metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m61-m62

[1H-1,2,4-Triazole-5(4H)-thione-κS]bis­­(tri­phenyl­phosphane-κP)(nitrato-κO)silver(I) methanol monosolvate

aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

(Received 10 January 2014; accepted 17 January 2014; online 22 January 2014)

In the title complex, [Ag(NO3)(C2H3N3S)(C18H15P)2]·CH3OH, the AgI ion exhibits a distorted tetra­hedral coordination geometry formed by two P atoms from two tri­phenyl­phosphine ligands, one S atom from a 1H-1,2,4-triazole-5(4H)-thione ligand and one O atom from a nitrate ion. In the crystal, complex and solvent mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds forming a chain along the b-axis direction. The chains are linked by weak C—H⋯O hydrogen bonds forming a two-dimensional supra­molecular architecture parallel to (001). In addition, an intra­molecular N—H⋯O hydrogen bond is observed.

Related literature

For applications of 1,2,4-triazoles and their derivatives, see: Holla et al. (1998[Holla, B. S., Shivananda, M. K., Shenoy, S. & Antony, G. (1998). Boll. Chim. Farm. 137, 233-238.]); Jones et al. (1988[Jones, A. S., Sayers, J. R., Walker, R. T. & De Clercq, E. (1988). J. Med. Chem. 31, 268-271.]); Kömürcü et al. (1995[Kömürcü, S. G., Rollas, S., Yılmaz, N. & Çevikbas, A. (1995). Drug Metab. Drug Interact. 12, 161-169.]); Küçükgüzel et al. (2001[Küçükgüzel, I., Küçükgüzel, S. G., Rollas, S. & Kiraz, M. (2001). Bioorg. Med. Chem. Lett. 11, 1703-1704.]); Wujec & Paneth (2007[Wujec, M. & Paneth, P. (2007). J. Phys.Org. Chem. 20, 1043-1049.]). For applications of silver(I) complexes with phospho­rus and sulfur donor ligands, see: Ferrari et al. (2007[Ferrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233-3240.]); Isab et al. (2010[Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251-1256.]). For related examples of discrete complexes, see: Nomiya et al. (1998[Nomiya, K., Tsuda, K. & Kasuga, N. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1653-1659.]); Pakawatchai et al. (2012[Pakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506-m1507.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(NO3)(C2H3N3S)(C18H15P)2]·CH4O

  • Mr = 827.59

  • Monoclinic, P 21 /c

  • a = 13.2712 (14) Å

  • b = 14.3999 (15) Å

  • c = 20.198 (2) Å

  • β = 107.934 (2)°

  • V = 3672.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 100 K

  • 0.37 × 0.19 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.644, Tmax = 0.746

  • 28287 measured reflections

  • 10825 independent reflections

  • 8714 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.02

  • 10825 reflections

  • 462 parameters

  • H-atom parameters constrained

  • Δρmax = 1.35 e Å−3

  • Δρmin = −0.73 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1i 0.84 2.01 2.836 (2) 168
N1—H1⋯O2 0.88 1.93 2.793 (2) 167
N3—H3⋯O4 0.88 1.91 2.769 (3) 166
C35—H35⋯O1i 0.95 2.55 3.360 (3) 143
C65—H65⋯O3ii 0.95 2.48 3.340 (3) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

1,2,4-Triazoles and their derivatives are compounds of considerable inter­est because of variety of biological properties such as anti­microbial, anti­viral, anti­convulsant, activities, anti fungal and anti­tumor (Holla et al., 1998; Jones et al., 1988; Kömürcü et al., 1995; Küçükgüzel et al., 2001) and also potent inhibitors of enzymes. Therefore, some are approved as drugs, for example, alprazolam, etizolam, or vibrunazole (Wujec & Paneth, 2007).

The coordination chemistry of silver(I) complexes with phospho­rus and sulfur donor ligands has attracted great inter­est in recent years because of their potential applications due to anti­microbial activities and they also often show inter­esting luminescence properties (Ferrari et al., 2007; Isab et al., 2010). Herein, the crystal structure of a mononuclear silver(I) nitrate complex containing both tri­phenyl­phosphine and 1H-1,2,4-triazole-5(4H)-thione is described.

The molecular structure of the title compound (I) reveals the presence of tri­phenyl­phosphine and 2,4-di­hydro-3H-1,2,4-triazole-3-thione as co-ligands coordinated to the metal ion with two P atoms from two tri­phenyl­phosphine ligands, one terminal S atom from the 1H-1,2,4-triazole-5(4H)-thione ligand and one O atom from nitrate ion as well as one solvent methanol molecule, resulting in a distorted tetra­hedral geometry as shown in Fig. 1. The Ag—S bond distance of 2.5591 (6) Å is shorter than in two other structures [Ag(Htsa)(PPh3)3] (2.608 (7) Å, Nomiya et al., 1998) and [AgBr(C3H6N2OS)(C18H15P)2] (2.8789 (10) Å, Pakawatchai et al., 2012). In the crystal, hydrogen bonds play an important role with the nitrate ion connected to the methanol molecule with inter­molecular O4—H4···O1i, N1—H1···O2 and N3—H3···O4 inter­actions (see Table 1) leading to the formation of a 1-D chain along [010], Fig. 2. Furthermore, chains are linked by weak C—H···O hydrogen bonds forming of a 2-D supra­molecular architecture parallel to (001). In addition, an intra­molecular N—H···O hydrogen bond is observed (Fig. 3).

Experimental top

Tri­phenyl­phosphine, PPh3, (0.31g,1.18 mmol) was dissolved in 30 cm3 of methanol at 333 K. AgNO3 (0.10g,0.59 mmol) was added and the mixture was stirred for 3 hours. 1H-1,2,4-Triazole-5(4H)-thione, (0.06g,0.59 mmol) was added and new reaction mixture was heated under reflux for 3 hours. The resulting clear solution was filtered off and left to evaporate at room temperature. Colorless crystal, which was deposited upon standing for few days, was filtered off and dried under reduced pressure.

Refinement top

H atoms bonded to C, N and O atoms were constrained with a riding model of of 0.95 Å (aryl H), and Uiso(H) = 1.2Ueq(C); 0.98 Å(CH3) and Uiso(H) = 1.5Ueq(C); 0.88 Å(NH) and Uiso(H) = 1.2Ueq(N); 0.84 Å(OH) and Uiso(H) = 1.5Ueq(O). Reflections 0 1 1, 1 0 0, 16 4 4, -7 8 2, -2 9 25, 7 1 0 were affected by the beam stop and were omitted from the refinement.

Related literature top

For applications of 1,2,4-triazoles and their derivatives, see: Holla et al. (1998); Jones et al. (1988); Kömürcü et al. (1995); Küçükgüzel et al. (2001); Wujec & Paneth, (2007). For applications of silver(I) complexes with phosphorus and sulfur donor ligands, see: Ferrari et al. (2007); Isab et al. (2010). For related examples of discrete complexes, see: Nomiya et al. (1998); Pakawatchai et al. (2012).

Structure description top

1,2,4-Triazoles and their derivatives are compounds of considerable inter­est because of variety of biological properties such as anti­microbial, anti­viral, anti­convulsant, activities, anti fungal and anti­tumor (Holla et al., 1998; Jones et al., 1988; Kömürcü et al., 1995; Küçükgüzel et al., 2001) and also potent inhibitors of enzymes. Therefore, some are approved as drugs, for example, alprazolam, etizolam, or vibrunazole (Wujec & Paneth, 2007).

The coordination chemistry of silver(I) complexes with phospho­rus and sulfur donor ligands has attracted great inter­est in recent years because of their potential applications due to anti­microbial activities and they also often show inter­esting luminescence properties (Ferrari et al., 2007; Isab et al., 2010). Herein, the crystal structure of a mononuclear silver(I) nitrate complex containing both tri­phenyl­phosphine and 1H-1,2,4-triazole-5(4H)-thione is described.

The molecular structure of the title compound (I) reveals the presence of tri­phenyl­phosphine and 2,4-di­hydro-3H-1,2,4-triazole-3-thione as co-ligands coordinated to the metal ion with two P atoms from two tri­phenyl­phosphine ligands, one terminal S atom from the 1H-1,2,4-triazole-5(4H)-thione ligand and one O atom from nitrate ion as well as one solvent methanol molecule, resulting in a distorted tetra­hedral geometry as shown in Fig. 1. The Ag—S bond distance of 2.5591 (6) Å is shorter than in two other structures [Ag(Htsa)(PPh3)3] (2.608 (7) Å, Nomiya et al., 1998) and [AgBr(C3H6N2OS)(C18H15P)2] (2.8789 (10) Å, Pakawatchai et al., 2012). In the crystal, hydrogen bonds play an important role with the nitrate ion connected to the methanol molecule with inter­molecular O4—H4···O1i, N1—H1···O2 and N3—H3···O4 inter­actions (see Table 1) leading to the formation of a 1-D chain along [010], Fig. 2. Furthermore, chains are linked by weak C—H···O hydrogen bonds forming of a 2-D supra­molecular architecture parallel to (001). In addition, an intra­molecular N—H···O hydrogen bond is observed (Fig. 3).

Tri­phenyl­phosphine, PPh3, (0.31g,1.18 mmol) was dissolved in 30 cm3 of methanol at 333 K. AgNO3 (0.10g,0.59 mmol) was added and the mixture was stirred for 3 hours. 1H-1,2,4-Triazole-5(4H)-thione, (0.06g,0.59 mmol) was added and new reaction mixture was heated under reflux for 3 hours. The resulting clear solution was filtered off and left to evaporate at room temperature. Colorless crystal, which was deposited upon standing for few days, was filtered off and dried under reduced pressure.

For applications of 1,2,4-triazoles and their derivatives, see: Holla et al. (1998); Jones et al. (1988); Kömürcü et al. (1995); Küçükgüzel et al. (2001); Wujec & Paneth, (2007). For applications of silver(I) complexes with phosphorus and sulfur donor ligands, see: Ferrari et al. (2007); Isab et al. (2010). For related examples of discrete complexes, see: Nomiya et al. (1998); Pakawatchai et al. (2012).

Refinement details top

H atoms bonded to C, N and O atoms were constrained with a riding model of of 0.95 Å (aryl H), and Uiso(H) = 1.2Ueq(C); 0.98 Å(CH3) and Uiso(H) = 1.5Ueq(C); 0.88 Å(NH) and Uiso(H) = 1.2Ueq(N); 0.84 Å(OH) and Uiso(H) = 1.5Ueq(O). Reflections 0 1 1, 1 0 0, 16 4 4, -7 8 2, -2 9 25, 7 1 0 were affected by the beam stop and were omitted from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure with displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure showing intermolecular hydrogen bonds (red dashed lines) forming a 1-D chain.
[Figure 3] Fig. 3. Part of the crystal structure with hydrogen bonds shown as dashed lines.
[1H-1,2,4-Triazole-5(4H)-thione-κS]bis(triphenylphosphane-κP)(nitrato-κO)silver(I) methanol monosolvate top
Crystal data top
[Ag(NO3)(C2H3N3S)(C18H15P)2]·CH4OF(000) = 1696
Mr = 827.59Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2712 (14) ÅCell parameters from 6153 reflections
b = 14.3999 (15) Åθ = 2.2–30.1°
c = 20.198 (2) ŵ = 0.74 mm1
β = 107.934 (2)°T = 100 K
V = 3672.4 (7) Å3Block, colourless
Z = 40.37 × 0.19 × 0.18 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
8714 reflections with I > 2σ(I)
Radiation source: fine focus sealed tubeRint = 0.051
ω and phi scansθmax = 31.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1918
Tmin = 0.644, Tmax = 0.746k = 1720
28287 measured reflectionsl = 2825
10825 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.1882P]
where P = (Fo2 + 2Fc2)/3
10825 reflections(Δ/σ)max = 0.003
462 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Ag(NO3)(C2H3N3S)(C18H15P)2]·CH4OV = 3672.4 (7) Å3
Mr = 827.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2712 (14) ŵ = 0.74 mm1
b = 14.3999 (15) ÅT = 100 K
c = 20.198 (2) Å0.37 × 0.19 × 0.18 mm
β = 107.934 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
10825 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
8714 reflections with I > 2σ(I)
Tmin = 0.644, Tmax = 0.746Rint = 0.051
28287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.02Δρmax = 1.35 e Å3
10825 reflectionsΔρmin = 0.73 e Å3
462 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.67429 (2)0.93151 (2)0.76336 (2)0.01160 (5)
S10.57664 (4)0.80068 (4)0.68338 (3)0.01644 (12)
P10.59184 (4)0.97770 (4)0.85134 (3)0.01086 (11)
P20.86540 (4)0.91525 (4)0.78475 (3)0.01009 (11)
C20.32936 (18)0.93273 (16)0.57203 (13)0.0181 (5)
H20.29410.97610.53710.022*
N20.28180 (15)0.88131 (14)0.60609 (11)0.0197 (4)
O10.62092 (13)1.05965 (11)0.66828 (8)0.0174 (3)
O20.60167 (13)1.01016 (12)0.56286 (8)0.0194 (4)
O30.72933 (14)1.10506 (14)0.61295 (10)0.0299 (4)
O40.31291 (15)0.71893 (13)0.74684 (9)0.0258 (4)
H40.32550.66770.76770.039*
N10.43582 (15)0.91708 (13)0.59233 (10)0.0155 (4)
H10.48220.94530.57610.019*
N30.36316 (14)0.82974 (14)0.64945 (10)0.0160 (4)
H30.35410.78790.67880.019*
N40.65185 (15)1.05927 (13)0.61445 (11)0.0158 (4)
C10.45739 (17)0.85036 (16)0.64198 (11)0.0138 (4)
C60.2732 (2)0.78183 (19)0.78606 (14)0.0275 (6)
H6A0.25890.84170.76190.041*
H6B0.32560.79040.83190.041*
H6C0.20750.75720.79170.041*
C110.65211 (16)1.07206 (15)0.91082 (11)0.0115 (4)
C120.75475 (17)1.09950 (16)0.91578 (12)0.0149 (4)
H120.79071.07100.88710.018*
C130.80489 (18)1.16858 (16)0.96255 (13)0.0188 (5)
H130.87531.18650.96610.023*
C140.75264 (19)1.21114 (16)1.00377 (12)0.0189 (5)
H140.78741.25761.03610.023*
C150.64965 (19)1.18617 (17)0.99799 (12)0.0203 (5)
H150.61331.21641.02580.024*
C160.59928 (18)1.11716 (17)0.95173 (12)0.0178 (5)
H160.52841.10040.94780.021*
C210.45256 (16)1.00891 (15)0.81942 (12)0.0132 (4)
C220.38246 (17)0.99700 (17)0.85794 (12)0.0180 (5)
H220.40510.96640.90170.022*
C230.27920 (18)1.03002 (19)0.83202 (14)0.0239 (6)
H230.23171.02230.85840.029*
C240.24512 (19)1.07409 (17)0.76800 (15)0.0256 (6)
H240.17501.09770.75100.031*
C250.3138 (2)1.08353 (18)0.72893 (15)0.0262 (6)
H250.29021.11230.68450.031*
C260.41716 (19)1.05108 (16)0.75449 (13)0.0187 (5)
H260.46391.05780.72740.022*
C310.59714 (15)0.87695 (15)0.90766 (11)0.0112 (4)
C320.63638 (17)0.87995 (16)0.97996 (12)0.0150 (4)
H320.66060.93731.00250.018*
C330.64067 (18)0.80025 (17)1.01962 (12)0.0177 (5)
H330.66720.80321.06890.021*
C340.60578 (17)0.71596 (17)0.98657 (13)0.0176 (5)
H340.60810.66131.01340.021*
C350.56759 (18)0.71196 (17)0.91447 (13)0.0189 (5)
H350.54400.65450.89200.023*
C360.56372 (17)0.79166 (16)0.87521 (12)0.0161 (5)
H360.53820.78830.82590.019*
C410.95262 (15)1.00163 (15)0.83888 (11)0.0115 (4)
C421.02105 (17)0.98262 (17)0.90534 (12)0.0166 (5)
H421.02610.92130.92340.020*
C431.08189 (19)1.05348 (17)0.94521 (13)0.0193 (5)
H431.12751.04030.99060.023*
C441.07645 (18)1.14226 (17)0.91939 (12)0.0191 (5)
H441.11881.19010.94670.023*
C451.0089 (2)1.16192 (17)0.85322 (13)0.0230 (5)
H451.00511.22310.83510.028*
C460.94721 (19)1.09224 (17)0.81390 (13)0.0194 (5)
H460.90031.10630.76900.023*
C510.91175 (16)0.90988 (15)0.70926 (11)0.0115 (4)
C521.01807 (18)0.92341 (15)0.71397 (12)0.0141 (4)
H521.06820.93770.75770.017*
C531.05087 (18)0.91613 (16)0.65508 (13)0.0169 (5)
H531.12340.92420.65860.020*
C540.97678 (19)0.89701 (17)0.59094 (12)0.0188 (5)
H540.99890.89140.55060.023*
C550.87081 (19)0.88607 (17)0.58562 (12)0.0187 (5)
H550.82030.87510.54150.022*
C560.83820 (17)0.89111 (16)0.64467 (11)0.0143 (4)
H560.76580.88180.64100.017*
C610.90777 (16)0.80667 (15)0.83114 (11)0.0120 (4)
C620.85267 (18)0.77704 (16)0.87603 (12)0.0170 (5)
H620.79500.81260.88070.020*
C630.8822 (2)0.69565 (18)0.91380 (13)0.0247 (5)
H630.84500.67590.94470.030*
C640.9654 (2)0.64320 (17)0.90676 (12)0.0238 (5)
H640.98500.58750.93270.029*
C651.02054 (19)0.67137 (17)0.86202 (13)0.0208 (5)
H651.07750.63500.85710.025*
C660.99194 (17)0.75288 (16)0.82467 (12)0.0171 (5)
H661.02990.77250.79430.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01102 (8)0.01409 (9)0.00990 (9)0.00083 (6)0.00351 (6)0.00047 (6)
S10.0177 (2)0.0141 (3)0.0152 (3)0.0004 (2)0.0017 (2)0.0025 (2)
P10.0107 (2)0.0125 (3)0.0096 (3)0.00039 (19)0.0035 (2)0.0006 (2)
P20.0097 (2)0.0115 (3)0.0091 (3)0.00054 (19)0.0030 (2)0.0003 (2)
C20.0169 (10)0.0174 (12)0.0193 (12)0.0005 (8)0.0046 (9)0.0014 (9)
N20.0178 (9)0.0207 (11)0.0218 (11)0.0012 (8)0.0080 (8)0.0008 (9)
O10.0242 (8)0.0153 (9)0.0136 (8)0.0014 (6)0.0072 (7)0.0024 (7)
O20.0215 (8)0.0229 (9)0.0142 (8)0.0053 (7)0.0058 (7)0.0018 (7)
O30.0267 (9)0.0294 (11)0.0384 (12)0.0152 (8)0.0170 (9)0.0066 (9)
O40.0398 (11)0.0192 (10)0.0229 (10)0.0015 (8)0.0162 (9)0.0046 (7)
N10.0151 (8)0.0159 (10)0.0160 (10)0.0016 (7)0.0054 (8)0.0017 (8)
N30.0175 (9)0.0169 (10)0.0144 (10)0.0032 (7)0.0060 (7)0.0014 (8)
N40.0177 (9)0.0122 (10)0.0186 (10)0.0008 (7)0.0071 (8)0.0025 (8)
C10.0175 (10)0.0122 (11)0.0116 (10)0.0033 (8)0.0044 (8)0.0040 (9)
C60.0324 (14)0.0230 (14)0.0301 (15)0.0051 (11)0.0139 (12)0.0035 (12)
C110.0120 (9)0.0117 (10)0.0098 (10)0.0008 (7)0.0019 (8)0.0005 (8)
C120.0157 (10)0.0142 (11)0.0148 (11)0.0018 (8)0.0048 (9)0.0003 (9)
C130.0156 (10)0.0147 (12)0.0228 (13)0.0001 (8)0.0011 (9)0.0017 (10)
C140.0231 (11)0.0138 (12)0.0157 (12)0.0009 (9)0.0002 (9)0.0026 (9)
C150.0260 (12)0.0201 (13)0.0158 (12)0.0023 (9)0.0079 (10)0.0043 (10)
C160.0163 (10)0.0203 (12)0.0179 (12)0.0005 (9)0.0066 (9)0.0034 (10)
C210.0125 (9)0.0123 (11)0.0131 (11)0.0015 (8)0.0012 (8)0.0030 (9)
C220.0141 (10)0.0237 (13)0.0149 (12)0.0017 (9)0.0023 (9)0.0054 (10)
C230.0143 (10)0.0299 (15)0.0290 (15)0.0020 (10)0.0089 (10)0.0138 (12)
C240.0125 (10)0.0202 (13)0.0364 (16)0.0028 (9)0.0037 (10)0.0102 (11)
C250.0205 (12)0.0220 (14)0.0296 (16)0.0034 (10)0.0018 (11)0.0034 (11)
C260.0199 (11)0.0175 (12)0.0169 (12)0.0000 (9)0.0032 (9)0.0008 (10)
C310.0091 (8)0.0125 (10)0.0123 (11)0.0018 (7)0.0038 (8)0.0011 (8)
C320.0161 (10)0.0155 (11)0.0132 (11)0.0002 (8)0.0044 (8)0.0025 (9)
C330.0193 (10)0.0207 (12)0.0119 (11)0.0018 (9)0.0030 (9)0.0034 (9)
C340.0158 (10)0.0164 (12)0.0217 (13)0.0012 (8)0.0072 (9)0.0050 (10)
C350.0197 (11)0.0154 (12)0.0227 (13)0.0043 (9)0.0083 (10)0.0036 (10)
C360.0168 (10)0.0176 (12)0.0142 (11)0.0029 (8)0.0053 (9)0.0010 (9)
C410.0103 (9)0.0131 (11)0.0116 (10)0.0008 (8)0.0039 (8)0.0001 (9)
C420.0175 (10)0.0152 (12)0.0154 (12)0.0001 (8)0.0024 (9)0.0019 (9)
C430.0197 (11)0.0196 (13)0.0157 (12)0.0018 (9)0.0014 (9)0.0003 (10)
C440.0220 (11)0.0168 (12)0.0175 (12)0.0040 (9)0.0047 (10)0.0055 (10)
C450.0352 (13)0.0113 (12)0.0206 (13)0.0032 (10)0.0058 (11)0.0009 (10)
C460.0265 (12)0.0140 (12)0.0151 (12)0.0000 (9)0.0024 (10)0.0012 (9)
C510.0140 (9)0.0104 (10)0.0110 (10)0.0007 (8)0.0052 (8)0.0009 (8)
C520.0169 (10)0.0140 (11)0.0118 (11)0.0005 (8)0.0051 (9)0.0008 (9)
C530.0190 (10)0.0140 (11)0.0215 (13)0.0017 (8)0.0117 (9)0.0018 (9)
C540.0290 (12)0.0163 (12)0.0156 (12)0.0000 (9)0.0136 (10)0.0008 (10)
C550.0245 (11)0.0188 (12)0.0126 (11)0.0037 (9)0.0057 (9)0.0005 (9)
C560.0153 (10)0.0140 (11)0.0122 (11)0.0017 (8)0.0021 (8)0.0001 (9)
C610.0132 (9)0.0109 (10)0.0100 (10)0.0017 (8)0.0010 (8)0.0014 (8)
C620.0214 (11)0.0172 (12)0.0129 (11)0.0005 (9)0.0059 (9)0.0004 (9)
C630.0387 (14)0.0223 (14)0.0153 (12)0.0009 (11)0.0117 (11)0.0042 (10)
C640.0418 (15)0.0114 (12)0.0127 (12)0.0043 (10)0.0005 (11)0.0020 (9)
C650.0244 (12)0.0153 (12)0.0194 (13)0.0060 (9)0.0019 (10)0.0025 (10)
C660.0164 (10)0.0150 (12)0.0196 (12)0.0016 (8)0.0052 (9)0.0010 (9)
Geometric parameters (Å, º) top
Ag1—P12.4485 (6)C25—H250.9500
Ag1—P22.4493 (6)C26—H260.9500
Ag1—S12.5591 (6)C31—C321.392 (3)
Ag1—O12.5994 (16)C31—C361.398 (3)
S1—C11.703 (2)C32—C331.391 (3)
P1—C211.817 (2)C32—H320.9500
P1—C111.827 (2)C33—C341.394 (3)
P1—C311.832 (2)C33—H330.9500
P2—C511.813 (2)C34—C351.388 (3)
P2—C411.817 (2)C34—H340.9500
P2—C611.821 (2)C35—C361.387 (3)
C2—N21.299 (3)C35—H350.9500
C2—N11.363 (3)C36—H360.9500
C2—H20.9500C41—C461.393 (3)
N2—N31.379 (3)C41—C421.397 (3)
O1—N41.275 (2)C42—C431.393 (3)
O2—N41.266 (3)C42—H420.9500
O3—N41.230 (2)C43—C441.374 (3)
O4—C61.408 (3)C43—H430.9500
O4—H40.8400C44—C451.390 (3)
N1—C11.354 (3)C44—H440.9500
N1—H10.8800C45—C461.381 (3)
N3—C11.338 (3)C45—H450.9500
N3—H30.8800C46—H460.9500
C6—H6A0.9800C51—C561.394 (3)
C6—H6B0.9800C51—C521.398 (3)
C6—H6C0.9800C52—C531.391 (3)
C11—C121.392 (3)C52—H520.9500
C11—C161.397 (3)C53—C541.391 (3)
C12—C131.392 (3)C53—H530.9500
C12—H120.9500C54—C551.386 (3)
C13—C141.380 (3)C54—H540.9500
C13—H130.9500C55—C561.390 (3)
C14—C151.383 (3)C55—H550.9500
C14—H140.9500C56—H560.9500
C15—C161.387 (3)C61—C621.395 (3)
C15—H150.9500C61—C661.398 (3)
C16—H160.9500C62—C631.388 (3)
C21—C261.389 (3)C62—H620.9500
C21—C221.395 (3)C63—C641.381 (4)
C22—C231.392 (3)C63—H630.9500
C22—H220.9500C64—C651.387 (4)
C23—C241.385 (4)C64—H640.9500
C23—H230.9500C65—C661.384 (3)
C24—C251.384 (4)C65—H650.9500
C24—H240.9500C66—H660.9500
C25—C261.390 (3)
P1—Ag1—P2124.60 (2)C21—C26—C25120.4 (2)
P1—Ag1—S1113.92 (2)C21—C26—H26119.8
P2—Ag1—S1109.667 (19)C25—C26—H26119.8
P1—Ag1—O1105.21 (4)C32—C31—C36118.8 (2)
P2—Ag1—O1103.29 (4)C32—C31—P1123.88 (17)
S1—Ag1—O194.96 (4)C36—C31—P1117.30 (17)
C1—S1—Ag1102.36 (8)C33—C32—C31121.0 (2)
C21—P1—C11103.94 (10)C33—C32—H32119.5
C21—P1—C31104.87 (10)C31—C32—H32119.5
C11—P1—C31104.80 (10)C32—C33—C34119.6 (2)
C21—P1—Ag1116.29 (7)C32—C33—H33120.2
C11—P1—Ag1118.45 (7)C34—C33—H33120.2
C31—P1—Ag1107.18 (7)C35—C34—C33119.9 (2)
C51—P2—C41102.53 (10)C35—C34—H34120.0
C51—P2—C61105.38 (10)C33—C34—H34120.0
C41—P2—C61103.86 (10)C36—C35—C34120.2 (2)
C51—P2—Ag1117.18 (7)C36—C35—H35119.9
C41—P2—Ag1118.28 (7)C34—C35—H35119.9
C61—P2—Ag1108.17 (7)C35—C36—C31120.5 (2)
N2—C2—N1112.0 (2)C35—C36—H36119.7
N2—C2—H2124.0C31—C36—H36119.7
N1—C2—H2124.0C46—C41—C42118.5 (2)
C2—N2—N3103.30 (18)C46—C41—P2118.09 (17)
N4—O1—Ag1122.75 (13)C42—C41—P2123.32 (17)
C6—O4—H4109.5C43—C42—C41120.1 (2)
C1—N1—C2107.65 (19)C43—C42—H42119.9
C1—N1—H1126.2C41—C42—H42119.9
C2—N1—H1126.2C44—C43—C42120.6 (2)
C1—N3—N2112.65 (19)C44—C43—H43119.7
C1—N3—H3123.7C42—C43—H43119.7
N2—N3—H3123.7C43—C44—C45119.8 (2)
O3—N4—O2120.7 (2)C43—C44—H44120.1
O3—N4—O1120.7 (2)C45—C44—H44120.1
O2—N4—O1118.59 (18)C46—C45—C44119.8 (2)
N3—C1—N1104.42 (19)C46—C45—H45120.1
N3—C1—S1127.64 (18)C44—C45—H45120.1
N1—C1—S1127.89 (17)C45—C46—C41121.1 (2)
O4—C6—H6A109.5C45—C46—H46119.4
O4—C6—H6B109.5C41—C46—H46119.4
H6A—C6—H6B109.5C56—C51—C52119.5 (2)
O4—C6—H6C109.5C56—C51—P2118.31 (16)
H6A—C6—H6C109.5C52—C51—P2122.24 (17)
H6B—C6—H6C109.5C53—C52—C51120.4 (2)
C12—C11—C16118.9 (2)C53—C52—H52119.8
C12—C11—P1118.62 (16)C51—C52—H52119.8
C16—C11—P1122.46 (16)C52—C53—C54119.6 (2)
C11—C12—C13120.3 (2)C52—C53—H53120.2
C11—C12—H12119.9C54—C53—H53120.2
C13—C12—H12119.9C55—C54—C53120.3 (2)
C14—C13—C12120.2 (2)C55—C54—H54119.9
C14—C13—H13119.9C53—C54—H54119.9
C12—C13—H13119.9C54—C55—C56120.3 (2)
C13—C14—C15120.0 (2)C54—C55—H55119.9
C13—C14—H14120.0C56—C55—H55119.9
C15—C14—H14120.0C55—C56—C51120.0 (2)
C14—C15—C16120.1 (2)C55—C56—H56120.0
C14—C15—H15119.9C51—C56—H56120.0
C16—C15—H15119.9C62—C61—C66119.0 (2)
C15—C16—C11120.4 (2)C62—C61—P2117.16 (17)
C15—C16—H16119.8C66—C61—P2123.83 (17)
C11—C16—H16119.8C63—C62—C61120.0 (2)
C26—C21—C22119.4 (2)C63—C62—H62120.0
C26—C21—P1117.04 (17)C61—C62—H62120.0
C22—C21—P1123.51 (18)C64—C63—C62120.3 (2)
C23—C22—C21119.8 (2)C64—C63—H63119.8
C23—C22—H22120.1C62—C63—H63119.8
C21—C22—H22120.1C63—C64—C65120.4 (2)
C24—C23—C22120.5 (2)C63—C64—H64119.8
C24—C23—H23119.7C65—C64—H64119.8
C22—C23—H23119.7C66—C65—C64119.5 (2)
C25—C24—C23119.6 (2)C66—C65—H65120.3
C25—C24—H24120.2C64—C65—H65120.3
C23—C24—H24120.2C65—C66—C61120.8 (2)
C24—C25—C26120.2 (3)C65—C66—H66119.6
C24—C25—H25119.9C61—C66—H66119.6
C26—C25—H25119.9
N1—C2—N2—N30.8 (3)C32—C33—C34—C350.3 (3)
N2—C2—N1—C10.9 (3)C33—C34—C35—C360.2 (3)
C2—N2—N3—C10.5 (3)C34—C35—C36—C310.6 (3)
Ag1—O1—N4—O396.6 (2)C32—C31—C36—C351.3 (3)
Ag1—O1—N4—O282.8 (2)P1—C31—C36—C35178.64 (17)
N2—N3—C1—N10.0 (3)C51—P2—C41—C4664.26 (19)
N2—N3—C1—S1177.87 (17)C61—P2—C41—C46173.81 (17)
C2—N1—C1—N30.5 (2)Ag1—P2—C41—C4666.36 (19)
C2—N1—C1—S1177.36 (18)C51—P2—C41—C42118.73 (19)
Ag1—S1—C1—N3110.5 (2)C61—P2—C41—C429.2 (2)
Ag1—S1—C1—N172.2 (2)Ag1—P2—C41—C42110.66 (17)
C21—P1—C11—C12145.97 (18)C46—C41—C42—C430.1 (3)
C31—P1—C11—C12104.21 (18)P2—C41—C42—C43176.86 (18)
Ag1—P1—C11—C1215.2 (2)C41—C42—C43—C440.9 (4)
C21—P1—C11—C1634.4 (2)C42—C43—C44—C450.7 (4)
C31—P1—C11—C1675.4 (2)C43—C44—C45—C460.3 (4)
Ag1—P1—C11—C16165.24 (17)C44—C45—C46—C411.1 (4)
C16—C11—C12—C132.2 (3)C42—C41—C46—C450.8 (3)
P1—C11—C12—C13177.41 (18)P2—C41—C46—C45178.00 (19)
C11—C12—C13—C140.8 (4)C41—P2—C51—C56147.58 (18)
C12—C13—C14—C150.9 (4)C61—P2—C51—C56104.02 (18)
C13—C14—C15—C161.2 (4)Ag1—P2—C51—C5616.3 (2)
C14—C15—C16—C110.3 (4)C41—P2—C51—C5232.8 (2)
C12—C11—C16—C151.9 (3)C61—P2—C51—C5275.6 (2)
P1—C11—C16—C15177.65 (18)Ag1—P2—C51—C52164.03 (15)
C11—P1—C21—C2699.22 (19)C56—C51—C52—C531.5 (3)
C31—P1—C21—C26151.02 (18)P2—C51—C52—C53178.19 (17)
Ag1—P1—C21—C2632.9 (2)C51—C52—C53—C541.2 (3)
C11—P1—C21—C2277.4 (2)C52—C53—C54—C550.6 (4)
C31—P1—C21—C2232.3 (2)C53—C54—C55—C562.1 (4)
Ag1—P1—C21—C22150.51 (17)C54—C55—C56—C511.8 (4)
C26—C21—C22—C232.1 (4)C52—C51—C56—C550.1 (3)
P1—C21—C22—C23174.51 (18)P2—C51—C56—C55179.74 (18)
C21—C22—C23—C240.5 (4)C51—P2—C61—C62157.71 (17)
C22—C23—C24—C251.4 (4)C41—P2—C61—C6294.86 (18)
C23—C24—C25—C261.6 (4)Ag1—P2—C61—C6231.62 (19)
C22—C21—C26—C251.8 (4)C51—P2—C61—C6622.9 (2)
P1—C21—C26—C25174.95 (19)C41—P2—C61—C6684.5 (2)
C24—C25—C26—C210.0 (4)Ag1—P2—C61—C66149.00 (17)
C21—P1—C31—C32106.86 (18)C66—C61—C62—C630.5 (3)
C11—P1—C31—C322.3 (2)P2—C61—C62—C63178.93 (19)
Ag1—P1—C31—C32128.97 (16)C61—C62—C63—C640.6 (4)
C21—P1—C31—C3675.99 (18)C62—C63—C64—C650.2 (4)
C11—P1—C31—C36174.86 (16)C63—C64—C65—C660.4 (4)
Ag1—P1—C31—C3648.18 (17)C64—C65—C66—C610.5 (4)
C36—C31—C32—C331.2 (3)C62—C61—C66—C650.0 (3)
P1—C31—C32—C33178.32 (17)P2—C61—C66—C65179.41 (18)
C31—C32—C33—C340.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.842.012.836 (2)168
N1—H1···O20.881.932.793 (2)167
N3—H3···O40.881.912.769 (3)166
C35—H35···O1i0.952.553.360 (3)143
C65—H65···O3ii0.952.483.340 (3)150
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1i0.842.012.836 (2)168.3
N1—H1···O20.881.932.793 (2)166.8
N3—H3···O40.881.912.769 (3)166.4
C35—H35···O1i0.952.553.360 (3)143
C65—H65···O3ii0.952.483.340 (3)150
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

Financial support from the Science Achievement Scholarship of Thailand (SAST) and the Department of Chemistry, Prince of Songkla University, are gratefully acknowledged. We would like to thank Dr Matthias Zeller for valuable suggestions and assistance with X-ray structure determination and use of structure refinement programs.

References

First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrari, M. B., Bisceglie, F., Cavalli, E., Pelosi, G., Tarasconi, P. & Verdolino, V. (2007). Inorg. Chim. Acta, 360, 3233–3240.  Web of Science CSD CrossRef Google Scholar
First citationHolla, B. S., Shivananda, M. K., Shenoy, S. & Antony, G. (1998). Boll. Chim. Farm. 137, 233–238.  CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIsab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. S. (2010). Polyhedron, 29, 1251–1256.  Web of Science CSD CrossRef CAS Google Scholar
First citationJones, A. S., Sayers, J. R., Walker, R. T. & De Clercq, E. (1988). J. Med. Chem. 31, 268–271.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKömürcü, S. G., Rollas, S., Yılmaz, N. & Çevikbas, A. (1995). Drug Metab. Drug Interact. 12, 161–169.  Google Scholar
First citationKüçükgüzel, I., Küçükgüzel, S. G., Rollas, S. & Kiraz, M. (2001). Bioorg. Med. Chem. Lett. 11, 1703–1704.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNomiya, K., Tsuda, K. & Kasuga, N. C. (1998). J. Chem. Soc. Dalton Trans. pp. 1653–1659.  Web of Science CSD CrossRef Google Scholar
First citationPakawatchai, C., Jantaramas, P., Mokhagul, J. & Nimthong, R. (2012). Acta Cryst. E68, m1506–m1507.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWujec, M. & Paneth, P. (2007). J. Phys.Org. Chem. 20, 1043–1049.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages m61-m62
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds