organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4-Di­fluoro-2,3;5,6-bis­­(tetra­methylene)-4-bora-3a,4a-di­aza-s-indacene (LD540)

aDepartment of Chemistry, Nanoscience Center, University of Jyväskylä, PO Box 35, FIN-40014 University of Jyväskylä, Finland
*Correspondence e-mail: tanja.m.lahtinen@jyu.fi

(Received 20 November 2013; accepted 10 December 2013; online 18 December 2013)

The title compound, C18H21BF2N2, is a lipophilic dye based on a BODIPY fluoro­phore backbone, which was developed for microscopic imaging of lipid droplets; the mol­ecule has a planar BODIPY core [dihedral angle between the pyrrole rings = 2.3 (3)°] and two tetra­methyl­ene substituents at the 2,3- and 5,6-positions in a half-chair conformation. One of the tetra­methyl­ene substituents is disordered over two two sets of sites with site occupancies of 0.5. In the crystal, pairs of C—H⋯F inter­actions link the mol­ecules into inversion dimers. Neighbouring dimers are linked by further C—H⋯F inter­actions, forming an infinite array. C—H⋯π and ππ [centroid–centroid distance = 4.360 (3) Å] inter­actions are observed between the BODIPY core and the tetra­methyl­ene substituents of neighbouring dimer pairs.

Related literature

For lipid droplets and fluorescence imaging with LD540, see: Beller et al. (2010[Beller, M., Thiel, K., Thul, P. J. & Jäckle, H. (2010). FEBS Lett. 584, 2176-2182.]); Bickel et al. (2009[Bickel, P. E., Tansey, J. T. & Welte, M. A. (2009). Biochim. Biophys. Acta, 1791, 419-440.]); Spandl et al. (2009[Spandl, J., White, D. J., Peychl, J. & Thiele, C. (2009). Traffic, 10, 1579-1584.]). For related BODIPY structures, see: Uppal et al. (2012[Uppal, T., Hu, C., Fronczek, F. R., Maschek, S., Bobadova-Parvanova, P. & Vicente, M. G. H. (2012). Chem. Eur. J. 18, 3893-3905.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21BF2N2

  • Mr = 314.18

  • Monoclinic, P 21 /n

  • a = 8.8836 (4) Å

  • b = 16.467 (1) Å

  • c = 11.4865 (6) Å

  • β = 111.271 (3)°

  • V = 1565.84 (15) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 173 K

  • 0.1 × 0.1 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer with APEXII detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 1

  • 7413 measured reflections

  • 2511 independent reflections

  • 1902 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.125

  • S = 1.03

  • 2511 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N4,C5,C10–C12 and N22,C21,C14–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23B⋯F3i 0.96 2.66 3.621 (3) 178
C8—H8B⋯F2ii 0.97 2.56 3.252 (3) 129
C17—H17ACg2iii 0.97 3.10 3.879 (3) 138
Symmetry codes: (i) -x, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Data collection: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Lipid droplets are metabolically active organelles (Beller et al., 2010; Bickel et al., 2009), which function as intracellular storehouses of lipid esters found inside almost all cells. LD540 is one of the dyes that can be used for multicolor fluorescence imaging for lipid droplets in both fixed and living cells (Spandl et al., 2009). In the structure of the title compound, the BODIPY core is planar having the average dihedral angle formed between the two pyrrole rings of 2.3 (3)° (Fig. 1). The two tetramethylene substituents on either side of the BODIPY core at the 2,3- and 5,6-positions are in a half-chair conformation. Intermolecular F···H—C interactions (distance of 2.661 (3) Å) between the fluoride (F3) and methyl (C23) groups of the opposite facing molecules connect the two LD540 molecules to form a dimer (Fig.2, Table 2). In a similar manner, the second fluoride (F2) atom forms an intermolecular F···H—C interaction (distance of 2.555 (3) Å) to one of the CH2 (C8) groups of the tetramethylene unit connecting the neighbouring dimer pairs in an infinite array through the crystal lattice (Fig. 3, Table 2). In addition to the F···H—C interactions, intermolecular C—H···π interactions [C18A—H18A···Cg1i = 2.812 Å and C17—H17A···Cg2ii = 3.103 Å; Cg1 and Cg2 are the centroids of rings N4,C5,C10-C12 and N22,C21,C14-C16, respectively; symmetry codes: (i) x + 1, y, z; (ii) -x, -y + 1, -z + 1] and π···π interactions [Cg2···Cg2iii = 4.360 (3) Å; symmetry code: (iii) -x + 1, -y + 1, -z +1] are observed between the BODIPY core and the tetramethylene substituents of the neighbouring dimer pairs.

