organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(Di­methyl­aza­nium­yl)eth­yl]-1H-1,2,3,4-tetra­zole-5-thiol­ate

aPeriyar Maniammai University, Thanjavur 613 403, Tamil Nadu, India, and bSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
*Correspondence e-mail: lvsethu13@gmail.com

(Received 15 November 2013; accepted 22 January 2014; online 29 January 2014)

In the crystal structure of the title zwitterion, C5H11N5S, mol­ecules are linked via N—H⋯N hydrogen bonds, forming zigzag chains propagating along [010]. The chains are linked by C—H⋯S hydrogen bonds, forming two dimensional networks lying parallel to (001).

Related literature

For the biological activity of tetra­zoles, see: Juby et al. (1982[Juby, P. F., Hudyma, T. W., Brown, M., Essery, J. M. & Partyka, R. A. (1982). J. Med. Chem. 25, 1145-1150.]); Tamilselvi & Mugesh (2009[Tamilselvi, A. & Mugesh, G. (2009). ChemMedChem, 4, 512-516.], 2011[Tamilselvi, A. & Mugesh, G. (2011). Inorg. Chem. 50, 749-756.]). For the general existence of zwitterions in other mol­ecules and the involvement of a protonated N atom in hydrogen bonding, see: Ruanwas et al. (2012[Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o2155-o2156.]); Ha (2012[Ha, K. (2012). Acta Cryst. E68, o1221.]). For the biological activity of cefotiam (systematic name: (6R,7R)-7-{[2-(2-amino-1,3-thia­zol-4-yl)acet­yl]amino}-3-{[1-(2-di­methyl­amino­eth­yl)tetra­zol-5-yl), an anti­obiotic with DMETT [1-(2-(di­methyl­amino)-eth­yl)-1H-tetra­zole-5-thione] as a side chain, against enterobacteriacea, see: Garcia-Rodriguez et al. (1995[Garcia-Rodriguez, J. A., Bellido, J. L. M. & Sanchez, J. E. G. (1995). Int. J. Antimicrob. Agents, 5, 231-243.]); Polis & Tuazon (1985[Polis, M. A. & Tuazon, C. U. (1985). Antimicrob Agents Chemother. 28, 576-577.]).

[Scheme 1]

Experimental

Crystal data
  • C5H11N5S

  • Mr = 173.26

  • Monoclinic, P 21 /c

  • a = 7.1021 (1) Å

  • b = 11.2476 (2) Å

  • c = 10.7045 (2) Å

  • β = 102.479 (1)°

  • V = 834.89 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.41 × 0.21 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.955

  • 11518 measured reflections

  • 3004 independent reflections

  • 2618 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.05

  • 3004 reflections

  • 106 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯N4i 0.934 (16) 1.889 (17) 2.8054 (14) 166.2 (16)
C4—H4C⋯S1ii 0.98 2.83 3.7275 (13) 153
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and POV-RAY (Cason, 2004[Cason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.]); software used to prepare material for publication: PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A large number of tetrazole derivatives exhibit diverse pharmacological properties (Juby et al., 1982) and some antibiotics with heterocyclic thiol side chains possess antithyroid activity (Tamilselvi & Mugesh, 2009). 1-(2-(Dimethylamino)-ethyl)-1H-tetrazole-5-thione (DMETT) exhibits thiol-thione tautomerism and thiolate anion formation which plays a vital role in the inhibition of the metallo-β-lactamases catalysed hydrolysis of cephalosporins (Tamilselvi & Mugesh, 2011). Cefotiam, a second-generation cephalosporin antibiotic, has a derivative of DMETT as a side chain which is more active against many of the Enterobacteriacea including Enterobacter, E·Coli, Klebsiella, Salmonella and Indole-positive Proteus species (Garcia-Rodriguez et al. 1995; Polis & Tuazon, 1985).

The current investigation focusses on the supramolecular hydrogen bonded patterns exhibited by the title compound (Scheme. 1).

The title compound (I), 1-[2-(dimethylazaniumyl)ethyl]-1H-1,2,3,4-tetrazole-5-thiolate tetrazole-5-thiolate (DMATT) crystallizes with one molecule in the asymmetric unit and it exists as a zwitterion with the positive charge on the ammonium nitrogen atom and the negative charge on the thiolate sulfur atom (Fig 1).

This compound exists as a zwitterion like many other amino compounds reported in the literature (Ruanwas, et al., 2012; Ha, 2012). There is an intramolecular exchange of thiol proton to amino nitrogen and thus thiolate formation, which leads to the generation of a nucleophilic sulfur species (responsible for the inhibition activity). The geometry of the tert- ammonium group is found to be tetrahedral with bond angles ranging from 106.9 (11)–113.32 (9)°. The maximum deviation of the side chain at N1 position from the mean plane of tetrazole ring moiety is found to be 0.313 (10) Å. The molecular confirmation is inferred from the torsion angles N1—C2—C3—N5, C2—C3—N5—C4 and C2—C3—N5—C5 and the values are found to be -81.52 (12)°, -166.23 (9)°, and 70.26 (12)° respectively.

Two inversion related zwitterions present in the same plane are linked by a strong N—H···N hydrogen bond involving tert-ammonium group and ring N4i atom [symmetry code: -x + 2, y - 1/2, -z + 1/2] (Table 1). This interaction extends along b axis leading to the generation of a wave like supramolecular chain. The supramolecular chains in the adjacent planes are connected via a weak C—H···S hydrogen bond. This hydrogen bond links one of the methyl C—H groups and S1ii atom [symmetry code: x - 1, y, z] and generates another wave like supramolecular chain extending along a axis. The centrosymmetric N—H···N linkage between two zwitterions facilitates the effective occurrence of C—H···S hydrogen bond thus forming a ring motif with a graph set of R44(23). This motif exists in both a and b axis and generates a two dimensional network as shown in Fig. 2.

Related literature top

For the biological activity of tetrazoles, see: Juby et al. (1982); Tamilselvi & Mugesh (2009, 2011). For the general existence of zwitterions in other molecules and the involvement of a protonated N atom in hydrogen bonding, see: Ruanwas et al. (2012); Ha (2012). For the biological activity of cefotiam (systematic name: (6R,7R)-7-{[2-(2-amino-1,3-thiazol-4-yl)acetyl]amino}-3-{[1-(2-dimethylaminoethyl)tetrazol-5-yl), an antiobiotic with DMETT [1-(2-(dimethylamino)-ethyl)-1H-tetrazole-5-thion] as a side chain, against enterobacteriacea, see: Garcia-Rodriguez et al. (1995); Polis & Tuazon (1985).

Experimental top

The title compound was obtained by dissolving DMETT (Sigma-Aldrich; 43.3mg, 0.25 mmol) in 20 ml of hot methanol, warming the resultant solution over a water bath for half an hour and then keeping it at room temperature for crystallization. After a week's time, colorless prismatic crystals were obtained

Refinement top

The hydrogen atoms for the ammonium group (NH4+) was located in a difference Fourier map and refined freely. All other hydrogen atoms were positioned geometrically (C—H = 0.98–0.99 A) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 or 1.5Ueq(C) for CH3.

Structure description top

A large number of tetrazole derivatives exhibit diverse pharmacological properties (Juby et al., 1982) and some antibiotics with heterocyclic thiol side chains possess antithyroid activity (Tamilselvi & Mugesh, 2009). 1-(2-(Dimethylamino)-ethyl)-1H-tetrazole-5-thione (DMETT) exhibits thiol-thione tautomerism and thiolate anion formation which plays a vital role in the inhibition of the metallo-β-lactamases catalysed hydrolysis of cephalosporins (Tamilselvi & Mugesh, 2011). Cefotiam, a second-generation cephalosporin antibiotic, has a derivative of DMETT as a side chain which is more active against many of the Enterobacteriacea including Enterobacter, E·Coli, Klebsiella, Salmonella and Indole-positive Proteus species (Garcia-Rodriguez et al. 1995; Polis & Tuazon, 1985).

The current investigation focusses on the supramolecular hydrogen bonded patterns exhibited by the title compound (Scheme. 1).

The title compound (I), 1-[2-(dimethylazaniumyl)ethyl]-1H-1,2,3,4-tetrazole-5-thiolate tetrazole-5-thiolate (DMATT) crystallizes with one molecule in the asymmetric unit and it exists as a zwitterion with the positive charge on the ammonium nitrogen atom and the negative charge on the thiolate sulfur atom (Fig 1).

This compound exists as a zwitterion like many other amino compounds reported in the literature (Ruanwas, et al., 2012; Ha, 2012). There is an intramolecular exchange of thiol proton to amino nitrogen and thus thiolate formation, which leads to the generation of a nucleophilic sulfur species (responsible for the inhibition activity). The geometry of the tert- ammonium group is found to be tetrahedral with bond angles ranging from 106.9 (11)–113.32 (9)°. The maximum deviation of the side chain at N1 position from the mean plane of tetrazole ring moiety is found to be 0.313 (10) Å. The molecular confirmation is inferred from the torsion angles N1—C2—C3—N5, C2—C3—N5—C4 and C2—C3—N5—C5 and the values are found to be -81.52 (12)°, -166.23 (9)°, and 70.26 (12)° respectively.

Two inversion related zwitterions present in the same plane are linked by a strong N—H···N hydrogen bond involving tert-ammonium group and ring N4i atom [symmetry code: -x + 2, y - 1/2, -z + 1/2] (Table 1). This interaction extends along b axis leading to the generation of a wave like supramolecular chain. The supramolecular chains in the adjacent planes are connected via a weak C—H···S hydrogen bond. This hydrogen bond links one of the methyl C—H groups and S1ii atom [symmetry code: x - 1, y, z] and generates another wave like supramolecular chain extending along a axis. The centrosymmetric N—H···N linkage between two zwitterions facilitates the effective occurrence of C—H···S hydrogen bond thus forming a ring motif with a graph set of R44(23). This motif exists in both a and b axis and generates a two dimensional network as shown in Fig. 2.

For the biological activity of tetrazoles, see: Juby et al. (1982); Tamilselvi & Mugesh (2009, 2011). For the general existence of zwitterions in other molecules and the involvement of a protonated N atom in hydrogen bonding, see: Ruanwas et al. (2012); Ha (2012). For the biological activity of cefotiam (systematic name: (6R,7R)-7-{[2-(2-amino-1,3-thiazol-4-yl)acetyl]amino}-3-{[1-(2-dimethylaminoethyl)tetrazol-5-yl), an antiobiotic with DMETT [1-(2-(dimethylamino)-ethyl)-1H-tetrazole-5-thion] as a side chain, against enterobacteriacea, see: Garcia-Rodriguez et al. (1995); Polis & Tuazon (1985).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and POV-RAY (Cason, 2004); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The asymmetric unit of (I), shown in 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. : A view of two dimension network formed by N—H···N and C—H···S hydrogen bonds. [symmetry code: (i) 2 - x, -1/2 + y, 1/2 - z; (ii) -1 + x, y, z].
1-[2-(Dimethylazaniumyl)ethyl]-1H-1,2,3,4-tetrazole-5-thiolate top
Crystal data top
C5H11N5SF(000) = 368
Mr = 173.26Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3004 reflections
a = 7.1021 (1) Åθ = 2.7–32.7°
b = 11.2476 (2) ŵ = 0.33 mm1
c = 10.7045 (2) ÅT = 100 K
β = 102.479 (1)°Prism, colourless
V = 834.89 (2) Å30.41 × 0.21 × 0.14 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3004 independent reflections
Radiation source: fine-focus sealed tube2618 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 32.7°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.876, Tmax = 0.955k = 1616
11518 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.4372P]
where P = (Fo2 + 2Fc2)/3
3004 reflections(Δ/σ)max = 0.002
106 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C5H11N5SV = 834.89 (2) Å3
Mr = 173.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.1021 (1) ŵ = 0.33 mm1
b = 11.2476 (2) ÅT = 100 K
c = 10.7045 (2) Å0.41 × 0.21 × 0.14 mm
β = 102.479 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3004 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2618 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.955Rint = 0.027
11518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
3004 reflectionsΔρmin = 0.30 e Å3
106 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.21899 (4)1.07521 (3)0.25401 (3)0.0158 (1)
N10.85227 (13)1.05977 (8)0.10942 (9)0.0111 (2)
N20.71652 (14)1.12926 (9)0.03430 (9)0.0146 (3)
N30.79116 (14)1.23401 (9)0.03491 (10)0.0155 (3)
N40.97380 (13)1.23578 (9)0.10896 (9)0.0129 (2)
N50.72606 (14)0.90248 (8)0.33382 (9)0.0109 (2)
C11.01325 (15)1.12532 (10)0.15599 (10)0.0112 (3)
C20.81956 (17)0.93255 (10)0.12032 (11)0.0133 (3)
C30.66221 (16)0.90062 (10)0.19086 (10)0.0120 (3)
C40.57703 (17)0.84181 (11)0.39090 (11)0.0151 (3)
C50.76474 (17)1.02474 (10)0.38754 (10)0.0137 (3)
H2A0.941600.895100.165200.0160*
H2B0.785400.898200.033200.0160*
H3A0.553900.957100.165100.0140*
H3B0.613200.820200.163900.0140*
H4A0.616800.843900.484400.0230*
H4B0.563600.759000.361900.0230*
H4C0.453200.882800.363800.0230*
H50.839 (2)0.8576 (16)0.3566 (16)0.024 (4)*
H5A0.652601.075500.355400.0210*
H5B0.877901.057800.361300.0210*
H5C0.789101.021200.481100.0210*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0125 (1)0.0164 (2)0.0171 (1)0.0012 (1)0.0001 (1)0.0039 (1)
N10.0124 (4)0.0083 (4)0.0120 (4)0.0003 (3)0.0014 (3)0.0014 (3)
N20.0142 (4)0.0123 (5)0.0155 (4)0.0007 (4)0.0004 (3)0.0024 (3)
N30.0141 (4)0.0127 (5)0.0186 (5)0.0001 (4)0.0009 (3)0.0021 (3)
N40.0121 (4)0.0106 (4)0.0154 (4)0.0002 (3)0.0020 (3)0.0014 (3)
N50.0122 (4)0.0089 (4)0.0115 (4)0.0003 (3)0.0025 (3)0.0003 (3)
C10.0132 (4)0.0099 (5)0.0110 (4)0.0007 (4)0.0039 (3)0.0000 (3)
C20.0185 (5)0.0080 (5)0.0144 (5)0.0018 (4)0.0056 (4)0.0008 (4)
C30.0143 (5)0.0108 (5)0.0101 (4)0.0027 (4)0.0012 (3)0.0006 (3)
C40.0162 (5)0.0139 (5)0.0166 (5)0.0007 (4)0.0065 (4)0.0028 (4)
C50.0170 (5)0.0101 (5)0.0137 (5)0.0014 (4)0.0024 (4)0.0026 (4)
Geometric parameters (Å, º) top
S1—C11.7003 (11)C2—C31.5207 (17)
N1—N21.3609 (14)C2—H2A0.9900
N1—C11.3612 (14)C2—H2B0.9900
N1—C21.4584 (14)C3—H3A0.9900
N2—N31.2914 (14)C3—H3B0.9900
N3—N41.3664 (14)C4—H4A0.9800
N4—C11.3471 (15)C4—H4B0.9800
N5—C31.4994 (14)C4—H4C0.9800
N5—C41.4962 (16)C5—H5A0.9800
N5—C51.4929 (14)C5—H5B0.9800
N5—H50.934 (16)C5—H5C0.9800
S1···H2A2.8400C5···N13.1945 (14)
S1···H3Ai3.0500C5···N3x3.1239 (15)
S1···H4Ci2.8300C1···H5B2.6900
S1···H5Ai3.0400C1···H5ii2.830 (18)
S1···H5B2.9000C1···H2Biii2.7300
S1···H3Bii3.0600C2···H5B2.8900
S1···H4Bii3.0000H2A···S12.8400
S1···H2Biii3.0800H2A···H52.3600
S1···H4Aiv2.9400H2B···S1iii3.0800
S1···H5Civ3.0500H2B···N4iii2.9400
N1···N42.1601 (14)H2B···C1iii2.7300
N1···N53.2610 (13)H3A···S1xi3.0500
N1···C53.1945 (14)H3A···N22.7800
N2···C4v3.3800 (16)H3A···H4C2.5300
N2···N42.1867 (14)H3A···H5A2.4100
N2···C3vi3.2180 (15)H3A···N2vi2.7200
N3···C5vii3.1239 (15)H3B···H4B2.3300
N3···C4v3.1363 (16)H3B···S1viii3.0600
N4···C4ii3.4054 (16)H3B···N2vi2.8600
N4···N12.1601 (14)H4A···H5C2.3400
N4···N5ii2.8054 (14)H4A···S1iv2.9400
N5···N13.2610 (13)H4B···H3B2.3300
N5···N4viii2.8054 (14)H4B···S1viii3.0000
N1···H5B2.6600H4B···N2ix2.8800
N2···H3A2.7800H4C···S1xi2.8300
N2···H4Bv2.8800H4C···H3A2.5300
N2···H3Avi2.7200H4C···N3ix2.7900
N2···H3Bvi2.8600H5···H2A2.3600
N3···H4Cv2.7900H5···N4viii1.889 (17)
N3···H5Cvii2.8100H5···C1viii2.830 (18)
N3···H5Avii2.9000H5A···S1xi3.0400
N4···H2Biii2.9400H5A···H3A2.4100
N4···H5ii1.889 (17)H5A···N3x2.9000
C1···C53.5255 (16)H5B···S12.9000
C1···C2iii3.4785 (16)H5B···N12.6600
C2···C1iii3.4785 (16)H5B···C12.6900
C3···N2vi3.2180 (15)H5B···C22.8900
C4···N3ix3.1363 (16)H5C···H4A2.3400
C4···N2ix3.3800 (16)H5C···S1iv3.0500
C4···N4viii3.4054 (16)H5C···N3x2.8100
C5···C13.5255 (16)
N2—N1—C1109.70 (9)C3—C2—H2B109.00
N2—N1—C2120.40 (9)H2A—C2—H2B108.00
C1—N1—C2129.63 (10)N5—C3—H3A109.00
N1—N2—N3106.46 (9)N5—C3—H3B109.00
N2—N3—N4110.70 (9)C2—C3—H3A109.00
N3—N4—C1107.34 (9)C2—C3—H3B109.00
C3—N5—C4109.02 (9)H3A—C3—H3B108.00
C3—N5—C5113.32 (8)N5—C4—H4A109.00
C4—N5—C5110.51 (9)N5—C4—H4B109.00
C5—N5—H5108.7 (11)N5—C4—H4C109.00
C3—N5—H5108.2 (10)H4A—C4—H4B109.00
C4—N5—H5106.9 (10)H4A—C4—H4C109.00
S1—C1—N4128.17 (9)H4B—C4—H4C109.00
S1—C1—N1126.03 (9)N5—C5—H5A109.00
N1—C1—N4105.80 (9)N5—C5—H5B109.00
N1—C2—C3114.73 (9)N5—C5—H5C109.00
N5—C3—C2114.26 (9)H5A—C5—H5B109.00
N1—C2—H2A109.00H5A—C5—H5C109.00
N1—C2—H2B109.00H5B—C5—H5C109.00
C3—C2—H2A109.00
C1—N1—N2—N30.17 (12)N1—N2—N3—N40.04 (12)
C2—N1—N2—N3174.75 (10)N2—N3—N4—C10.24 (12)
N2—N1—C1—S1179.98 (9)N3—N4—C1—S1180.00 (8)
N2—N1—C1—N40.31 (12)N3—N4—C1—N10.33 (12)
C2—N1—C1—S16.09 (17)C4—N5—C3—C2166.23 (9)
C2—N1—C1—N4174.24 (10)C5—N5—C3—C270.26 (12)
N2—N1—C2—C368.63 (13)N1—C2—C3—N581.52 (12)
C1—N1—C2—C3118.00 (12)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+2, z; (iv) x+2, y+2, z+1; (v) x+1, y+1/2, z+1/2; (vi) x+1, y+2, z; (vii) x, y+5/2, z1/2; (viii) x+2, y1/2, z+1/2; (ix) x+1, y1/2, z+1/2; (x) x, y+5/2, z+1/2; (xi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N4viii0.934 (16)1.889 (17)2.8054 (14)166.2 (16)
C2—H2A···S10.992.843.3039 (12)109
C4—H4C···S1xi0.982.833.7275 (13)153
Symmetry codes: (viii) x+2, y1/2, z+1/2; (xi) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N4i0.934 (16)1.889 (17)2.8054 (14)166.2 (16)
C4—H4C···S1ii0.98002.83003.7275 (13)153.00
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x1, y, z.
 

Acknowledgements

The authors thank Dr Babu Varghese and the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Chennai, Tamil Nadu, India, for the data collection.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCason, C. J. (2004). POV-RAY for Windows. Persistence of Vision, Raytracer Pty Ltd, Victoria, Australia. URL: http://www.povray.org.  Google Scholar
First citationGarcia-Rodriguez, J. A., Bellido, J. L. M. & Sanchez, J. E. G. (1995). Int. J. Antimicrob. Agents, 5, 231–243.  PubMed CAS Web of Science Google Scholar
First citationHa, K. (2012). Acta Cryst. E68, o1221.  CSD CrossRef IUCr Journals Google Scholar
First citationJuby, P. F., Hudyma, T. W., Brown, M., Essery, J. M. & Partyka, R. A. (1982). J. Med. Chem. 25, 1145–1150.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPolis, M. A. & Tuazon, C. U. (1985). Antimicrob Agents Chemother. 28, 576–577.  CrossRef CAS PubMed Google Scholar
First citationRuanwas, P., Chantrapromma, S. & Fun, H.-K. (2012). Acta Cryst. E68, o2155–o2156.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamilselvi, A. & Mugesh, G. (2009). ChemMedChem, 4, 512–516.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTamilselvi, A. & Mugesh, G. (2011). Inorg. Chem. 50, 749–756.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds