organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-2-(3,4-Di­chloro­benzyl­­idene)hydrazin-1-yl]quinoxaline

aFundação Oswaldo Cruz, Instituto de Tecnologia em, Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos 21041-250, Rio de Janeiro, RJ, Brazil, bChemistry Department, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 30 December 2013; accepted 8 January 2014; online 11 January 2014)

The 21 non-H atoms of the title compound, C15H10Cl2N4, are almost planar (r.m.s. deviation = 0.032 Å); the conformation about the N=C bond [1.277 (6) Å] is E. In the crystal, zigzag supra­molecular chains along the c axis (glide symmetry) are formed via N—H⋯N hydrogen bonds. These associate along the b axis by ππ inter­actions between the fused and terminal benzene rings [inter­centroid distance = 3.602 (3) Å] so that layers form in the bc plane.

Related literature

For the use of quinoxaline compounds as dyestuffs and biological agents, see: Mielcke et al. (2012[Mielcke, T. R., Mascarello, A., Fillipi-Chiela, E., Zanin, R. F., Lenz, G., Leal, P. C., Chirardia, L. D., Yunes, R. A., Nunes, R. J., Battastin, A. M. O., Marrone, F. B. & Campos, M. M. (2012). Eur. J. Med. Chem. 48, 255-264.]); Mamedov & Zhukova (2012[Mamedov, V. A. & Zhukova, N. A. (2012). Progress in Heterocyclic Chemistry, edited by G. W. Gribble & J. A. Joule, Vol. 24, ch. 2, pp. 55-88. Oxford: Elsevierd.]); Rodrigues et al. (2014[Rodrigues, F. A. R., Bomfim, I. S., Cavalcanti, B. C., Pessoa, C. O., Wardell, J. L., Wardell, S. M. S. V., Pinheiro, A. C., Kaiser, C. R., Nogueira, T. C. M., Low, J. N., Gomes, L. R. & de Souza, M. V. N. (2014). Bioorg. Med. Chem. Lett. Submitted.]). For a related hydrazone structure, see: de Souza et al. (2013[Souza, M. V. N. de, Goncalves, R. S. B., Wardell, S. M. S. V. & Wardell, J. L. (2013). Z. Kristallogr. 228, 359-368.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10Cl2N4

  • Mr = 317.17

  • Monoclinic, P 21 /c

  • a = 16.0284 (11) Å

  • b = 6.9756 (4) Å

  • c = 12.4127 (9) Å

  • β = 96.043 (7)°

  • V = 1380.12 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 120 K

  • 0.20 × 0.13 × 0.03 mm

Data collection
  • Rigaku RAXIS conversion diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.654, Tmax = 1.000

  • 7037 measured reflections

  • 2385 independent reflections

  • 1670 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.219

  • S = 1.20

  • 2385 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯N4i 0.92 (5) 2.10 (5) 3.013 (5) 171 (4)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Experimental top

Synthesis and crystallization top

A solution of 2-hydrazinylquinozaline (1 mmol) and 3,4-di­chloro­benzaldehyde (1.05 mmol) in EtOH (10 ml) was stirred at room temperature for 24 h and rotary evaporated. The residue was washed with ice-cold EtOH (3 ×) and recrystallized from its MeOCH2CH2OH solution. Yield: 95%. M.Pt: 528–529 K. 1H NMR (400 MHz, DMSO-d6): δ 11.86 (1H, s, NH); 9.15 (1H, s, H3); 8.11 (1H, s, CH); 8.04 (1H, d, J = 2.0; H2'); 7.93 (1H, d, J = 8.2, H5); 7.77 (1H, dd, J = 8.4 and J = 2.0, H6'); 7.68 (3H, m, H5', H7 and H8); 7.51 (1H, dt, J = 8.2 and J = 2.0, H6) ppm. 13C NMR (100 MHz, DMSO-d6): δ 150.0; 140.7; 139.0; 138.0; 136.4; 135.5; 131.6; 131.1; 130.8; 130.3; 128.7; 127.8; 126.3; 126.2; 125.3 ppm. MS/ESI (M—H): 314.9. IR (cm-1, KBr): 3437 ν(N—H); 1585 ν(CN).

Refinement top

Intensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012). The C–bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located from a difference map and refined with Uiso(H) = 1.2Ueq(N).

Results and discussion top

Quinoxaline compounds have found uses, mainly as biologically active compounds, but also as dyestuffs (Mielcke et al., 2012; Mamedov & Zhukova, 2012). The biological activities of quinoxaline compounds include anti-bacterial, anti-tubercular, anti-microbial, anti-fungal, anti-malarial, anti-inflammatory, anti-leishmanial, anti-tumour, herbicidal and insecticidal (Mielcke et al., 2012; Mamedov & Zhukova, 2012). In a recent study, an evaluation of the anti-cancer activities of a series of (E)-2-(2-benzyl­idene)hydrazinyl)quinoxaline derivatives was reported (Rodrigues et al., 2014). As part of our continuing studies on the structures of biologically active hydrazones (de Souza et al., 2013), we now report the crystal structure of the title compound, (E)-2-(2-(3,4-di­chloro­benzyl­idene)hydrazinyl)-quinoxaline, (I).

In (I), Fig. 1, the 21 non-hydorgen atoms comprising the molecule are co-planar with the r.m.s. deviation = 0.032 Å; the maximum deviations from the least-squares plane are 0.066 (5) Å for atom C5 and -0.057 (1) Å for atom Cl2. The conformation about the N1C7 bond [1.277 (6) Å] is E.

In the crystal packing, zigzag supra­moelcular chains (glide symmetry) are formed via N—H···N hydrogen bonds, Fig. 2 and Table 1. These chains along the c direction are consolidated into supra­molecular layers in the bc plane by ππ inter­actions between the (C1–C6) and (C9–C14)i rings [inter-centroid distance = 3.602 (3) Å, inter-planar angle = 2.4 (2)° for symmetry operation i: 1-x, 1-y, -z] formed along the b direction, Fig. 3.

Related literature top

For the use of quinoxaline compounds as dyestuffs and biological agents, see: Mielcke et al. (2012); Mamedov & Zhukova (2012); Rodrigues et al. (2014). For a related hydrazone structure, see: de Souza et al. (2013).

Structure description top

Quinoxaline compounds have found uses, mainly as biologically active compounds, but also as dyestuffs (Mielcke et al., 2012; Mamedov & Zhukova, 2012). The biological activities of quinoxaline compounds include anti-bacterial, anti-tubercular, anti-microbial, anti-fungal, anti-malarial, anti-inflammatory, anti-leishmanial, anti-tumour, herbicidal and insecticidal (Mielcke et al., 2012; Mamedov & Zhukova, 2012). In a recent study, an evaluation of the anti-cancer activities of a series of (E)-2-(2-benzyl­idene)hydrazinyl)quinoxaline derivatives was reported (Rodrigues et al., 2014). As part of our continuing studies on the structures of biologically active hydrazones (de Souza et al., 2013), we now report the crystal structure of the title compound, (E)-2-(2-(3,4-di­chloro­benzyl­idene)hydrazinyl)-quinoxaline, (I).

In (I), Fig. 1, the 21 non-hydorgen atoms comprising the molecule are co-planar with the r.m.s. deviation = 0.032 Å; the maximum deviations from the least-squares plane are 0.066 (5) Å for atom C5 and -0.057 (1) Å for atom Cl2. The conformation about the N1C7 bond [1.277 (6) Å] is E.

In the crystal packing, zigzag supra­moelcular chains (glide symmetry) are formed via N—H···N hydrogen bonds, Fig. 2 and Table 1. These chains along the c direction are consolidated into supra­molecular layers in the bc plane by ππ inter­actions between the (C1–C6) and (C9–C14)i rings [inter-centroid distance = 3.602 (3) Å, inter-planar angle = 2.4 (2)° for symmetry operation i: 1-x, 1-y, -z] formed along the b direction, Fig. 3.

For the use of quinoxaline compounds as dyestuffs and biological agents, see: Mielcke et al. (2012); Mamedov & Zhukova (2012); Rodrigues et al. (2014). For a related hydrazone structure, see: de Souza et al. (2013).

Synthesis and crystallization top

A solution of 2-hydrazinylquinozaline (1 mmol) and 3,4-di­chloro­benzaldehyde (1.05 mmol) in EtOH (10 ml) was stirred at room temperature for 24 h and rotary evaporated. The residue was washed with ice-cold EtOH (3 ×) and recrystallized from its MeOCH2CH2OH solution. Yield: 95%. M.Pt: 528–529 K. 1H NMR (400 MHz, DMSO-d6): δ 11.86 (1H, s, NH); 9.15 (1H, s, H3); 8.11 (1H, s, CH); 8.04 (1H, d, J = 2.0; H2'); 7.93 (1H, d, J = 8.2, H5); 7.77 (1H, dd, J = 8.4 and J = 2.0, H6'); 7.68 (3H, m, H5', H7 and H8); 7.51 (1H, dt, J = 8.2 and J = 2.0, H6) ppm. 13C NMR (100 MHz, DMSO-d6): δ 150.0; 140.7; 139.0; 138.0; 136.4; 135.5; 131.6; 131.1; 130.8; 130.3; 128.7; 127.8; 126.3; 126.2; 125.3 ppm. MS/ESI (M—H): 314.9. IR (cm-1, KBr): 3437 ν(N—H); 1585 ν(CN).

Refinement details top

Intensity data was collected at the National Crystallographic Service, England (Coles & Gale, 2012). The C–bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atom was located from a difference map and refined with Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the supramolecular zigzag chain along the c axis in (I). The N—H···H hydrogen bonds are shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents for (I). The N—H···H and ππ interactions are shown as orange and purple dashed lines, respectively.
2-[(E)-2-(3,4-Dichlorobenzylidene)hydrazin-1-yl]quinoxaline top
Crystal data top
C15H10Cl2N4F(000) = 648
Mr = 317.17Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5450 reflections
a = 16.0284 (11) Åθ = 3.2–29.1°
b = 6.9756 (4) ŵ = 0.47 mm1
c = 12.4127 (9) ÅT = 120 K
β = 96.043 (7)°Prism, yellow
V = 1380.12 (16) Å30.20 × 0.13 × 0.03 mm
Z = 4
Data collection top
Rigaku RAXIS conversion
diffractometer
2385 independent reflections
Radiation source: Sealed Tube1670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 10.0000 pixels mm-1θmax = 25.0°, θmin = 3.2°
profile data from ω–scansh = 1917
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
k = 87
Tmin = 0.654, Tmax = 1.000l = 1414
7037 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.20 w = 1/[σ2(Fo2) + (0.1005P)2 + 2.9896P]
where P = (Fo2 + 2Fc2)/3
2385 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C15H10Cl2N4V = 1380.12 (16) Å3
Mr = 317.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0284 (11) ŵ = 0.47 mm1
b = 6.9756 (4) ÅT = 120 K
c = 12.4127 (9) Å0.20 × 0.13 × 0.03 mm
β = 96.043 (7)°
Data collection top
Rigaku RAXIS conversion
diffractometer
2385 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
1670 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 1.000Rint = 0.043
7037 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.219H atoms treated by a mixture of independent and constrained refinement
S = 1.20Δρmax = 0.76 e Å3
2385 reflectionsΔρmin = 0.65 e Å3
193 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.92037 (8)0.4044 (2)0.39515 (10)0.0391 (4)
Cl21.01377 (8)0.3943 (2)0.18221 (11)0.0391 (4)
N10.6096 (2)0.6684 (6)0.0737 (3)0.0234 (9)
N20.5269 (2)0.7147 (6)0.0801 (3)0.0249 (9)
H2N0.504 (3)0.718 (7)0.145 (4)0.030*
N30.3991 (2)0.8161 (5)0.0034 (3)0.0206 (9)
N40.4593 (2)0.8165 (6)0.2031 (3)0.0247 (9)
C10.7406 (3)0.5710 (7)0.1655 (4)0.0256 (11)
C20.7839 (3)0.5206 (7)0.2653 (4)0.0244 (11)
H20.75600.52120.32910.029*
C30.8691 (3)0.4690 (7)0.2706 (4)0.0307 (12)
C40.9107 (3)0.4672 (7)0.1782 (4)0.0281 (11)
C50.8680 (3)0.5232 (7)0.0788 (4)0.0301 (12)
H50.89630.52620.01540.036*
C60.7837 (3)0.5744 (7)0.0738 (4)0.0291 (11)
H60.75490.61250.00640.035*
C70.6523 (3)0.6206 (7)0.1623 (4)0.0235 (11)
H70.62590.61750.22730.028*
C80.4770 (3)0.7668 (6)0.0107 (3)0.0203 (10)
C90.3477 (3)0.8652 (6)0.0881 (3)0.0215 (10)
C100.2636 (3)0.9113 (7)0.0786 (4)0.0225 (10)
H100.24310.90850.00950.027*
C110.2105 (3)0.9607 (7)0.1694 (4)0.0253 (11)
H110.15360.99210.16250.030*
C120.2405 (3)0.9648 (7)0.2726 (4)0.0272 (11)
H120.20380.99930.33470.033*
C130.3230 (3)0.9187 (7)0.2832 (3)0.0233 (10)
H130.34300.92180.35260.028*
C140.3777 (3)0.8671 (6)0.1917 (4)0.0214 (10)
C150.5066 (3)0.7679 (7)0.1146 (3)0.0222 (10)
H150.56310.73190.12020.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0337 (8)0.0532 (9)0.0288 (7)0.0025 (6)0.0040 (5)0.0098 (6)
Cl20.0250 (7)0.0496 (9)0.0422 (8)0.0038 (6)0.0012 (6)0.0045 (6)
N10.022 (2)0.029 (2)0.0190 (19)0.0013 (17)0.0001 (16)0.0014 (17)
N20.025 (2)0.037 (2)0.0130 (19)0.0015 (19)0.0014 (16)0.0009 (17)
N30.020 (2)0.026 (2)0.0155 (18)0.0015 (17)0.0006 (15)0.0013 (16)
N40.026 (2)0.030 (2)0.0177 (19)0.0012 (19)0.0034 (16)0.0016 (17)
C10.025 (3)0.024 (2)0.027 (3)0.003 (2)0.000 (2)0.000 (2)
C20.024 (2)0.032 (3)0.015 (2)0.003 (2)0.0031 (18)0.000 (2)
C30.033 (3)0.021 (2)0.035 (3)0.009 (2)0.007 (2)0.002 (2)
C40.024 (2)0.030 (3)0.029 (3)0.002 (2)0.000 (2)0.001 (2)
C50.031 (3)0.033 (3)0.027 (3)0.000 (2)0.002 (2)0.000 (2)
C60.028 (3)0.033 (3)0.026 (3)0.005 (2)0.002 (2)0.003 (2)
C70.027 (3)0.030 (3)0.013 (2)0.002 (2)0.0005 (18)0.0013 (19)
C80.027 (2)0.021 (2)0.012 (2)0.001 (2)0.0000 (18)0.0011 (17)
C90.027 (2)0.022 (2)0.015 (2)0.002 (2)0.0009 (18)0.0037 (18)
C100.023 (2)0.029 (3)0.015 (2)0.001 (2)0.0025 (18)0.0006 (19)
C110.023 (2)0.028 (3)0.024 (3)0.001 (2)0.0002 (19)0.002 (2)
C120.035 (3)0.027 (3)0.017 (2)0.002 (2)0.009 (2)0.0006 (19)
C130.027 (3)0.032 (3)0.011 (2)0.002 (2)0.0001 (18)0.0005 (19)
C140.022 (2)0.024 (2)0.019 (2)0.001 (2)0.0012 (18)0.0025 (19)
C150.025 (2)0.028 (2)0.014 (2)0.003 (2)0.0018 (17)0.0006 (19)
Geometric parameters (Å, º) top
Cl1—C31.733 (5)C5—C61.393 (7)
Cl2—C41.725 (5)C5—H50.9500
N1—C71.277 (6)C6—H60.9500
N1—N21.375 (5)C7—H70.9500
N2—C81.361 (6)C8—C151.421 (6)
N2—H2N0.92 (5)C9—C101.402 (6)
N3—C81.323 (6)C9—C141.420 (6)
N3—C91.375 (6)C10—C111.383 (6)
N4—C151.312 (6)C10—H100.9500
N4—C141.378 (6)C11—C121.414 (6)
C1—C61.392 (7)C11—H110.9500
C1—C21.400 (6)C12—C131.381 (7)
C1—C71.453 (6)C12—H120.9500
C2—C31.406 (7)C13—C141.406 (6)
C2—H20.9500C13—H130.9500
C3—C41.385 (7)C15—H150.9500
C4—C51.401 (7)
C7—N1—N2116.3 (4)C1—C7—H7119.4
C8—N2—N1120.1 (4)N3—C8—N2116.1 (4)
C8—N2—H2N118 (3)N3—C8—C15121.9 (4)
N1—N2—H2N122 (3)N2—C8—C15122.0 (4)
C8—N3—C9116.6 (4)N3—C9—C10119.1 (4)
C15—N4—C14116.8 (4)N3—C9—C14121.3 (4)
C6—C1—C2119.0 (4)C10—C9—C14119.6 (4)
C6—C1—C7122.6 (4)C11—C10—C9120.2 (4)
C2—C1—C7118.3 (4)C11—C10—H10119.9
C1—C2—C3119.6 (4)C9—C10—H10119.9
C1—C2—H2120.2C10—C11—C12120.3 (4)
C3—C2—H2120.2C10—C11—H11119.9
C4—C3—C2120.8 (4)C12—C11—H11119.9
C4—C3—Cl1120.8 (4)C13—C12—C11120.1 (4)
C2—C3—Cl1118.4 (4)C13—C12—H12119.9
C3—C4—C5119.5 (5)C11—C12—H12119.9
C3—C4—Cl2121.4 (4)C12—C13—C14120.3 (4)
C5—C4—Cl2119.0 (4)C12—C13—H13119.9
C6—C5—C4119.5 (5)C14—C13—H13119.9
C6—C5—H5120.2N4—C14—C13120.0 (4)
C4—C5—H5120.2N4—C14—C9120.5 (4)
C1—C6—C5121.4 (5)C13—C14—C9119.5 (4)
C1—C6—H6119.3N4—C15—C8122.9 (4)
C5—C6—H6119.3N4—C15—H15118.5
N1—C7—C1121.1 (4)C8—C15—H15118.5
N1—C7—H7119.4
C7—N1—N2—C8179.9 (4)N1—N2—C8—C152.6 (7)
C6—C1—C2—C31.9 (7)C8—N3—C9—C10177.5 (4)
C7—C1—C2—C3179.0 (4)C8—N3—C9—C141.5 (6)
C1—C2—C3—C40.1 (7)N3—C9—C10—C11179.8 (4)
C1—C2—C3—Cl1179.2 (4)C14—C9—C10—C110.8 (7)
C2—C3—C4—C52.0 (7)C9—C10—C11—C120.2 (7)
Cl1—C3—C4—C5178.9 (4)C10—C11—C12—C130.2 (7)
C2—C3—C4—Cl2177.1 (4)C11—C12—C13—C140.1 (7)
Cl1—C3—C4—Cl21.9 (6)C15—N4—C14—C13179.2 (4)
C3—C4—C5—C61.9 (8)C15—N4—C14—C90.1 (7)
Cl2—C4—C5—C6177.2 (4)C12—C13—C14—N4178.3 (4)
C2—C1—C6—C52.0 (7)C12—C13—C14—C90.8 (7)
C7—C1—C6—C5179.0 (5)N3—C9—C14—N41.0 (7)
C4—C5—C6—C10.1 (8)C10—C9—C14—N4178.0 (4)
N2—N1—C7—C1179.3 (4)N3—C9—C14—C13179.8 (4)
C6—C1—C7—N10.7 (7)C10—C9—C14—C131.2 (7)
C2—C1—C7—N1179.8 (4)C14—N4—C15—C80.2 (7)
C9—N3—C8—N2178.7 (4)N3—C8—C15—N40.3 (7)
C9—N3—C8—C151.2 (6)N2—C8—C15—N4179.6 (4)
N1—N2—C8—N3177.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N4i0.92 (5)2.10 (5)3.013 (5)171 (4)
Symmetry code: (i) x, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···N4i0.92 (5)2.10 (5)3.013 (5)171 (4)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci, 3, 683-689.]) at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Structural studies are supported by the Ministry of Higher Education (Malaysia) and the University of Malaya through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci, 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMamedov, V. A. & Zhukova, N. A. (2012). Progress in Heterocyclic Chemistry, edited by G. W. Gribble & J. A. Joule, Vol. 24, ch. 2, pp. 55–88. Oxford: Elsevierd.  Google Scholar
First citationMielcke, T. R., Mascarello, A., Fillipi-Chiela, E., Zanin, R. F., Lenz, G., Leal, P. C., Chirardia, L. D., Yunes, R. A., Nunes, R. J., Battastin, A. M. O., Marrone, F. B. & Campos, M. M. (2012). Eur. J. Med. Chem. 48, 255–264.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRodrigues, F. A. R., Bomfim, I. S., Cavalcanti, B. C., Pessoa, C. O., Wardell, J. L., Wardell, S. M. S. V., Pinheiro, A. C., Kaiser, C. R., Nogueira, T. C. M., Low, J. N., Gomes, L. R. & de Souza, M. V. N. (2014). Bioorg. Med. Chem. Lett. Submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Goncalves, R. S. B., Wardell, S. M. S. V. & Wardell, J. L. (2013). Z. Kristallogr. 228, 359–368.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds