organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o195-o196

7-Meth­­oxy-2-phenyl­quinoline-3-carbaldehyde

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR Université Constantine, 25000 Constantine, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université , Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 15 January 2014; accepted 21 January 2014; online 22 January 2014)

In the title mol­ecule, C17H13NO2, the phenyl ring is inclined to the quinoline ring system by 43.53 (4)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming double-stranded chains propagating along [011]. These chains are linked via ππ inter­actions involving inversion-related quinoline rings; the shortest centroid–centroid distance is 3.6596 (17) Å.

Related literature

For the synthesis and applications of similar structures, see: Montalban (2011[Montalban, A. G. (2011). In Heterocycles in Natural Product Synthesis, pp. 299-339. New York: Wiley-VCH.]); Wang et al. (2011[Wang, X.-J., Gong, D.-L., Wang, J.-D., Zhang, J., Liu, C.-X. & Xiang, W.-S. (2011). Bioorg. Med. Chem. Lett. 21, 2313-2315.]); Nilsson et al. (2008[Nilsson, J., Nielsen, E., Liljefors, T., Nielsen, M. & Sterner, O. (2008). Bioorg. Med. Chem. Lett. 18, 5713-5716.]); Elliott et al. (2006[Elliott, J. M., Carling, R. W., Chambers, M., Chicchi, G. G., Hutson, P. H., Jones, A. B., MacLeod, A., Marwood, R., Meneses-Lorente, G., Mezzogori, E., Murray, F., Rigby, M., Royo, I., Russell, M. G. N., Sohal, B., Tsao, K. W. & Williams, B. (2006). Bioorg. Med. Chem. Lett. 16, 5748-5751.]); Metallidis et al. (2007[Metallidis, M., Nikolaidis, J., Lazaraki, G., Koumentaki, E., Gogou, V., Topsis, D., Nikolaidis, P., Charokopos, N. & Theodoridis, G. (2007). Int. J. Antimicrob. Agents, 29, 742-744.]); Kaila et al. (2007[Kaila, N., Janz, K., DeBernardo, S., Bedard, P. W., Camphausen, R. T., Tam, S., Tsao, D. H. H., Keith, J. C., Nutter, C. N., Shilling, A., Sciame, R. Y. & Wang, Q. (2007). J. Med. Chem. 50, 21-39.]). For related structures, see: Abdel-Wahab et al. (2012[Abdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). ARKIVOC, i, 211-276.]); Benzerka et al. (2011[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084-o2085.], 2012[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309-313.], 2013[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94-99.]). For our previously work on the imidazol unit, see: Bouraiou et al. (2011[Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474-477.]); Hayour et al. (2011[Hayour, H., Bouraiou, A., Bouacida, S., Berrée, F., Carboni, B., Roisnel, T. & Belfaitah, A. (2011). Tetrahedron Lett. 52, 4868-4871.]); Benzerka et al. (2012[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309-313.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO2

  • Mr = 263.28

  • Triclinic, [P \overline 1]

  • a = 7.332 (3) Å

  • b = 7.582 (2) Å

  • c = 12.487 (4) Å

  • α = 73.424 (12)°

  • β = 85.877 (12)°

  • γ = 83.029 (11)°

  • V = 659.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.12 × 0.03 × 0.02 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.889, Tmax = 0.993

  • 5538 measured reflections

  • 3001 independent reflections

  • 2344 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.06

  • 3001 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.48 3.349 (2) 153
C15—H15⋯O1ii 0.95 2.54 3.377 (2) 148
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y+1, z-1.

Data collection: APEX2 (Bruker, 2001[Bruker, (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker, (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

Heterocyclic compounds have so far been synthesized mainly due to the wide range of biological activities. Quinoline derivatives have considerable interest since many years due to the presence of this skeleton in a large number of bioactive compounds and natural products (Montalban, 2011; Wang et al., 2011). In other hand, it has been well established that presence of aryl ring at second position of quinoline moiety gives a very good antibacterial property to the target molecule and plays a significant role in development of new antibacterials (Nilsson et al., 2008; Elliott et al., 2006). These derivatives were found to be useful biological targets, and at present they attained much attention in the development of new drugs (Metallidis et al., 2007; Kaila et al., 2007). Following of our previous works related to the use of substituted 2-chloro-3-formylquinolines as precursors of different quinoline-containing heterocycles (Bouraiou et al., 2011; Hayour et al., 2011), we have recently reported preparations and antibacterial screening of series of compounds carrying diverse functionalities such as an amine, amide, ester group, heterocylic unit linked to the 2-phenylquinoline entity (Benzerka et al., 2011, 2012, 2013). We report herein the synthesis and single-crystal X-ray structure of 7-methoxy-2-phenylquinoline-3-carbaldehyde (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of (I) consists of 2-phenylquinoline linked to 7-methoxy and 3-carbaldehyde. The substituted phenyl ring forms dihedral angle of 43.53 (4)° with heterocyclic ring of quinoline. The crystal packing can be described as alternating layers parallel to the (210) (Fig. 2). It is stabilized by C—H···O hydrogen bond (Fig. 3; Table. 1), and strong π-π stacking interactions between quinoline rings with a centroid-centroid distance from 3.6596 (17)Å to 4.0726 (18)Å. These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.

Related literature top

For the synthesis and applications of similar structures, see: Montalban (2011); Wang et al. (2011); Nilsson et al. (2008); Elliott et al. (2006); Metallidis et al. (2007); Kaila et al. (2007). For related structures, see: Abdel-Wahab et al. (2012); Benzerka et al. (2011, 2012, 2013). For our previously work on the imidazol unit, see: Bouraiou et al. (2011); Hayour et al. (2011); Benzerka et al. (2012).

Experimental top

A mixture of 2-chloro-7-methoxyquinoline-3-carbaldehyde (l mmol) and phenylboronic acid (1.2 mmol) in 4 ml DME was stirred under nitrogen. Palladium acetate (0.01 mmol), aq. K2CO3 (3 mmol in 3.75 ml of H2O) and triphenylphosphine (0.04 mmol) were added and the mixture was refluxed for 2 h. After completion, the reaction mixture was cooled to room temperature, diluting with EtOAc and filtering through a small bed of celite. The organic layers were collected, combined, washed with water and saturated aq NaHCO3 (2x10 ml), dried over anhydrous Na2SO4 and concentrated under vacuum. The crude compound was purified by column chromatography on silica gel using ethyl acetate/ hexane (1/2) to afford the desired product as yellow solid. Single crystals suitable for the X-ray diffraction analysis were obtained by dissolving the pure compound in an ethyl acetate/hexane mixture and allowing the solution to slowly evaporate at room temperature.

Refinement top

. Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å; and Cmethyl—Hmethyl = 0.98 Å; The idealized methyl group was allowed to rotate about the C—C bond during the refinement by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Haryl) = 1.2 Ueq(Caryl).

Structure description top

Heterocyclic compounds have so far been synthesized mainly due to the wide range of biological activities. Quinoline derivatives have considerable interest since many years due to the presence of this skeleton in a large number of bioactive compounds and natural products (Montalban, 2011; Wang et al., 2011). In other hand, it has been well established that presence of aryl ring at second position of quinoline moiety gives a very good antibacterial property to the target molecule and plays a significant role in development of new antibacterials (Nilsson et al., 2008; Elliott et al., 2006). These derivatives were found to be useful biological targets, and at present they attained much attention in the development of new drugs (Metallidis et al., 2007; Kaila et al., 2007). Following of our previous works related to the use of substituted 2-chloro-3-formylquinolines as precursors of different quinoline-containing heterocycles (Bouraiou et al., 2011; Hayour et al., 2011), we have recently reported preparations and antibacterial screening of series of compounds carrying diverse functionalities such as an amine, amide, ester group, heterocylic unit linked to the 2-phenylquinoline entity (Benzerka et al., 2011, 2012, 2013). We report herein the synthesis and single-crystal X-ray structure of 7-methoxy-2-phenylquinoline-3-carbaldehyde (I).

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of (I) consists of 2-phenylquinoline linked to 7-methoxy and 3-carbaldehyde. The substituted phenyl ring forms dihedral angle of 43.53 (4)° with heterocyclic ring of quinoline. The crystal packing can be described as alternating layers parallel to the (210) (Fig. 2). It is stabilized by C—H···O hydrogen bond (Fig. 3; Table. 1), and strong π-π stacking interactions between quinoline rings with a centroid-centroid distance from 3.6596 (17)Å to 4.0726 (18)Å. These interaction bonds link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.

For the synthesis and applications of similar structures, see: Montalban (2011); Wang et al. (2011); Nilsson et al. (2008); Elliott et al. (2006); Metallidis et al. (2007); Kaila et al. (2007). For related structures, see: Abdel-Wahab et al. (2012); Benzerka et al. (2011, 2012, 2013). For our previously work on the imidazol unit, see: Bouraiou et al. (2011); Hayour et al. (2011); Benzerka et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. (Farrugia, 2012) The molecular geometry of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. (Brandenburg & Berndt, 2001)A alternating layers parallel to (210)planes of (I) viewed down the c axis.
[Figure 3] Fig. 3. (Brandenburg & Berndt, 2001) A diagram of the layered crystal packing of (I) viewed down the b axis showing hydrogen bond as dashed line.
7-Methoxy-2-phenylquinoline-3-carbaldehyde top
Crystal data top
C17H13NO2Z = 2
Mr = 263.28F(000) = 276
Triclinic, P1Dx = 1.325 Mg m3
a = 7.332 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.582 (2) ÅCell parameters from 1596 reflections
c = 12.487 (4) Åθ = 2.9–27.7°
α = 73.424 (12)°µ = 0.09 mm1
β = 85.877 (12)°T = 150 K
γ = 83.029 (11)°Stick, yellow
V = 659.9 (4) Å30.12 × 0.03 × 0.02 mm
Data collection top
Bruker APEXII
diffractometer
2344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
CCD rotation images, thin slices scansθmax = 27.7°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.889, Tmax = 0.993k = 99
5538 measured reflectionsl = 1516
3001 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.064P)2 + 0.0518P]
where P = (Fo2 + 2Fc2)/3
3001 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H13NO2γ = 83.029 (11)°
Mr = 263.28V = 659.9 (4) Å3
Triclinic, P1Z = 2
a = 7.332 (3) ÅMo Kα radiation
b = 7.582 (2) ŵ = 0.09 mm1
c = 12.487 (4) ÅT = 150 K
α = 73.424 (12)°0.12 × 0.03 × 0.02 mm
β = 85.877 (12)°
Data collection top
Bruker APEXII
diffractometer
3001 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2344 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.993Rint = 0.044
5538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
3001 reflectionsΔρmin = 0.24 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.5020 (2)0.08593 (18)0.69768 (12)0.0260 (3)
H17A0.40550.11610.65750.039*
H17B0.54250.19470.75850.039*
H17C0.60650.04890.64590.039*
C10.21611 (18)0.61093 (18)0.31036 (11)0.0201 (3)
C20.13397 (18)0.75805 (18)0.35386 (11)0.0204 (3)
C30.13446 (18)0.73428 (18)0.46777 (12)0.0204 (3)
H30.08140.8310.49830.025*
C40.21293 (17)0.56801 (17)0.53832 (11)0.0187 (3)
C50.21827 (18)0.53151 (18)0.65648 (11)0.0208 (3)
H50.16910.62460.6910.025*
C60.29264 (19)0.36550 (19)0.72048 (11)0.0221 (3)
H60.29690.34340.79910.026*
C70.36406 (18)0.22478 (18)0.66966 (11)0.0202 (3)
C80.36215 (18)0.25374 (18)0.55626 (11)0.0203 (3)
H80.41150.15850.52360.024*
C90.28617 (17)0.42649 (17)0.48809 (11)0.0184 (3)
C100.03347 (19)0.92782 (18)0.28371 (12)0.0249 (3)
H100.00040.92790.21150.03*
C110.23061 (18)0.62767 (19)0.18804 (11)0.0222 (3)
C120.19420 (19)0.4795 (2)0.15046 (12)0.0262 (3)
H120.15630.37080.20250.031*
C130.2129 (2)0.4898 (2)0.03792 (13)0.0346 (4)
H130.18910.38760.01330.042*
C140.2660 (2)0.6478 (3)0.03901 (13)0.0426 (4)
H140.27650.65490.11640.051*
C150.3037 (2)0.7956 (2)0.00300 (13)0.0399 (4)
H150.34190.90350.05560.048*
C160.2860 (2)0.7864 (2)0.10982 (12)0.0302 (4)
H160.31150.88850.13410.036*
N10.28755 (15)0.45003 (15)0.37525 (9)0.0202 (3)
O10.43121 (14)0.06304 (12)0.74313 (8)0.0250 (3)
O20.00907 (16)1.06677 (13)0.31310 (9)0.0343 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.0318 (8)0.0184 (7)0.0253 (7)0.0039 (6)0.0022 (6)0.0045 (6)
C10.0174 (6)0.0220 (7)0.0197 (7)0.0042 (5)0.0000 (5)0.0032 (5)
C20.0184 (7)0.0177 (7)0.0227 (7)0.0025 (5)0.0008 (5)0.0016 (5)
C30.0195 (7)0.0178 (6)0.0247 (7)0.0012 (5)0.0015 (5)0.0079 (5)
C40.0162 (6)0.0188 (7)0.0209 (7)0.0031 (5)0.0004 (5)0.0049 (5)
C50.0216 (7)0.0209 (7)0.0216 (7)0.0021 (5)0.0021 (5)0.0097 (5)
C60.0232 (7)0.0267 (7)0.0175 (6)0.0034 (6)0.0002 (5)0.0079 (5)
C70.0203 (7)0.0186 (7)0.0196 (7)0.0014 (5)0.0012 (5)0.0023 (5)
C80.0213 (7)0.0188 (7)0.0209 (7)0.0001 (5)0.0010 (5)0.0069 (5)
C90.0171 (6)0.0194 (7)0.0180 (6)0.0029 (5)0.0006 (5)0.0043 (5)
C100.0252 (7)0.0214 (7)0.0254 (7)0.0026 (6)0.0005 (6)0.0024 (6)
C110.0195 (7)0.0261 (7)0.0183 (7)0.0016 (5)0.0025 (5)0.0032 (5)
C120.0229 (7)0.0301 (8)0.0244 (7)0.0013 (6)0.0019 (6)0.0071 (6)
C130.0330 (9)0.0462 (10)0.0281 (8)0.0018 (7)0.0035 (7)0.0164 (7)
C140.0440 (10)0.0676 (12)0.0175 (7)0.0103 (9)0.0008 (7)0.0124 (8)
C150.0427 (10)0.0492 (10)0.0215 (8)0.0109 (8)0.0003 (7)0.0026 (7)
C160.0314 (8)0.0330 (8)0.0233 (7)0.0061 (6)0.0013 (6)0.0020 (6)
N10.0210 (6)0.0207 (6)0.0177 (6)0.0009 (4)0.0003 (4)0.0041 (4)
O10.0343 (6)0.0196 (5)0.0181 (5)0.0035 (4)0.0033 (4)0.0026 (4)
O20.0433 (7)0.0198 (5)0.0365 (6)0.0040 (5)0.0032 (5)0.0055 (5)
Geometric parameters (Å, º) top
C17—O11.4312 (16)C7—C81.3706 (19)
C17—H17A0.98C8—C91.4161 (19)
C17—H17B0.98C8—H80.95
C17—H17C0.98C9—N11.3683 (17)
C1—N11.3270 (17)C10—O21.2109 (17)
C1—C21.4275 (19)C10—H100.95
C1—C111.4932 (19)C11—C121.3945 (19)
C2—C31.3821 (19)C11—C161.399 (2)
C2—C101.4787 (19)C12—C131.383 (2)
C3—C41.3998 (19)C12—H120.95
C3—H30.95C13—C141.383 (2)
C4—C51.4241 (18)C13—H130.95
C4—C91.4243 (19)C14—C151.384 (2)
C5—C61.3574 (19)C14—H140.95
C5—H50.95C15—C161.388 (2)
C6—C71.4206 (19)C15—H150.95
C6—H60.95C16—H160.95
C7—O11.3654 (16)
O1—C17—H17A109.5C7—C8—H8120.2
O1—C17—H17B109.5C9—C8—H8120.2
H17A—C17—H17B109.5N1—C9—C8117.78 (12)
O1—C17—H17C109.5N1—C9—C4122.68 (12)
H17A—C17—H17C109.5C8—C9—C4119.54 (12)
H17B—C17—H17C109.5O2—C10—C2123.68 (14)
N1—C1—C2122.65 (12)O2—C10—H10118.2
N1—C1—C11114.92 (12)C2—C10—H10118.2
C2—C1—C11122.43 (12)C12—C11—C16118.77 (13)
C3—C2—C1118.67 (12)C12—C11—C1119.50 (12)
C3—C2—C10118.41 (12)C16—C11—C1121.69 (12)
C1—C2—C10122.68 (12)C13—C12—C11120.42 (14)
C2—C3—C4120.13 (12)C13—C12—H12119.8
C2—C3—H3119.9C11—C12—H12119.8
C4—C3—H3119.9C12—C13—C14120.48 (15)
C3—C4—C5123.80 (12)C12—C13—H13119.8
C3—C4—C9117.36 (12)C14—C13—H13119.8
C5—C4—C9118.81 (12)C13—C14—C15119.81 (14)
C6—C5—C4120.86 (12)C13—C14—H14120.1
C6—C5—H5119.6C15—C14—H14120.1
C4—C5—H5119.6C14—C15—C16120.15 (15)
C5—C6—C7119.88 (12)C14—C15—H15119.9
C5—C6—H6120.1C16—C15—H15119.9
C7—C6—H6120.1C15—C16—C11120.36 (14)
O1—C7—C8124.44 (12)C15—C16—H16119.8
O1—C7—C6114.26 (12)C11—C16—H16119.8
C8—C7—C6121.30 (12)C1—N1—C9118.45 (11)
C7—C8—C9119.60 (12)C7—O1—C17117.17 (11)
N1—C1—C2—C32.3 (2)C3—C2—C10—O219.2 (2)
C11—C1—C2—C3176.79 (12)C1—C2—C10—O2166.56 (13)
N1—C1—C2—C10171.97 (12)N1—C1—C11—C1242.75 (18)
C11—C1—C2—C109.0 (2)C2—C1—C11—C12138.12 (14)
C1—C2—C3—C40.5 (2)N1—C1—C11—C16135.09 (14)
C10—C2—C3—C4173.94 (12)C2—C1—C11—C1644.04 (19)
C2—C3—C4—C5179.58 (12)C16—C11—C12—C130.1 (2)
C2—C3—C4—C91.5 (2)C1—C11—C12—C13177.80 (13)
C3—C4—C5—C6178.42 (12)C11—C12—C13—C140.7 (2)
C9—C4—C5—C60.4 (2)C12—C13—C14—C151.1 (3)
C4—C5—C6—C70.9 (2)C13—C14—C15—C160.9 (3)
C5—C6—C7—O1178.60 (12)C14—C15—C16—C110.3 (2)
C5—C6—C7—C81.0 (2)C12—C11—C16—C150.1 (2)
O1—C7—C8—C9178.96 (12)C1—C11—C16—C15177.95 (14)
C6—C7—C8—C90.6 (2)C2—C1—N1—C91.7 (2)
C7—C8—C9—N1179.76 (11)C11—C1—N1—C9177.47 (11)
C7—C8—C9—C40.1 (2)C8—C9—N1—C1179.72 (12)
C3—C4—C9—N12.2 (2)C4—C9—N1—C10.62 (19)
C5—C4—C9—N1179.64 (11)C8—C7—O1—C170.8 (2)
C3—C4—C9—C8178.14 (11)C6—C7—O1—C17178.80 (11)
C5—C4—C9—C80.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.952.483.349 (2)153
C15—H15···O1ii0.952.543.377 (2)148
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.95002.48003.349 (2)153.00
C15—H15···O1ii0.95002.54003.377 (2)148.00
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z1.
 

Acknowledgements

Thanks are due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support. We are grateful to Dr Roisnel Thierry from the Centre de Difractométrie de Rennes, Université de Rennes 1, France, for his technical assistance with the data collection.

References

First citationAbdel-Wahab, B. F., Khidre, R. E., Farahat, A. A. & El-Ahl, A. S. (2012). ARKIVOC, i, 211–276.  Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313.  CrossRef CAS Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94–99.  CSD CrossRef CAS Google Scholar
First citationBouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.  CSD CrossRef Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker, (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationElliott, J. M., Carling, R. W., Chambers, M., Chicchi, G. G., Hutson, P. H., Jones, A. B., MacLeod, A., Marwood, R., Meneses-Lorente, G., Mezzogori, E., Murray, F., Rigby, M., Royo, I., Russell, M. G. N., Sohal, B., Tsao, K. W. & Williams, B. (2006). Bioorg. Med. Chem. Lett. 16, 5748–5751.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHayour, H., Bouraiou, A., Bouacida, S., Berrée, F., Carboni, B., Roisnel, T. & Belfaitah, A. (2011). Tetrahedron Lett. 52, 4868–4871.  Web of Science CSD CrossRef CAS Google Scholar
First citationKaila, N., Janz, K., DeBernardo, S., Bedard, P. W., Camphausen, R. T., Tam, S., Tsao, D. H. H., Keith, J. C., Nutter, C. N., Shilling, A., Sciame, R. Y. & Wang, Q. (2007). J. Med. Chem. 50, 21–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMetallidis, M., Nikolaidis, J., Lazaraki, G., Koumentaki, E., Gogou, V., Topsis, D., Nikolaidis, P., Charokopos, N. & Theodoridis, G. (2007). Int. J. Antimicrob. Agents, 29, 742–744.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMontalban, A. G. (2011). In Heterocycles in Natural Product Synthesis, pp. 299–339. New York: Wiley-VCH.  Google Scholar
First citationNilsson, J., Nielsen, E., Liljefors, T., Nielsen, M. & Sterner, O. (2008). Bioorg. Med. Chem. Lett. 18, 5713–5716.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-J., Gong, D.-L., Wang, J.-D., Zhang, J., Liu, C.-X. & Xiang, W.-S. (2011). Bioorg. Med. Chem. Lett. 21, 2313–2315.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o195-o196
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds