organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o155-o156

1-(6-Chloro-1-methyl-1H-imidazo[4,5-c]pyridin-4-yl)-3-(2-chloro­phen­yl)urea

aP. G. Department of Physics, LVD College, Raichur 584 103, Karnataka, India, bDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, cDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, Karnataka, India, and dDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 8 January 2014; accepted 11 January 2014; online 18 January 2014)

In the title compound, C14H11Cl2N5O, the plane of the 1H-imidazo[4,5-c]pyridine ring system [r.m.s. deviation = 0.087 (19) Å] makes a dihedral angle of 4.87 (10)° with the terminal phenyl ring. An intra­molecular N—H⋯N hydrogen bond stabilizes the mol­ecular conformation. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers. These dimers are connected by ππ inter­actions between imidazole rings [shortest centroid–centroid distance = 3.4443 (14) Å].

Related literature

For biological applications of imidazo­pyridines, see: Cappelli et al. (2006[Cappelli, A., Mohr, G. P., Giuliani, G., Galeazzi, S., Anzini, M., Mennuni, L., Ferrari, F., Macoves, F., Krienrath, E. M., Langer, T., Valoti, M., Giorgi, G. & Vomero, S. (2006). J. Med. Chem. 49, 6451-6464.]); Weier et al. (1994[Weier, R. M., Khanna, I. K., Lentz, K., Stealey, M. A. & Julien, J. (1994). (Searle) US Patent No. 5359073.]); Barraclough et al. (1990[Barraclough, P., Black, J. W., Cambridge, D., Collard, D., Firmin, D., Gerskowitch, V. P., Glen, R. C., Giles, H., Hill, A. P., Hull, R. A. D., Iyer, R., King, W. R., Kneen, C. O., Lindon, J. C., Nobbs, M. S., Randall, P., Shah, G. P., Smith, S., Vine, S. J., Whiting, M. V. & Williams, J. M. (1990). J. Med. Chem. 33, 2231-2239.]); Bavetsias et al. (2007[Bavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. 17, 6567-6571.]); Cooper et al. (1992[Cooper, K., Fray, M. J., Parry, J. M., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115-3120.]); Temple et al. (1987[Temple, J. C., Rose, J. D., Comber, R. N. & Rener, G. A. (1987). J. Med. Chem. 30, 1746-1751.]); Janssens et al. (1985[Janssens, F., Torremans, J., Janssen, M., Stokbroekx, R. A., Luyckx, M. & Janssen, P. A. J. (1985). J. Med. Chem. 28, 1943-1947.]); Kulkarni & Newman (2007[Kulkarni, S. S. & Newman, A. H. (2007). Bioorg. Med. Chem. Lett. 17, 2987-2991.]). For a related structure, see: Kandri Rodi et al. (2013[Kandri Rodi, Y., Haoudi, A., Capet, F., Mazzah, A., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1029-o1030.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11Cl2N5O

  • Mr = 336.18

  • Monoclinic, P 21 /c

  • a = 8.9368 (3) Å

  • b = 17.2369 (4) Å

  • c = 10.3805 (3) Å

  • β = 114.216 (4)°

  • V = 1458.33 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 293 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 1.000

  • 11425 measured reflections

  • 2576 independent reflections

  • 2175 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.06

  • 2576 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O3i 0.86 2.07 2.862 (3) 153
N8—H8⋯N6 0.86 2.03 2.723 (2) 136
Symmetry code: (i) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The identification of chemotherapeutic targets could lead to new therapeutic approaches and may be a key for the discovery of really effective drugs. The imidazopyridine (Cappelli et al., 2006; Weier et al., 1994; Barraclough et al., 1990; Bavetsias et al., 2007) moieties are important pharmacophores, which have proven to be useful for a number of biologically relevant targets. The compounds derived from the imidazopyridine system have recently been evaluated as antagonists of various biological receptors, including angiotensin-II and platelet activating factor (Cooper et al., 1992). Substituted imidazo[4,5]pyridines have also been tested for their potential as anticancer (Temple et al., 1987) and selective antihistamine (H1) agents (Janssens et al., 1985). Imidazo[4,5]pyridine derivatives were also reported as inhibitors of Mitogen and stress-activated protein kinases and Aurora kinases (Kulkarni & Newman, 2007). The bond lengths and bond angles are good agreement with a related structure (Kandri Rodi et al., 2013)

The asymmetric unit of 1-(6-chloro-1-methyl-1H-imidazo [4,5-c]pyridin-4-yl)-3-(2-chlorophenyl)urea is shown in Fig. 1. The 1H-imidazo[4,5-c]pyridine ring (N4/N5/N6/C10–C15) system makes a dihedral angle of 4.87 (10)° with the terminal phenyl ring.

An intramolecular N-H···N hydrogen bond stabilizes the molecular conformation. Intermolecular N-H···O hydrogen bonds link the molecules to centrosymmetric dimers. These dimers are further connected by intermolecular ππ interactions between imidazole rings [shortest centroid–centroid distance = 3.4443 (14) Å]. A view of the crystal packing is given in Figure 2.

Related literature top

For biological applications of imidazopyridine, see: Cappelli et al. (2006); Weier et al. (1994); Barraclough et al. (1990); Bavetsias et al. (2007); Cooper et al. (1992); Temple et al. (1987); Janssens et al. (1985); Kulkarni & Newman (2007). For a related structure, see: Kandri Rodi et al. (2013).

Experimental top

A mixture of 2,4,6-trichloropyridene, methylamine in ethanol was heated and filtered to get pure product. To this sulfuric acid and fuming nitric acid was added, then it was stirred and cooled. A solution of iron powder and ammonium chloride in methanol/water was added and heated. Then triethylorthoformate in ethanol was added and continued the heating. Amination of reaction product was achieved by adding benzophenone imine, potassium carbonate, palladium complex, in dioxane, and then it was heated. The obtained product was dissolved in HCl, stirred, and concentrated in vacuo to give the product. A mixture of obtained product, sodium hydride, 6-chloro-1-methyl-1H-imidazol [4,5-c]pyridin-4-amine and carbonyl/sulfonyl chlorides in tetahydrofuran was stirred and concentrated in vacuo to give the expected products. After completion of each step of the reaction TLC was monitored. The compound is recrystallized by ethanol- chloroform mixture. Colourless needles of the title compound were grown from a mixed solution of Ethanol/Chloroform (V/V = 2/1) by slow evaporation at room temperature. Yield: 122 mg, 66.27%; m p: 380; IR cm-1 (KBr) 3431, 1669; Anal. Calcd for C14H11Cl2N5O C,50.02; H, 3.30; N, 20.83%; Found, C, 49.45; H, 3.25; N, 20.44%.

Refinement top

All H atoms were positioned geometrically; N—H = 0.86 Å, C—H = 0.93 Å for aromatic H, and C—H = 0.96 Å for methyl H, and refined using a riding model with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H.

Structure description top

The identification of chemotherapeutic targets could lead to new therapeutic approaches and may be a key for the discovery of really effective drugs. The imidazopyridine (Cappelli et al., 2006; Weier et al., 1994; Barraclough et al., 1990; Bavetsias et al., 2007) moieties are important pharmacophores, which have proven to be useful for a number of biologically relevant targets. The compounds derived from the imidazopyridine system have recently been evaluated as antagonists of various biological receptors, including angiotensin-II and platelet activating factor (Cooper et al., 1992). Substituted imidazo[4,5]pyridines have also been tested for their potential as anticancer (Temple et al., 1987) and selective antihistamine (H1) agents (Janssens et al., 1985). Imidazo[4,5]pyridine derivatives were also reported as inhibitors of Mitogen and stress-activated protein kinases and Aurora kinases (Kulkarni & Newman, 2007). The bond lengths and bond angles are good agreement with a related structure (Kandri Rodi et al., 2013)

The asymmetric unit of 1-(6-chloro-1-methyl-1H-imidazo [4,5-c]pyridin-4-yl)-3-(2-chlorophenyl)urea is shown in Fig. 1. The 1H-imidazo[4,5-c]pyridine ring (N4/N5/N6/C10–C15) system makes a dihedral angle of 4.87 (10)° with the terminal phenyl ring.

An intramolecular N-H···N hydrogen bond stabilizes the molecular conformation. Intermolecular N-H···O hydrogen bonds link the molecules to centrosymmetric dimers. These dimers are further connected by intermolecular ππ interactions between imidazole rings [shortest centroid–centroid distance = 3.4443 (14) Å]. A view of the crystal packing is given in Figure 2.

For biological applications of imidazopyridine, see: Cappelli et al. (2006); Weier et al. (1994); Barraclough et al. (1990); Bavetsias et al. (2007); Cooper et al. (1992); Temple et al. (1987); Janssens et al. (1985); Kulkarni & Newman (2007). For a related structure, see: Kandri Rodi et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius. Hydrogen bonds are shown as open dashed bonds.
[Figure 2] Fig. 2. The packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
1-(6-Chloro-1-methyl-1H-imidazo[4,5-c]pyridin-4-yl)-3-(2-chlorophenyl)urea top
Crystal data top
C14H11Cl2N5OF(000) = 688
Mr = 336.18Dx = 1.531 Mg m3
Monoclinic, P21/cMelting point: 380 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.9368 (3) ÅCell parameters from 2576 reflections
b = 17.2369 (4) Åθ = 2.4–25.0°
c = 10.3805 (3) ŵ = 0.45 mm1
β = 114.216 (4)°T = 293 K
V = 1458.33 (7) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2576 independent reflections
Radiation source: fine-focus sealed tube2175 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1010
Tmin = 0.770, Tmax = 1.000k = 2020
11425 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.5893P]
where P = (Fo2 + 2Fc2)/3
2576 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H11Cl2N5OV = 1458.33 (7) Å3
Mr = 336.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9368 (3) ŵ = 0.45 mm1
b = 17.2369 (4) ÅT = 293 K
c = 10.3805 (3) Å0.24 × 0.20 × 0.12 mm
β = 114.216 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2576 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2175 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.023
11425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
2576 reflectionsΔρmin = 0.28 e Å3
199 parameters
Special details top

Experimental. IR cm-1 (KBr) 3431, 1669; Anal. Calcd for C14H11Cl2N5O C,50.02; H, 3.30; N, 20.83%; Found, C, 49.45; H, 3.25; N, 20.44%.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.98140 (8)0.21079 (4)0.85698 (7)0.0611 (2)
Cl21.28185 (8)0.14285 (4)1.18265 (7)0.0693 (2)
O30.50876 (19)0.04206 (11)0.86633 (16)0.0599 (5)
N41.1433 (2)0.06979 (11)1.47101 (19)0.0457 (5)
N50.8783 (2)0.07679 (11)1.31848 (19)0.0474 (5)
N61.0050 (2)0.07252 (10)1.12745 (18)0.0424 (4)
N70.7418 (2)0.01864 (11)1.05733 (18)0.0447 (5)
H70.68470.01361.08180.054*
N80.7379 (2)0.10758 (10)0.88673 (17)0.0389 (4)
H80.84200.11070.93570.047*
C91.2941 (3)0.08685 (16)1.5946 (2)0.0587 (6)
H9A1.38160.05531.59250.088*
H9B1.32150.14061.59370.088*
H9C1.27830.07581.67890.088*
C100.9933 (3)0.10224 (14)1.4362 (2)0.0502 (6)
H100.97380.13981.49190.060*
C110.9608 (3)0.02290 (12)1.2725 (2)0.0386 (5)
C120.9041 (2)0.02356 (12)1.1512 (2)0.0379 (5)
C131.1616 (3)0.07603 (13)1.2225 (2)0.0451 (5)
C141.2320 (3)0.03333 (13)1.3434 (2)0.0461 (5)
H141.34180.03801.40530.055*
C151.1242 (3)0.01774 (12)1.3656 (2)0.0397 (5)
C160.6546 (3)0.05620 (13)0.9311 (2)0.0408 (5)
C170.6706 (3)0.15605 (11)0.7687 (2)0.0389 (5)
C180.5051 (3)0.15738 (14)0.6761 (2)0.0472 (5)
H180.43180.12350.68970.057*
C190.4496 (3)0.20893 (14)0.5640 (3)0.0545 (6)
H190.33890.20930.50320.065*
C200.5541 (4)0.25923 (15)0.5406 (3)0.0621 (7)
H200.51480.29330.46460.075*
C210.7172 (4)0.25902 (14)0.6304 (3)0.0599 (7)
H210.78930.29290.61520.072*
C220.7742 (3)0.20852 (12)0.7430 (2)0.0444 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0526 (4)0.0597 (4)0.0696 (4)0.0158 (3)0.0237 (3)0.0005 (3)
Cl20.0440 (4)0.0822 (5)0.0688 (4)0.0224 (3)0.0101 (3)0.0153 (3)
O30.0347 (9)0.0818 (12)0.0484 (9)0.0163 (8)0.0022 (7)0.0204 (8)
N40.0397 (10)0.0505 (11)0.0404 (10)0.0087 (8)0.0100 (8)0.0054 (8)
N50.0400 (10)0.0526 (11)0.0467 (11)0.0006 (9)0.0147 (9)0.0106 (9)
N60.0363 (10)0.0455 (10)0.0408 (10)0.0063 (8)0.0112 (8)0.0004 (8)
N70.0341 (10)0.0529 (11)0.0387 (10)0.0093 (8)0.0065 (8)0.0110 (8)
N80.0336 (9)0.0449 (10)0.0351 (9)0.0055 (8)0.0111 (7)0.0019 (8)
C90.0453 (14)0.0688 (16)0.0477 (14)0.0113 (12)0.0047 (11)0.0098 (12)
C100.0472 (13)0.0525 (13)0.0499 (13)0.0054 (11)0.0188 (11)0.0130 (11)
C110.0343 (11)0.0416 (11)0.0379 (11)0.0012 (9)0.0126 (9)0.0003 (9)
C120.0327 (11)0.0422 (11)0.0362 (11)0.0005 (9)0.0114 (9)0.0016 (9)
C130.0357 (11)0.0494 (13)0.0465 (12)0.0066 (10)0.0131 (10)0.0024 (10)
C140.0315 (11)0.0536 (13)0.0450 (12)0.0006 (10)0.0074 (10)0.0022 (10)
C150.0378 (11)0.0415 (11)0.0365 (11)0.0041 (9)0.0119 (9)0.0026 (9)
C160.0363 (12)0.0457 (12)0.0363 (11)0.0043 (9)0.0108 (9)0.0019 (9)
C170.0470 (12)0.0365 (11)0.0353 (10)0.0009 (9)0.0191 (10)0.0032 (9)
C180.0472 (13)0.0524 (13)0.0402 (12)0.0004 (11)0.0162 (10)0.0034 (10)
C190.0591 (15)0.0563 (15)0.0422 (13)0.0083 (12)0.0146 (12)0.0050 (11)
C200.084 (2)0.0523 (14)0.0493 (14)0.0061 (14)0.0261 (14)0.0143 (12)
C210.0801 (19)0.0470 (14)0.0592 (16)0.0078 (13)0.0351 (15)0.0056 (12)
C220.0544 (14)0.0394 (11)0.0433 (12)0.0050 (10)0.0239 (11)0.0041 (9)
Geometric parameters (Å, º) top
Cl1—C221.741 (2)C9—H9C0.9600
Cl2—C131.737 (2)C10—H100.9300
O3—C161.221 (2)C11—C151.384 (3)
N4—C101.357 (3)C11—C121.399 (3)
N4—C151.371 (3)C13—C141.366 (3)
N4—C91.460 (3)C14—C151.391 (3)
N5—C101.309 (3)C14—H140.9300
N5—C111.387 (3)C17—C181.395 (3)
N6—C121.330 (3)C17—C221.396 (3)
N6—C131.343 (3)C18—C191.384 (3)
N7—C121.379 (3)C18—H180.9300
N7—C161.381 (3)C19—C201.366 (4)
N7—H70.8600C19—H190.9300
N8—C161.353 (3)C20—C211.371 (4)
N8—C171.399 (3)C20—H200.9300
N8—H80.8600C21—C221.377 (3)
C9—H9A0.9600C21—H210.9300
C9—H9B0.9600
C10—N4—C15105.76 (18)C14—C13—Cl2118.66 (17)
C10—N4—C9127.3 (2)C13—C14—C15113.8 (2)
C15—N4—C9127.0 (2)C13—C14—H14123.1
C10—N5—C11102.76 (18)C15—C14—H14123.1
C12—N6—C13118.28 (18)N4—C15—C11105.38 (18)
C12—N7—C16131.50 (18)N4—C15—C14132.7 (2)
C12—N7—H7114.3C11—C15—C14121.92 (19)
C16—N7—H7114.3O3—C16—N8123.74 (19)
C16—N8—C17126.16 (18)O3—C16—N7119.21 (19)
C16—N8—H8116.9N8—C16—N7117.06 (18)
C17—N8—H8116.9C18—C17—C22117.2 (2)
N4—C9—H9A109.5C18—C17—N8124.54 (19)
N4—C9—H9B109.5C22—C17—N8118.3 (2)
H9A—C9—H9B109.5C19—C18—C17120.2 (2)
N4—C9—H9C109.5C19—C18—H18119.9
H9A—C9—H9C109.5C17—C18—H18119.9
H9B—C9—H9C109.5C20—C19—C18121.4 (3)
N5—C10—N4115.0 (2)C20—C19—H19119.3
N5—C10—H10122.5C18—C19—H19119.3
N4—C10—H10122.5C19—C20—C21119.4 (2)
C15—C11—N5111.13 (18)C19—C20—H20120.3
C15—C11—C12118.69 (19)C21—C20—H20120.3
N5—C11—C12130.18 (19)C20—C21—C22119.9 (2)
N6—C12—N7120.29 (18)C20—C21—H21120.0
N6—C12—C11120.47 (19)C22—C21—H21120.0
N7—C12—C11119.24 (18)C21—C22—C17121.9 (2)
N6—C13—C14126.8 (2)C21—C22—Cl1118.86 (18)
N6—C13—Cl2114.53 (16)C17—C22—Cl1119.23 (17)
C11—N5—C10—N40.0 (3)C12—C11—C15—N4179.29 (18)
C15—N4—C10—N50.2 (3)N5—C11—C15—C14179.01 (19)
C9—N4—C10—N5179.6 (2)C12—C11—C15—C141.4 (3)
C10—N5—C11—C150.2 (2)C13—C14—C15—N4179.8 (2)
C10—N5—C11—C12179.3 (2)C13—C14—C15—C110.7 (3)
C13—N6—C12—N7179.27 (19)C17—N8—C16—O35.1 (3)
C13—N6—C12—C110.0 (3)C17—N8—C16—N7174.47 (18)
C16—N7—C12—N61.5 (4)C12—N7—C16—O3179.5 (2)
C16—N7—C12—C11179.2 (2)C12—N7—C16—N80.1 (4)
C15—C11—C12—N61.1 (3)C16—N8—C17—C181.4 (3)
N5—C11—C12—N6179.5 (2)C16—N8—C17—C22176.71 (19)
C15—C11—C12—N7179.66 (19)C22—C17—C18—C190.3 (3)
N5—C11—C12—N70.2 (3)N8—C17—C18—C19178.4 (2)
C12—N6—C13—C140.8 (4)C17—C18—C19—C200.2 (4)
C12—N6—C13—Cl2179.04 (15)C18—C19—C20—C210.3 (4)
N6—C13—C14—C150.5 (3)C19—C20—C21—C220.2 (4)
Cl2—C13—C14—C15179.40 (16)C20—C21—C22—C170.8 (4)
C10—N4—C15—C110.3 (2)C20—C21—C22—Cl1178.9 (2)
C9—N4—C15—C11179.5 (2)C18—C17—C22—C210.8 (3)
C10—N4—C15—C14178.9 (2)N8—C17—C22—C21179.0 (2)
C9—N4—C15—C141.3 (4)C18—C17—C22—Cl1178.84 (16)
N5—C11—C15—N40.3 (2)N8—C17—C22—Cl10.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O3i0.862.072.862 (3)153
N8—H8···N60.862.032.723 (2)136
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O3i0.862.07002.862 (3)153
N8—H8···N60.862.03002.723 (2)136
Symmetry code: (i) x+1, y, z+2.
 

Acknowledgements

VBD acknowledges the VGST (Vision Group of Science & Technology, Department. IT, BT and S & T, Govt. of Karnataka) for financial support (No. VGST/P-15/K-FIST Level-1 /2010–11/744 dated 21/03/2011).

References

First citationBarraclough, P., Black, J. W., Cambridge, D., Collard, D., Firmin, D., Gerskowitch, V. P., Glen, R. C., Giles, H., Hill, A. P., Hull, R. A. D., Iyer, R., King, W. R., Kneen, C. O., Lindon, J. C., Nobbs, M. S., Randall, P., Shah, G. P., Smith, S., Vine, S. J., Whiting, M. V. & Williams, J. M. (1990). J. Med. Chem. 33, 2231–2239.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBavetsias, V., Sun, C., Bouloc, N., Reynisson, J., Workman, P., Linardopoulos, S. & McDonald, E. (2007). Bioorg. Med. Chem. 17, 6567–6571.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationCappelli, A., Mohr, G. P., Giuliani, G., Galeazzi, S., Anzini, M., Mennuni, L., Ferrari, F., Macoves, F., Krienrath, E. M., Langer, T., Valoti, M., Giorgi, G. & Vomero, S. (2006). J. Med. Chem. 49, 6451–6464.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCooper, K., Fray, M. J., Parry, J. M., Richardson, K. & Steele, J. (1992). J. Med. Chem. 35, 3115–3120.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJanssens, F., Torremans, J., Janssen, M., Stokbroekx, R. A., Luyckx, M. & Janssen, P. A. J. (1985). J. Med. Chem. 28, 1943–1947.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKandri Rodi, Y., Haoudi, A., Capet, F., Mazzah, A., Essassi, E. M. & El Ammari, L. (2013). Acta Cryst. E69, o1029–o1030.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKulkarni, S. S. & Newman, A. H. (2007). Bioorg. Med. Chem. Lett. 17, 2987–2991.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTemple, J. C., Rose, J. D., Comber, R. N. & Rener, G. A. (1987). J. Med. Chem. 30, 1746–1751.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWeier, R. M., Khanna, I. K., Lentz, K., Stealey, M. A. & Julien, J. (1994). (Searle) US Patent No. 5359073.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o155-o156
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds