2385 (3)0.0310 (7)
H9BA0.00700.15530.29250.046*
H9BB0.11830.08730.23860.046*
H9BC0.06180.21670.17280.046*
C10B0.3836 (4)0.3111 (3)0.0667 (3)0.0273 (7)
H10D0.27560.33940.04600.041*
H10E0.41370.24510.05130.041*
H10F0.46420.37270.02970.041*
P10.65562 (9)0.00832 (6)0.23670 (6)0.02081 (17)
F10.6989 (3)0.12409 (17)0.1566 (2)0.0543 (7)
F20.6292 (4)0.0304 (2)0.32864 (19)0.0580 (8)
F30.6095 (3)0.14070 (16)0.31547 (17)0.0444 (6)
F40.6793 (3)0.04801 (18)0.14494 (16)0.0435 (5)
F50.4642 (2)0.01935 (18)0.2209 (2)0.0425 (5)
F60.8456 (3)0.0364 (2)0.2528 (3)0.0699 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh1A0.01543 (12)0.01295 (12)0.01698 (14)0.00227 (8)0.00149 (9)0.00688 (9)
C1A0.0213 (14)0.0129 (13)0.0248 (17)0.0034 (11)0.0064 (13)0.0084 (11)
C2A0.0217 (14)0.0168 (13)0.0266 (17)0.0056 (11)0.0052 (13)0.0129 (12)
C3A0.0227 (14)0.0176 (14)0.0253 (18)0.0061 (11)0.0002 (13)0.0113 (12)
C4A0.0182 (14)0.0162 (13)0.0274 (18)0.0059 (11)0.0025 (13)0.0105 (12)
C5A0.0202 (14)0.0122 (12)0.0249 (17)0.0029 (10)0.0050 (13)0.0067 (11)
C6A0.0234 (15)0.0205 (15)0.0341 (19)0.0017 (12)0.0068 (14)0.0078 (13)
C7A0.0357 (17)0.0268 (16)0.0307 (19)0.0050 (13)0.0125 (15)0.0163 (14)
C8A0.0305 (16)0.0269 (16)0.0252 (19)0.0057 (13)0.0045 (15)0.0106 (14)
C9A0.0197 (15)0.0236 (15)0.043 (2)0.0006 (12)0.0042 (14)0.0151 (14)
C10A0.0277 (16)0.0245 (15)0.0255 (18)0.0022 (12)0.0082 (14)0.0098 (13)
Cl10.0140 (3)0.0187 (3)0.0367 (4)0.0013 (2)0.0064 (3)0.0153 (3)
Cl20.0535 (5)0.0247 (4)0.0181 (4)0.0177 (3)0.0013 (4)0.0077 (3)
Cl30.0147 (3)0.0172 (3)0.0337 (4)0.0003 (2)0.0044 (3)0.0121 (3)
Rh1B0.01803 (12)0.01362 (12)0.01822 (14)0.00375 (8)0.00374 (9)0.00785 (9)
C1B0.0216 (14)0.0185 (13)0.0239 (17)0.0078 (11)0.0064 (13)0.0127 (12)
C2B0.0217 (14)0.0150 (13)0.0265 (18)0.0089 (11)0.0085 (13)0.0093 (12)
C3B0.0273 (15)0.0141 (13)0.0277 (18)0.0060 (11)0.0076 (14)0.0086 (12)
C4B0.0249 (15)0.0163 (13)0.0303 (18)0.0043 (11)0.0066 (14)0.0131 (12)
C5B0.0227 (14)0.0179 (14)0.0278 (18)0.0072 (11)0.0071 (13)0.0141 (12)
C6B0.0224 (15)0.0253 (15)0.0315 (19)0.0044 (12)0.0046 (14)0.0162 (14)
C7B0.0280 (16)0.0258 (15)0.0238 (18)0.0053 (12)0.0089 (14)0.0110 (13)
C8B0.0335 (17)0.0220 (15)0.0293 (19)0.0002 (13)0.0017 (15)0.0054 (13)
C9B0.0277 (16)0.0284 (16)0.043 (2)0.0001 (13)0.0100 (16)0.0198 (15)
C10B0.0297 (16)0.0304 (16)0.0290 (19)0.0074 (13)0.0097 (15)0.0187 (14)
P10.0211 (4)0.0157 (4)0.0277 (5)0.0025 (3)0.0044 (3)0.0112 (3)
F10.0556 (14)0.0169 (10)0.0746 (19)0.0048 (9)0.0307 (13)0.0151 (10)
F20.100 (2)0.0476 (13)0.0488 (15)0.0435 (14)0.0434 (15)0.0372 (12)
F30.0634 (14)0.0196 (9)0.0375 (13)0.0082 (9)0.0102 (11)0.0058 (9)
F40.0713 (15)0.0319 (11)0.0294 (12)0.0141 (10)0.0040 (11)0.0174 (9)
F50.0265 (10)0.0384 (11)0.0757 (17)0.0103 (8)0.0171 (11)0.0348 (11)
F60.0297 (11)0.0550 (14)0.163 (3)0.0194 (10)0.0407 (15)0.0760 (18)
Geometric parameters (Å, º) top
Rh1A—C1A2.123 (3)Rh1B—C1B2.119 (3)
Rh1A—C4A2.126 (3)Rh1B—C4B2.129 (3)
Rh1A—C3A2.127 (3)Rh1B—C3B2.129 (3)
Rh1A—C2A2.140 (3)Rh1B—C5B2.142 (3)
Rh1A—C5A2.145 (3)Rh1B—C2B2.147 (3)
Rh1A—Cl12.4372 (11)C1B—C2B1.434 (5)
Rh1A—Cl22.4448 (10)C1B—C5B1.435 (4)
Rh1A—Cl32.4860 (11)C1B—C6B1.496 (4)
C1A—C2A1.428 (5)C2B—C3B1.433 (4)
C1A—C5A1.443 (4)C2B—C7B1.491 (4)
C1A—C6A1.493 (4)C3B—C4B1.449 (4)
C2A—C3A1.434 (4)C3B—C8B1.490 (5)
C2A—C7A1.496 (4)C4B—C5B1.430 (5)
C3A—C4A1.447 (4)C4B—C9B1.492 (4)
C3A—C8A1.483 (5)C5B—C10B1.486 (5)
C4A—C5A1.423 (4)C6B—H6BA0.9600
C4A—C9A1.485 (4)C6B—H6BB0.9600
C5A—C10A1.485 (4)C6B—H6BC0.9600
C6A—H6AA0.9600C7B—H7BA0.9600
C6A—H6AB0.9600C7B—H7BB0.9600
C6A—H6AC0.9600C7B—H7BC0.9600
C7A—H7AA0.9600C8B—H8BA0.9600
C7A—H7AB0.9600C8B—H8BB0.9600
C7A—H7AC0.9600C8B—H8BC0.9600
C8A—H8AA0.9600C9B—H9BA0.9600
C8A—H8AB0.9600C9B—H9BB0.9600
C8A—H8AC0.9600C9B—H9BC0.9600
C9A—H9AA0.9600C10B—H10D0.9600
C9A—H9AB0.9600C10B—H10E0.9600
C9A—H9AC0.9600C10B—H10F0.9600
C10A—H10A0.9600P1—F61.583 (2)
C10A—H10B0.9600P1—F21.589 (2)
C10A—H10C0.9600P1—F31.590 (2)
Cl1—Rh1B2.4426 (9)P1—F11.591 (2)
Cl2—Rh1B2.4485 (13)P1—F51.593 (2)
Cl3—Rh1B2.4675 (10)P1—F41.594 (2)
C1A—Rh1A—C4A66.16 (11)C1B—Rh1B—C2B39.27 (12)
C1A—Rh1A—C3A66.24 (12)C4B—Rh1B—C2B65.99 (11)
C4A—Rh1A—C3A39.78 (12)C3B—Rh1B—C2B39.15 (12)
C1A—Rh1A—C2A39.13 (12)C5B—Rh1B—C2B65.51 (11)
C4A—Rh1A—C2A65.91 (11)C1B—Rh1B—Cl1106.37 (8)
C3A—Rh1A—C2A39.26 (12)C4B—Rh1B—Cl1160.83 (9)
C1A—Rh1A—C5A39.53 (11)C3B—Rh1B—Cl1121.24 (9)
C4A—Rh1A—C5A38.91 (12)C5B—Rh1B—Cl1142.82 (8)
C3A—Rh1A—C5A65.94 (12)C2B—Rh1B—Cl196.84 (8)
C2A—Rh1A—C5A65.55 (11)C1B—Rh1B—Cl2109.99 (9)
C1A—Rh1A—Cl1109.38 (8)C4B—Rh1B—Cl2116.63 (9)
C4A—Rh1A—Cl1158.78 (9)C3B—Rh1B—Cl2156.37 (9)
C3A—Rh1A—Cl1119.00 (9)C5B—Rh1B—Cl295.96 (9)
C2A—Rh1A—Cl197.15 (8)C2B—Rh1B—Cl2147.91 (9)
C5A—Rh1A—Cl1146.87 (8)Cl1—Rh1B—Cl282.39 (3)
C1A—Rh1A—Cl2110.16 (9)C1B—Rh1B—Cl3166.37 (8)
C4A—Rh1A—Cl2118.62 (9)C4B—Rh1B—Cl3102.35 (9)
C3A—Rh1A—Cl2158.36 (9)C3B—Rh1B—Cl3100.28 (10)
C2A—Rh1A—Cl2147.40 (9)C5B—Rh1B—Cl3134.81 (8)
C5A—Rh1A—Cl297.28 (9)C2B—Rh1B—Cl3130.39 (9)
Cl1—Rh1A—Cl282.58 (3)Cl1—Rh1B—Cl381.93 (3)
C1A—Rh1A—Cl3164.71 (8)Cl2—Rh1B—Cl381.46 (5)
C4A—Rh1A—Cl399.66 (9)C2B—C1B—C5B108.0 (3)
C3A—Rh1A—Cl399.37 (9)C2B—C1B—C6B125.8 (3)
C2A—Rh1A—Cl3131.24 (9)C5B—C1B—C6B126.1 (3)
C5A—Rh1A—Cl3131.26 (8)C2B—C1B—Rh1B71.41 (16)
Cl1—Rh1A—Cl381.65 (4)C5B—C1B—Rh1B71.21 (16)
Cl2—Rh1A—Cl381.16 (4)C6B—C1B—Rh1B125.8 (2)
C2A—C1A—C5A107.8 (3)C3B—C2B—C1B108.2 (3)
C2A—C1A—C6A126.4 (3)C3B—C2B—C7B126.3 (3)
C5A—C1A—C6A125.7 (3)C1B—C2B—C7B125.6 (3)
C2A—C1A—Rh1A71.08 (16)C3B—C2B—Rh1B69.76 (16)
C5A—C1A—Rh1A71.05 (15)C1B—C2B—Rh1B69.32 (15)
C6A—C1A—Rh1A126.3 (2)C7B—C2B—Rh1B126.7 (2)
C1A—C2A—C3A108.5 (3)C2B—C3B—C4B107.8 (3)
C1A—C2A—C7A126.0 (3)C2B—C3B—C8B126.9 (3)
C3A—C2A—C7A125.5 (3)C4B—C3B—C8B125.2 (3)
C1A—C2A—Rh1A69.79 (16)C2B—C3B—Rh1B71.09 (16)
C3A—C2A—Rh1A69.86 (16)C4B—C3B—Rh1B70.09 (16)
C7A—C2A—Rh1A126.5 (2)C8B—C3B—Rh1B126.6 (2)
C2A—C3A—C4A107.4 (3)C5B—C4B—C3B107.7 (3)
C2A—C3A—C8A127.1 (3)C5B—C4B—C9B126.3 (3)
C4A—C3A—C8A125.5 (3)C3B—C4B—C9B125.9 (3)
C2A—C3A—Rh1A70.88 (17)C5B—C4B—Rh1B70.96 (16)
C4A—C3A—Rh1A70.09 (17)C3B—C4B—Rh1B70.12 (16)
C8A—C3A—Rh1A125.2 (2)C9B—C4B—Rh1B127.2 (2)
C5A—C4A—C3A108.2 (3)C4B—C5B—C1B108.3 (3)
C5A—C4A—C9A126.5 (3)C4B—C5B—C10B125.2 (3)
C3A—C4A—C9A125.3 (3)C1B—C5B—C10B126.5 (3)
C5A—C4A—Rh1A71.25 (16)C4B—C5B—Rh1B69.91 (17)
C3A—C4A—Rh1A70.13 (16)C1B—C5B—Rh1B69.44 (16)
C9A—C4A—Rh1A125.1 (2)C10B—C5B—Rh1B126.2 (2)
C4A—C5A—C1A108.0 (3)C1B—C6B—H6BA109.5
C4A—C5A—C10A126.1 (3)C1B—C6B—H6BB109.5
C1A—C5A—C10A125.9 (3)H6BA—C6B—H6BB109.5
C4A—C5A—Rh1A69.83 (16)C1B—C6B—H6BC109.5
C1A—C5A—Rh1A69.42 (15)H6BA—C6B—H6BC109.5
C10A—C5A—Rh1A126.6 (2)H6BB—C6B—H6BC109.5
C1A—C6A—H6AA109.5C2B—C7B—H7BA109.5
C1A—C6A—H6AB109.5C2B—C7B—H7BB109.5
H6AA—C6A—H6AB109.5H7BA—C7B—H7BB109.5
C1A—C6A—H6AC109.5C2B—C7B—H7BC109.5
H6AA—C6A—H6AC109.5H7BA—C7B—H7BC109.5
H6AB—C6A—H6AC109.5H7BB—C7B—H7BC109.5
C2A—C7A—H7AA109.5C3B—C8B—H8BA109.5
C2A—C7A—H7AB109.5C3B—C8B—H8BB109.5
H7AA—C7A—H7AB109.5H8BA—C8B—H8BB109.5
C2A—C7A—H7AC109.5C3B—C8B—H8BC109.5
H7AA—C7A—H7AC109.5H8BA—C8B—H8BC109.5
H7AB—C7A—H7AC109.5H8BB—C8B—H8BC109.5
C3A—C8A—H8AA109.5C4B—C9B—H9BA109.5
C3A—C8A—H8AB109.5C4B—C9B—H9BB109.5
H8AA—C8A—H8AB109.5H9BA—C9B—H9BB109.5
C3A—C8A—H8AC109.5C4B—C9B—H9BC109.5
H8AA—C8A—H8AC109.5H9BA—C9B—H9BC109.5
H8AB—C8A—H8AC109.5H9BB—C9B—H9BC109.5
C4A—C9A—H9AA109.5C5B—C10B—H10D109.5
C4A—C9A—H9AB109.5C5B—C10B—H10E109.5
H9AA—C9A—H9AB109.5H10D—C10B—H10E109.5
C4A—C9A—H9AC109.5C5B—C10B—H10F109.5
H9AA—C9A—H9AC109.5H10D—C10B—H10F109.5
H9AB—C9A—H9AC109.5H10E—C10B—H10F109.5
C5A—C10A—H10A109.5F6—P1—F290.85 (15)
C5A—C10A—H10B109.5F6—P1—F389.65 (15)
H10A—C10A—H10B109.5F2—P1—F390.74 (14)
C5A—C10A—H10C109.5F6—P1—F191.30 (15)
H10A—C10A—H10C109.5F2—P1—F189.88 (15)
H10B—C10A—H10C109.5F3—P1—F1178.86 (16)
Rh1A—Cl1—Rh1B82.26 (3)F6—P1—F5179.7 (2)
Rh1A—Cl2—Rh1B81.99 (3)F2—P1—F589.10 (14)
Rh1B—Cl3—Rh1A80.78 (4)F3—P1—F590.11 (13)
C1B—Rh1B—C4B66.30 (12)F1—P1—F588.95 (13)
C1B—Rh1B—C3B66.24 (12)F6—P1—F489.88 (15)
C4B—Rh1B—C3B39.79 (12)F2—P1—F4179.11 (16)
C1B—Rh1B—C5B39.35 (11)F3—P1—F488.76 (12)
C4B—Rh1B—C5B39.13 (12)F1—P1—F490.60 (13)
C3B—Rh1B—C5B65.93 (12)F5—P1—F490.17 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8AB···F3i0.962.533.244 (5)131
C10A—H10A···F1ii0.962.433.328 (4)156
C6B—H6BB···F10.962.493.152 (5)126
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8AB···F3i0.962.533.244 (5)131
C10A—H10A···F1ii0.962.433.328 (4)156
C6B—H6BB···F10.962.493.152 (5)126
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y+1, z.
Acknowledgements top

We acknowledge support from the Australian Research Council (ARC DP130103514) and are grateful for Australian Synchrotron for MX2 beamline access.

references
References top

Ara, I., Berenguer, J. R., Eguizabal, E., Fornies, J., Lalinde, E. & Martin, A. (2001). Eur. J. Inorg. Chem. pp. 1631–1640.

Becerra, A., Contreras, R., Carmona, D., Lahoz, F. J. & García-Orduña, P. (2013). Dalton Trans. 42, 11640–11651.

Booth, B. L., Haszeldine, R. N. & Hill, M. (1969). J. Chem. Soc. A, pp. 1299–1303.

Brewster, T. P., Miller, A. J. M., Heinekey, D. M. & Goldberg, K. I. (2013). J. Am. Chem. Soc. 135, 16022–16025.

CrystalMaker (2013). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Gupta, G., Garci, A., Murray, B. S., Dyson, P. J., Fabre, G., Trouillas, P., Giannini, F., Furrer, J., Süss-Fink, G. & Therrien, B. (2013). Dalton Trans. 42, 15457–15463.

Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800.

Kang, J. W., Moseley, K. & Maitlis, P. M. (1969). J. Am. Chem. Soc. 91, 5970–5977.

Koelle, U. (1990). J. Electroanal. Chem. 292, 217–229.

Liu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m509–m510.

McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon, A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K., Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron Rad. 9, 401–406.

McSkimming, A., Bhadbhade, M. M. & Colbran, S. B. (2013). Angew. Chem. Int. Ed. 52, 3411–3416.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Umakoshi, K., Murata, K. & Yamashita, S. (1991). Inorg. Chim. Acta, 190, 185–191.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Yu, S., Wan, B. & Li, X. (2013). Org. Lett. 15, 3706–3709.

Yu, X., Yu, S., Xiao, J., Wan, B. & Li, X. (2013). J. Org. Chem. 78, 5444–5452.