Related literature top

For lipid droplets and fluorescence imaging with LD540, see: Beller et al. (2010); Bickel et al. (2009); Spandl et al. (2009). For related BODIPY structures, see: Uppal et al. (2012).

Experimental top

The title compound was synthesized by a known method described by Christoph Thiele and co-workers (Spandl et al., 2009) using tetrahydropyrrole, acetylchloride and BF3-etherate as the starting material. For single-crystal X-ray analysis the crude product was recrystallized from dichloromethane yielding greenish red prism crystals.

Refinement top

All H atoms were visible in the electron density maps, but those bonded to C were ideally positioned and allowed to ride on their parent atoms with Uiso(H) of 1.2 (or 1.5 for methyl) times Ueq(C). One of the tetramethylene substituent is disordered over two positions (C18—C19) having fixed site occupation factors of 0.5.

Computing details top

Data collection: COLLECT (Bruker, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Dimer pair formed by the intermolecular F···H—C interactions (black dotted line) between the opposite facing molecules.
[Figure 3] Fig. 3. Packing diagram showing the infinite array of dimer pairs in the crystal lattice connected by the intermolecular F···H—C interactions viewed along a) the a axis and b) from a view highlighting the aromatic interactions formed between the molecule layers. Intermolecular F···H—C interactions forming the dimer pairs have been marked with red and the ones between the dimer pairs have been marked with blue color.
4,4-Difluoro-2,3;5,6-bis(tetramethylene)-4-bora-3a,4a-diaza-s-indacene top
Crystal data top
C18H21BF2N2F(000) = 664
Mr = 314.18Dx = 1.333 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 8.8836 (4) ÅCell parameters from 2349 reflections
b = 16.467 (1) Åθ = 0.9–62.4°
c = 11.4865 (6) ŵ = 0.77 mm1
β = 111.271 (3)°T = 173 K
V = 1565.84 (15) Å3Prism, green red
Z = 40.1 × 0.1 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer with APEXII detector
2511 independent reflections
Radiation source: Enraf–Nonius FR5901902 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.054
Detector resolution: 9 pixels mm-1θmax = 63.3°, θmin = 4.9°
CCD rotation images, thick slices scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1915
Tmin = 0.840, Tmax = 1l = 1113
7413 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0626P)2 + 0.2776P]
where P = (Fo2 + 2Fc2)/3
2511 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C18H21BF2N2V = 1565.84 (15) Å3
Mr = 314.18Z = 4
Monoclinic, P21/nCu Kα radiation
a = 8.8836 (4) ŵ = 0.77 mm1
b = 16.467 (1) ÅT = 173 K
c = 11.4865 (6) Å0.1 × 0.1 × 0.04 mm
β = 111.271 (3)°
Data collection top
Nonius KappaCCD
diffractometer with APEXII detector
2511 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1902 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 1Rint = 0.054
7413 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2511 reflectionsΔρmin = 0.30 e Å3
227 parameters
Special details top

Experimental. SADABS v.2.03 (Bruker, 2004) was used for absorption correction. R(int) was 0.0552 before and 0.0509 after correction. The Ratio of minimum to maximum transmission is 0.8396. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C50.1259 (3)0.36857 (12)0.10617 (19)0.0289 (5)
C60.1499 (3)0.27857 (12)0.0961 (2)0.0327 (5)
H6A0.08570.25310.17460.039*
H6B0.11420.25750.03150.039*
C70.3294 (3)0.25826 (13)0.0640 (2)0.0388 (6)
H7A0.34880.20230.03610.047*
H7B0.35570.26360.13860.047*
C80.4386 (3)0.31373 (13)0.0374 (2)0.0395 (6)
H8A0.54980.29610.05980.047*
H8B0.41030.30940.11110.047*
C90.4245 (3)0.40230 (13)0.0048 (2)0.0347 (5)
H9A0.47760.43700.06670.042*
H9B0.47800.40950.06420.042*
C100.2501 (2)0.42636 (12)0.06426 (19)0.0286 (5)
C110.1770 (3)0.50178 (12)0.09029 (19)0.0296 (5)
H110.22950.55170.07240.036*
C120.0099 (3)0.48998 (12)0.14838 (19)0.0282 (5)
C130.1168 (2)0.54569 (12)0.19475 (18)0.0287 (5)
C140.2753 (3)0.51881 (12)0.24992 (19)0.0291 (5)
C150.4217 (3)0.56116 (13)0.30543 (19)0.0321 (5)
H150.43350.61730.31170.039*
C160.5448 (3)0.50481 (13)0.3490 (2)0.0320 (5)
C170.7244 (3)0.51515 (14)0.4149 (2)0.0395 (6)
H17A0.74780.53090.50110.047*0.5
H17B0.76350.55760.37450.047*0.5
H17C0.77070.53630.35640.047*0.5
H17D0.74460.55430.48190.047*0.5
C18A0.8118 (8)0.4330 (5)0.4104 (6)0.0365 (15)0.5
H18A0.80790.42340.32600.044*0.5
H18B0.92440.43650.46500.044*0.5
C19A0.7297 (6)0.3617 (3)0.4520 (5)0.0322 (12)0.5
H19A0.79320.31260.46060.039*0.5
H19B0.72190.37380.53230.039*0.5
C18B0.8044 (9)0.4370 (5)0.4674 (6)0.0435 (17)0.5
H18C0.91930.44200.48480.052*0.5
H18D0.79050.42690.54600.052*0.5
C19B0.7418 (7)0.3665 (4)0.3843 (6)0.0488 (14)0.5
H19C0.80310.31870.42360.059*0.5
H19D0.75970.37570.30690.059*0.5
C200.5599 (3)0.34915 (14)0.3530 (2)0.0362 (5)
H20A0.56880.32520.27860.043*0.5
H20B0.49930.31200.38490.043*0.5
H20C0.52020.31180.28320.043*0.5
H20D0.54330.32500.42440.043*0.5
C210.4724 (2)0.42804 (13)0.32034 (19)0.0292 (5)
C230.0777 (3)0.63483 (12)0.1889 (2)0.0341 (5)
H23A0.03550.64800.25260.051*
H23B0.00140.64760.10840.051*
H23C0.17400.66580.20190.051*
B10.1873 (3)0.36599 (14)0.2105 (2)0.0315 (6)
N40.0190 (2)0.40608 (10)0.15627 (15)0.0280 (4)
N220.3114 (2)0.43595 (10)0.26012 (15)0.0288 (4)
F20.19599 (15)0.31382 (7)0.30739 (12)0.0441 (4)
F30.21955 (15)0.32285 (7)0.11765 (12)0.0430 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0323 (12)0.0247 (11)0.0298 (11)0.0005 (9)0.0115 (9)0.0000 (8)
C60.0360 (12)0.0236 (11)0.0368 (12)0.0002 (9)0.0111 (10)0.0019 (9)
C70.0404 (13)0.0267 (12)0.0519 (15)0.0042 (10)0.0200 (11)0.0017 (10)
C80.0315 (12)0.0306 (12)0.0544 (15)0.0031 (10)0.0134 (11)0.0061 (11)
C90.0303 (12)0.0314 (12)0.0428 (13)0.0004 (9)0.0135 (10)0.0012 (10)
C100.0288 (11)0.0260 (11)0.0313 (11)0.0024 (9)0.0112 (9)0.0001 (9)
C110.0314 (12)0.0233 (10)0.0330 (11)0.0042 (9)0.0103 (10)0.0014 (9)
C120.0324 (12)0.0224 (10)0.0292 (11)0.0022 (9)0.0104 (9)0.0012 (9)
C130.0339 (12)0.0237 (11)0.0281 (11)0.0001 (9)0.0107 (9)0.0002 (9)
C140.0318 (11)0.0243 (11)0.0297 (11)0.0003 (9)0.0093 (9)0.0012 (9)
C150.0340 (12)0.0257 (11)0.0345 (12)0.0033 (9)0.0096 (10)0.0000 (9)
C160.0300 (12)0.0331 (12)0.0319 (12)0.0005 (9)0.0099 (10)0.0005 (9)
C170.0324 (12)0.0399 (14)0.0435 (14)0.0035 (10)0.0105 (11)0.0020 (11)
C18A0.027 (3)0.043 (3)0.040 (4)0.001 (2)0.013 (3)0.010 (4)
C19A0.030 (3)0.034 (3)0.031 (3)0.009 (2)0.009 (2)0.003 (2)
C18B0.034 (3)0.047 (4)0.044 (4)0.003 (2)0.008 (3)0.002 (4)
C19B0.032 (3)0.043 (3)0.063 (4)0.003 (2)0.008 (3)0.003 (3)
C200.0324 (12)0.0321 (12)0.0413 (13)0.0045 (10)0.0100 (10)0.0010 (10)
C210.0289 (11)0.0308 (12)0.0273 (11)0.0026 (9)0.0095 (9)0.0007 (9)
C230.0353 (12)0.0242 (12)0.0384 (12)0.0002 (9)0.0081 (10)0.0009 (9)
B10.0327 (14)0.0216 (12)0.0364 (13)0.0028 (10)0.0081 (11)0.0007 (11)
N40.0303 (10)0.0214 (9)0.0309 (9)0.0006 (7)0.0094 (8)0.0004 (7)
N220.0303 (10)0.0243 (9)0.0305 (9)0.0025 (7)0.0096 (8)0.0005 (7)
F20.0377 (8)0.0341 (7)0.0515 (8)0.0011 (6)0.0055 (6)0.0174 (6)
F30.0339 (7)0.0379 (7)0.0521 (8)0.0047 (5)0.0094 (6)0.0171 (6)
Geometric parameters (Å, º) top
C5—C61.496 (3)C17—H17C0.9700
C5—C101.403 (3)C17—H17D0.9700
C5—N41.353 (3)C17—C18A1.570 (7)
C6—H6A0.9700C17—C18B1.488 (8)
C6—H6B0.9700C18A—H18A0.9700
C6—C71.538 (3)C18A—H18B0.9700
C7—H7A0.9700C18A—C19A1.548 (10)
C7—H7B0.9700C19A—H19A0.9700
C7—C81.521 (3)C19A—H19B0.9700
C8—H8A0.9700C19A—C201.539 (6)
C8—H8B0.9700C18B—H18C0.9700
C8—C91.527 (3)C18B—H18D0.9700
C9—H9A0.9700C18B—C19B1.477 (10)
C9—H9B0.9700C19B—H19C0.9700
C9—C101.502 (3)C19B—H19D0.9700
C10—C111.383 (3)C19B—C201.549 (6)
C11—H110.9300C20—H20A0.9700
C11—C121.403 (3)C20—H20B0.9700
C12—C131.399 (3)C20—H20C0.9700
C12—N41.402 (3)C20—H20D0.9700
C13—C141.390 (3)C20—C211.490 (3)
C13—C231.504 (3)C21—N221.350 (3)
C14—C151.408 (3)C23—H23A0.9600
C14—N221.397 (3)C23—H23B0.9600
C15—H150.9300C23—H23C0.9600
C15—C161.382 (3)B1—N41.544 (3)
C16—C171.507 (3)B1—N221.553 (3)
C16—C211.402 (3)B1—F21.385 (3)
C17—H17A0.9700B1—F31.395 (3)
C17—H17B0.9700
H18A···Cg(1)i2.812Cg(2)···Cg(2)iii4.360 (3)
H17A···Cg(2)ii3.103
C10—C5—C6124.97 (19)C18B—C17—H17D109.3
N4—C5—C6124.87 (19)C17—C18A—H18A109.6
N4—C5—C10110.15 (18)C17—C18A—H18B109.6
C5—C6—H6A109.7H18A—C18A—H18B108.1
C5—C6—H6B109.7C19A—C18A—C17110.5 (4)
C5—C6—C7109.88 (18)C19A—C18A—H18A109.6
H6A—C6—H6B108.2C19A—C18A—H18B109.6
C7—C6—H6A109.7C18A—C19A—H19A110.0
C7—C6—H6B109.7C18A—C19A—H19B110.0
C6—C7—H7A109.3H19A—C19A—H19B108.4
C6—C7—H7B109.3C20—C19A—C18A108.6 (4)
H7A—C7—H7B107.9C20—C19A—H19A110.0
C8—C7—C6111.78 (18)C20—C19A—H19B110.0
C8—C7—H7A109.3C17—C18B—H18C108.8
C8—C7—H7B109.3C17—C18B—H18D108.8
C7—C8—H8A109.2H18C—C18B—H18D107.7
C7—C8—H8B109.2C19B—C18B—C17113.9 (5)
C7—C8—C9112.01 (19)C19B—C18B—H18C108.8
H8A—C8—H8B107.9C19B—C18B—H18D108.8
C9—C8—H8A109.2C18B—C19B—H19C108.7
C9—C8—H8B109.2C18B—C19B—H19D108.7
C8—C9—H9A109.6C18B—C19B—C20114.3 (5)
C8—C9—H9B109.6H19C—C19B—H19D107.6
H9A—C9—H9B108.1C20—C19B—H19C108.7
C10—C9—C8110.42 (17)C20—C19B—H19D108.7
C10—C9—H9A109.6C19A—C20—H20A109.5
C10—C9—H9B109.6C19A—C20—H20B109.5
C5—C10—C9122.02 (18)C19B—C20—H20C110.2
C11—C10—C5106.60 (18)C19B—C20—H20D110.2
C11—C10—C9131.39 (19)H20A—C20—H20B108.1
C10—C11—H11125.9H20C—C20—H20D108.5
C10—C11—C12108.14 (18)C21—C20—C19A110.5 (3)
C12—C11—H11125.9C21—C20—C19B107.6 (3)
C13—C12—C11131.04 (19)C21—C20—H20A109.5
C13—C12—N4121.26 (18)C21—C20—H20B109.5
N4—C12—C11107.70 (17)C21—C20—H20C110.2
C12—C13—C23118.80 (19)C21—C20—H20D110.2
C14—C13—C12120.44 (19)C16—C21—C20125.0 (2)
C14—C13—C23120.71 (18)N22—C21—C16110.09 (18)
C13—C14—C15131.68 (19)N22—C21—C20124.87 (19)
C13—C14—N22120.88 (18)C13—C23—H23A109.5
N22—C14—C15107.43 (18)C13—C23—H23B109.5
C14—C15—H15125.9C13—C23—H23C109.5
C16—C15—C14108.12 (19)H23A—C23—H23B109.5
C16—C15—H15125.9H23A—C23—H23C109.5
C15—C16—C17131.3 (2)H23B—C23—H23C109.5
C15—C16—C21106.56 (19)N4—B1—N22106.61 (16)
C21—C16—C17122.11 (19)F2—B1—N4110.69 (18)
C16—C17—H17A109.8F2—B1—N22109.88 (18)
C16—C17—H17B109.8F2—B1—F3109.34 (17)
C16—C17—H17C109.3F3—B1—N4110.28 (18)
C16—C17—H17D109.3F3—B1—N22110.01 (18)
C16—C17—C18A109.4 (3)C5—N4—C12107.41 (17)
H17A—C17—H17B108.2C5—N4—B1127.50 (17)
H17C—C17—H17D108.0C12—N4—B1125.08 (17)
C18A—C17—H17A109.8C14—N22—B1125.64 (17)
C18A—C17—H17B109.8C21—N22—C14107.80 (17)
C18B—C17—C16111.6 (3)C21—N22—B1126.57 (17)
C18B—C17—H17C109.3
C5—C6—C7—C843.9 (2)C17—C16—C21—C201.6 (3)
C5—C10—C11—C120.4 (2)C17—C16—C21—N22179.13 (19)
C6—C5—C10—C90.7 (3)C17—C18A—C19A—C2067.8 (6)
C6—C5—C10—C11179.60 (19)C17—C18B—C19B—C2060.8 (8)
C6—C5—N4—C12179.95 (18)C18A—C17—C18B—C19B49.4 (9)
C6—C5—N4—B11.1 (3)C18A—C19A—C20—C19B41.9 (6)
C6—C7—C8—C963.7 (3)C18A—C19A—C20—C2148.3 (5)
C7—C8—C9—C1047.5 (3)C19A—C20—C21—C1615.5 (4)
C8—C9—C10—C517.1 (3)C19A—C20—C21—N22163.7 (3)
C8—C9—C10—C11163.3 (2)C18B—C17—C18A—C19A50.6 (10)
C9—C10—C11—C12179.2 (2)C18B—C19B—C20—C19A55.1 (7)
C10—C5—C6—C714.0 (3)C18B—C19B—C20—C2145.7 (6)
C10—C5—N4—C120.5 (2)C19B—C20—C21—C1617.3 (4)
C10—C5—N4—B1178.41 (19)C19B—C20—C21—N22163.5 (3)
C10—C11—C12—C13178.9 (2)C20—C21—N22—C14178.4 (2)
C10—C11—C12—N40.7 (2)C20—C21—N22—B11.6 (3)
C11—C12—C13—C14179.6 (2)C21—C16—C17—C18A15.2 (4)
C11—C12—C13—C232.3 (3)C21—C16—C17—C18B12.2 (4)
C11—C12—N4—C50.8 (2)C23—C13—C14—C151.1 (3)
C11—C12—N4—B1178.19 (19)C23—C13—C14—N22177.37 (19)
C12—C13—C14—C15178.4 (2)N4—C5—C6—C7166.52 (19)
C12—C13—C14—N220.1 (3)N4—C5—C10—C9179.72 (18)
C13—C12—N4—C5178.88 (18)N4—C5—C10—C110.1 (2)
C13—C12—N4—B12.2 (3)N4—C12—C13—C140.1 (3)
C13—C14—C15—C16178.4 (2)N4—C12—C13—C23177.26 (18)
C13—C14—N22—C21178.18 (18)N4—B1—N22—C143.3 (3)
C13—C14—N22—B11.8 (3)N4—B1—N22—C21176.75 (17)
C14—C15—C16—C17179.5 (2)N22—C14—C15—C160.2 (2)
C14—C15—C16—C210.3 (2)N22—B1—N4—C5177.86 (18)
C15—C14—N22—C210.6 (2)N22—B1—N4—C123.4 (3)
C15—C14—N22—B1179.37 (18)F2—B1—N4—C558.4 (3)
C15—C16—C17—C18A164.6 (3)F2—B1—N4—C12122.9 (2)
C15—C16—C17—C18B168.0 (3)F2—B1—N22—C14123.3 (2)
C15—C16—C21—C20178.5 (2)F2—B1—N22—C2156.8 (3)
C15—C16—C21—N220.7 (2)F3—B1—N4—C562.7 (3)
C16—C17—C18A—C19A49.1 (5)F3—B1—N4—C12116.0 (2)
C16—C17—C18B—C19B40.7 (7)F3—B1—N22—C14116.3 (2)
C16—C21—N22—C140.8 (2)F3—B1—N22—C2163.7 (3)
C16—C21—N22—B1179.16 (19)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4,C5,C10–C12 and N22,C21,C14–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C23—H23B···F3iv0.962.663.621 (3)178
C8—H8B···F2v0.972.563.252 (3)129
C17—H17A···Cg2iii0.973.103.879 (3)138
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N4,C5,C10–C12 and N22,C21,C14–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C23—H23B···F3i0.962.663.621 (3)177.8
C8—H8B···F2ii0.972.563.252 (3)128.7
C17—H17A···Cg2iii0.973.103.879 (3)138
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1.
 

Acknowledgements

Professor Kari Rissanen is gratefully acknowledged for his help with the data collection and structure refinement. Dr Arto Valkonen and Filip Topic are acknowledged for their help with preparing the CIF file.

References

First citationBeller, M., Thiel, K., Thul, P. J. & Jäckle, H. (2010). FEBS Lett. 584, 2176–2182.  Web of Science CrossRef CAS PubMed
First citationBickel, P. E., Tansey, J. T. & Welte, M. A. (2009). Biochim. Biophys. Acta, 1791, 419–440.  Web of Science CrossRef PubMed CAS
First citationBruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSpandl, J., White, D. J., Peychl, J. & Thiele, C. (2009). Traffic, 10, 1579–1584.  Web of Science CrossRef PubMed CAS
First citationUppal, T., Hu, C., Fronczek, F. R., Maschek, S., Bobadova-Parvanova, P. & Vicente, M. G. H. (2012). Chem. Eur. J. 18, 3893–3905.  Web of Science CSD CrossRef CAS PubMed

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds