organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-methyl-2-oxo-4-[4-(1H-tetra­zol-5-yl)phen­yl]-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate–di­methyl­formamide–water (2/1/1)

aDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China, and bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: ouyanghuay@126.com

(Received 19 November 2013; accepted 26 November 2013; online 4 December 2013)

The asymmetric unit of the title compound, 2C15H16N6O3·C3H7NO·H2O, contains two independent ethyl 6-methyl-2-oxo-4-[4-(1H-tetra­zol-5-yl)phen­yl]-1,2,3,4-tetra­hydro­pyrim­id­ine-5-carboxyl­ate mol­ecules, in which the dihedral angles between the tetra­zole and benzene rings are 20.54 (12) and 12.13 (12)°. An intra­molecular C—H⋯O hydrogen bond occurs in each mol­ecule. In the crystal, N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen bonds, as well as weak C—H⋯O and C—H⋯N hydrogen bonds, link the mol­ecules into a three-dimensional supra­molecular architecture. ππ stacking is also observed between parallel tetra­zole rings of adjacent mol­ecules, the centroid–centroid distance being 3.482 (6) Å.

Related literature

For applications of hydro­pyrimidine derivatives and related compounds, see: Atwal et al. (1990[Atwal, K. S., Rovnyak, G. C., Schwartz, J., Moreland, S., Hedberg, A., Gougoutas, J. Z., Malley, M. F. & Floyd, D. M. (1990). J. Med. Chem. A33, 1510-1515.]); Kappe & Stadler (2004[Kappe, C. O. & Stadler, A. (2004). Org. React., A63, 1-116.]).

[Scheme 1]

Experimental

Crystal data
  • 2C15H16N6O3·C3H7NO·H2O

  • Mr = 747.79

  • Triclinic, [P \overline 1]

  • a = 10.198 (2) Å

  • b = 13.262 (3) Å

  • c = 13.771 (3) Å

  • α = 81.14 (3)°

  • β = 73.32 (3)°

  • γ = 81.14 (3)°

  • V = 1750.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.832, Tmax = 1.000

  • 18496 measured reflections

  • 7997 independent reflections

  • 5573 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.157

  • S = 1.12

  • 7997 reflections

  • 487 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O1W 0.86 1.80 2.646 (3) 170
N9—H9A⋯O7 0.86 1.82 2.683 (3) 176
N10—H10B⋯O2 0.86 1.98 2.801 (2) 160
N11—H11B⋯N2i 0.86 2.26 3.014 (3) 147
N12—H12A⋯O1 0.86 2.04 2.884 (2) 165
N13—H13B⋯O7ii 0.86 2.44 3.176 (3) 144
O1W—H1WA⋯N8ii 0.85 2.17 2.985 (3) 160
O1W—H1WB⋯O1iii 0.85 2.01 2.677 (2) 135
C5—H5D⋯O3 0.96 2.07 2.817 (3) 133
C16—H16A⋯O5 0.96 2.03 2.781 (3) 133
C26—H26A⋯O7 0.93 2.59 3.431 (3) 151
C32—H32A⋯N3iv 0.96 2.53 3.463 (4) 164
C33—H33A⋯N3iv 1.00 2.53 3.506 (3) 164
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) x, y, z-1; (iv) x+1, y-1, z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

3,4-Dihydropyimidin-2(1H)-ones have shown good drug activity (Atwal et al., 1990; Kappe & Stadler, 2004). The tetrazoles have been showed that analogs of biologically active carboxylic acids in which the carboxyl group is replaced by a 5-tetrazolyl group might interfere with the normal utilization of the respective carboxylic acids. The Biginelli derivative was obtained from p-cyanobenzaldehyde, that was used to yield tetrazole derivative. Here we report the synthesis and crystal structure of the title compound (Fig. 1).

The bond distances and bond angles in the title compound agree very well with the corresponding distances and angles reported for a closely related compound. There are two biginelli derivatives and two solvate molecules in an asymmetric unit. The inter-molecular N–H···O and C–H···O hydrogen bonds link the compound to two-dimensional structure (Table 1), in which they may be effective in the stabilization of the structure. π-π contact between the tetrazole rings, Cg1-Cg1i [symmetry code: (i) -x, 1-y, -z, where Cg1 and Cg1i are centroids of the rings (N2-C15)] may further stabilize the structure, centroid-centroid distance of 3.482 (6) Å.

Related literature top

For applications of hydropyrimidine derivatives and related compounds, see: Atwal et al. (1990); Kappe & Stadler (2004).

Experimental top

Cyanobenzaldehyd and ethyl acetoacetate and urea (1:1:1) was added to round-bottom flask without solvent under nitrogen. The temperature was raised to 80°C in one hour gradually and the mixture was stirred at this temperature for 12 h. The system was treated with 30 ml of ethanol 95% and cooled. The precipitate was filtered and washed with a small amount of ethanol 95%. The above-mentioned compound (10 mmol) was added to sodium azide (15 mmol) and ammonia chloride (12 mmol) with DMF solvent. The temperature was raised to 115°C in one hour gradually and the mixture was stirred at this temperature for 36 h. The system was treated with 30 ml of water and cooled. The precipitate was filtered at pH 3. Single crystals suitable for X-ray diffraction analysis were obtained from slow evaporation of a solution of the title compound in DMF/water at room temperature

Refinement top

H-atoms bonded to the C-atoms were positioned geometrically and refined using a riding model with C—H = 0.93–1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. H-atoms bonded to the N-atoms and O-atom were located from a difference Fourier map and refined in riding mode with O—H = 0.85 and N—H 0.86 Å, Uiso(H) = 1.5Ueq(O) and 1.2Ueq(N).

Structure description top

3,4-Dihydropyimidin-2(1H)-ones have shown good drug activity (Atwal et al., 1990; Kappe & Stadler, 2004). The tetrazoles have been showed that analogs of biologically active carboxylic acids in which the carboxyl group is replaced by a 5-tetrazolyl group might interfere with the normal utilization of the respective carboxylic acids. The Biginelli derivative was obtained from p-cyanobenzaldehyde, that was used to yield tetrazole derivative. Here we report the synthesis and crystal structure of the title compound (Fig. 1).

The bond distances and bond angles in the title compound agree very well with the corresponding distances and angles reported for a closely related compound. There are two biginelli derivatives and two solvate molecules in an asymmetric unit. The inter-molecular N–H···O and C–H···O hydrogen bonds link the compound to two-dimensional structure (Table 1), in which they may be effective in the stabilization of the structure. π-π contact between the tetrazole rings, Cg1-Cg1i [symmetry code: (i) -x, 1-y, -z, where Cg1 and Cg1i are centroids of the rings (N2-C15)] may further stabilize the structure, centroid-centroid distance of 3.482 (6) Å.

For applications of hydropyrimidine derivatives and related compounds, see: Atwal et al. (1990); Kappe & Stadler (2004).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing the hydrogen bondings network.
Ethyl 6-methyl-2-oxo-4-[4-(1H-tetrazol-5-yl)phenyl]-1,2,3,4-tetrahydropyrimidine-5-carboxylate–dimethylformamide–water (2/1/1) top
Crystal data top
2C15H16N6O3·C3H7NO·H2OZ = 2
Mr = 747.79F(000) = 788
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.198 (2) ÅCell parameters from 7997 reflections
b = 13.262 (3) Åθ = 2.6–27.5°
c = 13.771 (3) ŵ = 0.11 mm1
α = 81.14 (3)°T = 293 K
β = 73.32 (3)°Prism, colorless
γ = 81.14 (3)°0.40 × 0.30 × 0.20 mm
V = 1750.9 (6) Å3
Data collection top
Rigaku Mercury2
diffractometer
7997 independent reflections
Radiation source: fine-focus sealed tube5573 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1313
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.832, Tmax = 1.000l = 1717
18496 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4646P]
where P = (Fo2 + 2Fc2)/3
7997 reflections(Δ/σ)max = 0.011
487 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
2C15H16N6O3·C3H7NO·H2Oγ = 81.14 (3)°
Mr = 747.79V = 1750.9 (6) Å3
Triclinic, P1Z = 2
a = 10.198 (2) ÅMo Kα radiation
b = 13.262 (3) ŵ = 0.11 mm1
c = 13.771 (3) ÅT = 293 K
α = 81.14 (3)°0.40 × 0.30 × 0.20 mm
β = 73.32 (3)°
Data collection top
Rigaku Mercury2
diffractometer
7997 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
5573 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 1.000Rint = 0.037
18496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.12Δρmax = 0.38 e Å3
7997 reflectionsΔρmin = 0.29 e Å3
487 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0641 (2)0.12944 (14)0.48373 (14)0.0307 (4)
C20.0311 (2)0.12423 (15)0.37903 (14)0.0307 (4)
H2A0.03490.05530.36020.037*
C30.1996 (2)0.18600 (15)0.44688 (15)0.0328 (4)
C40.0284 (2)0.16860 (15)0.55451 (15)0.0323 (4)
C60.1986 (2)0.09564 (15)0.50272 (16)0.0347 (4)
C70.3396 (2)0.02727 (19)0.42842 (19)0.0472 (6)
H7A0.40630.08810.43050.057*
H7B0.37080.01940.48960.057*
C80.3256 (3)0.0229 (2)0.3366 (2)0.0636 (7)
H8A0.41320.04220.33820.095*
H8B0.25970.08310.33550.095*
H8C0.29480.02400.27660.095*
C90.01594 (19)0.20105 (15)0.30001 (14)0.0293 (4)
C100.0476 (2)0.30276 (16)0.31468 (15)0.0374 (5)
H10A0.04210.32370.37470.045*
C110.0868 (2)0.37322 (16)0.24300 (15)0.0380 (5)
H11A0.10840.44190.25430.046*
C120.0948 (2)0.34373 (15)0.15389 (14)0.0317 (4)
C130.0661 (2)0.24207 (16)0.13965 (15)0.0397 (5)
H13A0.07350.22090.08030.048*
C140.0268 (2)0.17167 (16)0.21199 (15)0.0381 (5)
H14A0.00710.10270.20140.046*
C150.1364 (2)0.41983 (16)0.07781 (15)0.0331 (4)
C160.5826 (2)0.33833 (18)0.43776 (16)0.0440 (5)
H16A0.66580.37050.41990.066*
H16B0.52330.37290.39700.066*
H16C0.60480.26760.42560.066*
C170.5117 (2)0.34458 (15)0.54674 (15)0.0330 (4)
C180.2936 (2)0.31894 (15)0.66511 (15)0.0336 (4)
C190.4688 (2)0.38080 (16)0.72315 (15)0.0339 (4)
H19A0.46680.44630.74850.041*
C200.5511 (2)0.38809 (15)0.61304 (15)0.0337 (4)
C210.6726 (2)0.44166 (16)0.58067 (18)0.0396 (5)
C220.8083 (2)0.53775 (19)0.6345 (2)0.0538 (6)
H22A0.79410.58820.68170.065*
H22B0.82680.57350.56590.065*
C230.9280 (3)0.4622 (2)0.6440 (2)0.0610 (7)
H23A1.00840.49710.62980.091*
H23B0.94320.41310.59640.091*
H23C0.91020.42730.71220.091*
C240.5315 (2)0.29673 (15)0.78896 (15)0.0327 (4)
C250.5135 (2)0.19572 (17)0.79301 (18)0.0419 (5)
H25A0.45830.17850.75630.050*
C260.5750 (2)0.12007 (17)0.84981 (17)0.0426 (5)
H26A0.56120.05200.85150.051*
C270.6568 (2)0.14369 (16)0.90431 (15)0.0357 (5)
C280.6745 (2)0.24440 (18)0.90086 (17)0.0445 (5)
H28A0.73010.26170.93730.053*
C290.6123 (2)0.31926 (17)0.84517 (17)0.0431 (5)
H29A0.62460.38740.84500.052*
C300.7271 (2)0.06657 (17)0.96436 (16)0.0402 (5)
C310.4547 (3)0.2117 (3)0.7892 (2)0.0740 (9)
H31A0.47960.14290.77270.111*
H31B0.35940.21010.82690.111*
H31C0.46910.24200.72740.111*
C320.5170 (4)0.3773 (2)0.8813 (3)0.0850 (10)
H32A0.57860.40860.92140.127*
H32B0.53450.41250.82220.127*
H32C0.42350.38160.92140.127*
C330.6262 (3)0.22938 (19)0.8775 (2)0.0549 (6)
H33A0.67240.28200.92150.066*
N10.5385 (2)0.27157 (15)0.84984 (16)0.0497 (5)
N20.2044 (2)0.51006 (14)0.09321 (14)0.0452 (5)
N30.2227 (2)0.55284 (16)0.00233 (16)0.0542 (5)
N40.1683 (2)0.49185 (16)0.06570 (15)0.0516 (5)
N50.11397 (19)0.40810 (14)0.01895 (13)0.0401 (4)
H5A0.07090.35460.04730.048*
N60.7876 (2)0.08564 (17)1.03020 (16)0.0591 (6)
N70.8391 (3)0.0052 (2)1.06887 (18)0.0707 (7)
N80.8126 (2)0.07778 (18)1.02923 (17)0.0621 (6)
N90.7422 (2)0.03366 (15)0.96288 (15)0.0500 (5)
H9A0.71160.06540.92540.060*
N100.39147 (17)0.30075 (13)0.57831 (13)0.0363 (4)
H10B0.37760.25940.54080.044*
N110.32924 (17)0.36679 (13)0.72897 (13)0.0364 (4)
H11B0.26450.39150.77770.044*
N120.09736 (17)0.20394 (13)0.53140 (12)0.0354 (4)
H12A0.11200.23980.57340.042*
N130.16843 (17)0.13960 (13)0.37938 (12)0.0351 (4)
H13B0.23580.11650.33140.042*
O10.17888 (14)0.29226 (12)0.68075 (11)0.0411 (4)
O20.31418 (15)0.21023 (12)0.43537 (11)0.0430 (4)
O30.29294 (17)0.10389 (15)0.57646 (13)0.0583 (5)
O40.20729 (15)0.05470 (12)0.42274 (11)0.0425 (4)
O50.75258 (19)0.44626 (16)0.49888 (14)0.0670 (6)
O60.68567 (16)0.48804 (12)0.65585 (12)0.0468 (4)
O70.6507 (2)0.14120 (13)0.85083 (15)0.0659 (5)
O1W0.0354 (2)0.25890 (15)0.12360 (13)0.0753 (6)
H1WA0.06240.21070.08290.113*
H1WB0.10490.28240.16680.113*
C50.1111 (2)0.17917 (19)0.66052 (16)0.0464 (6)
H5D0.19770.15300.67220.070*
H5E0.12720.25040.67130.070*
H5B0.06210.14100.70700.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0338 (11)0.0293 (10)0.0280 (10)0.0028 (8)0.0087 (8)0.0010 (8)
C20.0338 (10)0.0317 (10)0.0286 (10)0.0053 (8)0.0100 (8)0.0049 (8)
C30.0350 (11)0.0341 (10)0.0299 (10)0.0044 (8)0.0098 (9)0.0028 (8)
C40.0360 (11)0.0308 (10)0.0291 (10)0.0041 (8)0.0081 (8)0.0017 (8)
C60.0390 (12)0.0329 (10)0.0327 (10)0.0062 (9)0.0106 (9)0.0013 (8)
C70.0404 (13)0.0482 (13)0.0601 (15)0.0156 (10)0.0219 (11)0.0013 (11)
C80.0693 (18)0.0600 (17)0.0775 (19)0.0116 (14)0.0409 (16)0.0117 (14)
C90.0290 (10)0.0326 (10)0.0273 (9)0.0072 (8)0.0076 (8)0.0030 (8)
C100.0505 (13)0.0365 (11)0.0304 (10)0.0063 (9)0.0165 (9)0.0077 (9)
C110.0514 (13)0.0313 (10)0.0338 (11)0.0018 (9)0.0155 (10)0.0071 (9)
C120.0309 (10)0.0371 (11)0.0279 (9)0.0061 (8)0.0089 (8)0.0023 (8)
C130.0544 (14)0.0416 (12)0.0271 (10)0.0062 (10)0.0146 (10)0.0088 (9)
C140.0530 (13)0.0311 (10)0.0321 (10)0.0035 (9)0.0130 (10)0.0074 (9)
C150.0329 (11)0.0385 (11)0.0285 (10)0.0057 (9)0.0084 (8)0.0034 (8)
C160.0414 (13)0.0534 (14)0.0369 (11)0.0098 (10)0.0048 (10)0.0113 (10)
C170.0319 (11)0.0304 (10)0.0361 (11)0.0013 (8)0.0084 (9)0.0062 (8)
C180.0306 (11)0.0362 (11)0.0333 (10)0.0001 (8)0.0088 (9)0.0057 (9)
C190.0331 (11)0.0343 (10)0.0377 (11)0.0041 (8)0.0109 (9)0.0118 (9)
C200.0324 (11)0.0322 (10)0.0364 (11)0.0027 (8)0.0093 (9)0.0050 (8)
C210.0384 (12)0.0371 (11)0.0455 (13)0.0070 (9)0.0132 (11)0.0055 (10)
C220.0470 (14)0.0442 (13)0.0767 (18)0.0180 (11)0.0163 (13)0.0141 (12)
C230.0523 (16)0.0581 (16)0.082 (2)0.0135 (12)0.0277 (14)0.0097 (14)
C240.0299 (10)0.0363 (11)0.0329 (10)0.0028 (8)0.0065 (8)0.0117 (9)
C250.0459 (13)0.0396 (12)0.0494 (13)0.0081 (10)0.0242 (11)0.0082 (10)
C260.0500 (14)0.0337 (11)0.0491 (13)0.0099 (10)0.0176 (11)0.0068 (10)
C270.0364 (11)0.0395 (11)0.0293 (10)0.0007 (9)0.0056 (9)0.0086 (9)
C280.0532 (14)0.0455 (13)0.0456 (13)0.0081 (10)0.0259 (11)0.0113 (10)
C290.0547 (14)0.0360 (11)0.0465 (13)0.0070 (10)0.0218 (11)0.0113 (10)
C300.0415 (12)0.0450 (13)0.0320 (11)0.0004 (10)0.0062 (9)0.0097 (9)
C310.0593 (18)0.107 (3)0.0577 (17)0.0001 (17)0.0247 (15)0.0083 (17)
C320.086 (2)0.0555 (18)0.129 (3)0.0184 (16)0.043 (2)0.0201 (19)
C330.0670 (17)0.0409 (14)0.0644 (16)0.0042 (12)0.0321 (14)0.0041 (12)
N10.0499 (12)0.0497 (12)0.0537 (12)0.0019 (9)0.0186 (10)0.0142 (10)
N20.0537 (12)0.0418 (11)0.0399 (10)0.0044 (9)0.0178 (9)0.0036 (8)
N30.0645 (14)0.0504 (12)0.0478 (12)0.0087 (10)0.0249 (11)0.0027 (10)
N40.0600 (13)0.0545 (13)0.0389 (11)0.0022 (10)0.0207 (10)0.0042 (10)
N50.0455 (11)0.0437 (10)0.0306 (9)0.0004 (8)0.0130 (8)0.0023 (8)
N60.0727 (15)0.0600 (14)0.0522 (12)0.0076 (11)0.0332 (12)0.0136 (11)
N70.0852 (18)0.0739 (17)0.0538 (14)0.0153 (13)0.0335 (13)0.0061 (12)
N80.0703 (16)0.0570 (14)0.0528 (13)0.0094 (11)0.0209 (12)0.0040 (11)
N90.0605 (13)0.0434 (11)0.0453 (11)0.0013 (9)0.0166 (10)0.0034 (9)
N100.0334 (9)0.0421 (10)0.0353 (9)0.0072 (7)0.0057 (8)0.0140 (8)
N110.0273 (9)0.0464 (10)0.0361 (9)0.0010 (7)0.0062 (7)0.0162 (8)
N120.0353 (9)0.0434 (10)0.0307 (9)0.0097 (8)0.0076 (7)0.0114 (8)
N130.0295 (9)0.0462 (10)0.0298 (8)0.0010 (7)0.0070 (7)0.0107 (8)
O10.0282 (8)0.0599 (10)0.0366 (8)0.0082 (7)0.0067 (6)0.0106 (7)
O20.0329 (8)0.0580 (10)0.0408 (8)0.0118 (7)0.0081 (7)0.0110 (7)
O30.0405 (10)0.0812 (13)0.0524 (10)0.0202 (9)0.0033 (8)0.0228 (9)
O40.0410 (9)0.0513 (9)0.0401 (8)0.0168 (7)0.0134 (7)0.0043 (7)
O50.0564 (12)0.0963 (15)0.0508 (11)0.0395 (11)0.0006 (9)0.0144 (10)
O60.0430 (9)0.0453 (9)0.0578 (10)0.0151 (7)0.0123 (8)0.0157 (8)
O70.0874 (14)0.0418 (10)0.0728 (13)0.0136 (9)0.0276 (11)0.0024 (9)
O1W0.0929 (15)0.0643 (12)0.0405 (10)0.0199 (11)0.0065 (10)0.0026 (9)
C50.0467 (13)0.0597 (15)0.0323 (11)0.0137 (11)0.0028 (10)0.0115 (10)
Geometric parameters (Å, º) top
C1—C41.331 (3)C22—O61.438 (3)
C1—C61.449 (3)C22—C231.479 (4)
C1—C21.494 (3)C22—H22A0.9700
C2—N131.448 (2)C22—H22B0.9700
C2—C91.503 (3)C23—H23A0.9600
C2—H2A0.9800C23—H23B0.9600
C3—O21.219 (2)C23—H23C0.9600
C3—N131.323 (3)C24—C251.370 (3)
C3—N121.346 (3)C24—C291.371 (3)
C4—N121.367 (3)C25—C261.363 (3)
C4—C51.477 (3)C25—H25A0.9300
C6—O31.187 (3)C26—C271.368 (3)
C6—O41.331 (2)C26—H26A0.9300
C7—O41.428 (3)C27—C281.367 (3)
C7—C81.480 (4)C27—C301.448 (3)
C7—H7A0.9700C28—C291.352 (3)
C7—H7B0.9700C28—H28A0.9300
C8—H8A0.9600C29—H29A0.9300
C8—H8B0.9600C30—N61.306 (3)
C8—H8C0.9600C30—N91.317 (3)
C9—C141.367 (3)C31—N11.433 (3)
C9—C101.370 (3)C31—H31A0.9600
C10—C111.355 (3)C31—H31B0.9600
C10—H10A0.9300C31—H31C0.9600
C11—C121.371 (3)C32—N11.433 (4)
C11—H11A0.9300C32—H32A0.9600
C12—C131.367 (3)C32—H32B0.9600
C12—C151.447 (3)C32—H32C0.9600
C13—C141.361 (3)C33—O71.212 (3)
C13—H13A0.9300C33—N11.293 (3)
C14—H14A0.9300C33—H33A1.0042
C15—N21.302 (3)N2—N31.344 (3)
C15—N51.315 (3)N3—N41.279 (3)
C16—C171.476 (3)N4—N51.323 (3)
C16—H16A0.9600N5—H5A0.8600
C16—H16B0.9600N6—N71.334 (3)
C16—H16C0.9600N7—N81.274 (3)
C17—C201.331 (3)N8—N91.333 (3)
C17—N101.366 (3)N9—H9A0.8600
C18—O11.225 (2)N10—H10B0.8600
C18—N111.317 (3)N11—H11B0.8600
C18—N101.346 (3)N12—H12A0.8600
C19—N111.441 (3)N13—H13B0.8600
C19—C201.504 (3)O1W—H1WA0.8499
C19—C241.509 (3)O1W—H1WB0.8500
C19—H19A0.9800C5—H5D0.9601
C20—C211.448 (3)C5—H5E0.9601
C21—O51.185 (3)C5—H5B0.9599
C21—O61.330 (3)
C4—C1—C6121.78 (18)H22A—C22—H22B108.0
C4—C1—C2120.85 (18)C22—C23—H23A109.5
C6—C1—C2117.29 (17)C22—C23—H23B109.5
N13—C2—C1109.72 (16)H23A—C23—H23B109.5
N13—C2—C9109.77 (16)C22—C23—H23C109.5
C1—C2—C9112.83 (16)H23A—C23—H23C109.5
N13—C2—H2A108.1H23B—C23—H23C109.5
C1—C2—H2A108.1C25—C24—C29117.6 (2)
C9—C2—H2A108.1C25—C24—C19121.88 (18)
O2—C3—N13122.93 (19)C29—C24—C19120.47 (18)
O2—C3—N12121.02 (18)C26—C25—C24121.3 (2)
N13—C3—N12116.05 (18)C26—C25—H25A119.3
C1—C4—N12119.62 (18)C24—C25—H25A119.3
C1—C4—C5127.02 (19)C25—C26—C27120.3 (2)
N12—C4—C5113.36 (18)C25—C26—H26A119.8
O3—C6—O4122.1 (2)C27—C26—H26A119.8
O3—C6—C1127.3 (2)C28—C27—C26118.5 (2)
O4—C6—C1110.62 (17)C28—C27—C30118.56 (19)
O4—C7—C8107.5 (2)C26—C27—C30122.9 (2)
O4—C7—H7A110.2C29—C28—C27120.9 (2)
C8—C7—H7A110.2C29—C28—H28A119.5
O4—C7—H7B110.2C27—C28—H28A119.5
C8—C7—H7B110.2C28—C29—C24121.3 (2)
H7A—C7—H7B108.5C28—C29—H29A119.4
C7—C8—H8A109.5C24—C29—H29A119.4
C7—C8—H8B109.5N6—C30—N9107.9 (2)
H8A—C8—H8B109.5N6—C30—C27125.0 (2)
C7—C8—H8C109.5N9—C30—C27127.0 (2)
H8A—C8—H8C109.5N1—C31—H31A109.5
H8B—C8—H8C109.5N1—C31—H31B109.5
C14—C9—C10118.58 (18)H31A—C31—H31B109.5
C14—C9—C2121.16 (18)N1—C31—H31C109.5
C10—C9—C2120.26 (17)H31A—C31—H31C109.5
C11—C10—C9120.90 (18)H31B—C31—H31C109.5
C11—C10—H10A119.5N1—C32—H32A109.5
C9—C10—H10A119.5N1—C32—H32B109.5
C10—C11—C12120.31 (19)H32A—C32—H32B109.5
C10—C11—H11A119.8N1—C32—H32C109.5
C12—C11—H11A119.8H32A—C32—H32C109.5
C13—C12—C11119.11 (19)H32B—C32—H32C109.5
C13—C12—C15121.13 (18)O7—C33—N1124.6 (3)
C11—C12—C15119.75 (18)O7—C33—H33A126.2
C14—C13—C12120.26 (19)N1—C33—H33A109.1
C14—C13—H13A119.9C33—N1—C31120.3 (2)
C12—C13—H13A119.9C33—N1—C32122.1 (2)
C13—C14—C9120.81 (19)C31—N1—C32117.6 (2)
C13—C14—H14A119.6C15—N2—N3105.71 (18)
C9—C14—H14A119.6N4—N3—N2110.67 (18)
N2—C15—N5108.38 (18)N3—N4—N5106.21 (18)
N2—C15—C12126.34 (19)C15—N5—N4109.04 (19)
N5—C15—C12125.27 (19)C15—N5—H5A125.5
C17—C16—H16A109.5N4—N5—H5A125.5
C17—C16—H16B109.5C30—N6—N7106.4 (2)
H16A—C16—H16B109.5N8—N7—N6110.6 (2)
C17—C16—H16C109.5N7—N8—N9106.5 (2)
H16A—C16—H16C109.5C30—N9—N8108.6 (2)
H16B—C16—H16C109.5C30—N9—H9A125.7
C20—C17—N10119.30 (19)N8—N9—H9A125.7
C20—C17—C16127.56 (19)C18—N10—C17123.34 (17)
N10—C17—C16113.14 (18)C18—N10—H10B118.3
O1—C18—N11123.67 (19)C17—N10—H10B118.3
O1—C18—N10120.24 (18)C18—N11—C19124.76 (17)
N11—C18—N10116.09 (18)C18—N11—H11B117.6
N11—C19—C20108.71 (16)C19—N11—H11B117.6
N11—C19—C24111.60 (17)C3—N12—C4123.98 (17)
C20—C19—C24112.44 (17)C3—N12—H12A118.0
N11—C19—H19A108.0C4—N12—H12A118.0
C20—C19—H19A108.0C3—N13—C2125.87 (17)
C24—C19—H19A108.0C3—N13—H13B117.1
C17—C20—C21120.85 (19)C2—N13—H13B117.1
C17—C20—C19119.56 (18)C6—O4—C7115.84 (17)
C21—C20—C19119.60 (18)C21—O6—C22115.97 (19)
O5—C21—O6122.2 (2)H1WA—O1W—H1WB109.5
O5—C21—C20126.7 (2)C4—C5—H5D109.5
O6—C21—C20111.16 (19)C4—C5—H5E109.4
O6—C22—C23111.0 (2)H5D—C5—H5E109.5
O6—C22—H22A109.4C4—C5—H5B109.5
C23—C22—H22A109.4H5D—C5—H5B109.5
O6—C22—H22B109.4H5E—C5—H5B109.5
C23—C22—H22B109.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1W0.861.802.646 (3)170
N9—H9A···O70.861.822.683 (3)176
N10—H10B···O20.861.982.801 (2)160
N11—H11B···N2i0.862.263.014 (3)147
N12—H12A···O10.862.042.884 (2)165
N13—H13B···O7ii0.862.443.176 (3)144
O1W—H1WA···N8ii0.852.172.985 (3)160
O1W—H1WB···O1iii0.852.012.677 (2)135
C5—H5D···O30.962.072.817 (3)133
C16—H16A···O50.962.032.781 (3)133
C26—H26A···O70.932.593.431 (3)151
C32—H32A···N3iv0.962.533.463 (4)164
C33—H33A···N3iv1.002.533.506 (3)164
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O1W0.861.802.646 (3)169.8
N9—H9A···O70.861.822.683 (3)175.9
N10—H10B···O20.861.982.801 (2)159.8
N11—H11B···N2i0.862.263.014 (3)147.2
N12—H12A···O10.862.042.884 (2)165.4
N13—H13B···O7ii0.862.443.176 (3)144.4
O1W—H1WA···N8ii0.852.172.985 (3)159.5
O1W—H1WB···O1iii0.852.012.677 (2)135.0
C5—H5D···O30.962.072.817 (3)133.0
C16—H16A···O50.962.032.781 (3)133.2
C26—H26A···O70.932.593.431 (3)151.4
C32—H32A···N3iv0.962.533.463 (4)163.5
C33—H33A···N3iv1.002.533.506 (3)164.4
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z1; (iv) x+1, y1, z+1.
 

References

First citationAtwal, K. S., Rovnyak, G. C., Schwartz, J., Moreland, S., Hedberg, A., Gougoutas, J. Z., Malley, M. F. & Floyd, D. M. (1990). J. Med. Chem. A33, 1510–1515.  CSD CrossRef Web of Science Google Scholar
First citationKappe, C. O. & Stadler, A. (2004). Org. React., A63, 1–116.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds