organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o214-o215

2-p-Tolyl-2,3-di­hydro­quinolin-4(1H)-one

aLaboratoire des Produits Naturels d'Origine Végétale, et de Synthèse Organique, PHYSYNOR Université Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Cimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 16 January 2014; accepted 23 January 2014; online 29 January 2014)

In the title mol­ecule, C16H15NO, the tetra­hydro­pyridine ring is in a sofa conformation with the methine C atom forming the flap. The dihedral angle between the benzene rings is 80.85 (8)°. In the crystal, mol­ecules are arranged in alternating double layers parallel to (100) and are connected along [001] by N—H⋯O hydrogen bonds. In addition, weak C—H⋯π inter­actions are observed.

Related literature

For applications of quinolines, see: Hepworth (1984[Hepworth, J. D. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol. 2, pp. 165-524. Oxford: Pergamon Press.]). For the synthesis and applications of similar compounds see: Donnelly & Farrell (1990a[Donnelly, J. A. & Farrell, D. F. (1990a). Tetrahedron, 46, 885-894.],b[Donnelly, J. A. & Farrell, D. F. (1990b). J. Org. Chem. 55, 1757-1761.]); Chandrasekhar et al. (2007[Chandrasekhar, S., Vijeender, K. & Sridhar, C. (2007). Tetrahedron Lett. 48, 4935-4937.]); Kumar et al. (2004[Kumar, K. H., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, pp. 63-68.]); Gordon (2001[Gordon, C. M. (2001). Appl. Catal. A, 222, 101-117.]); Olivier-Bourbigou & Magna (2002[Olivier-Bourbigou, H. & Magna, L. (2002). J. Mol. Catal. A Chem. 182, 419-437.]); Tokes & Szilagyi (1987[Tokes, A. L. & Szilagyi, L. (1987). Synth. Commun. 17, 1235-1245.]); Tokes & Litkei (1993[Tokes, A. L. & Litkei, G. (1993). Synth. Commun. 23, 895-902.]); Benzerka et al. (2012[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309-313.], 2013[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94-99.]); Hayour et al. (2011[Hayour, H., Bouraiou, A., Bouacida, S., Berrée, F., Carboni, B., Roisnel, T. & Belfaitah, A. (2011). Tetrahedron Lett. 52, 4868-4871.]) Chelghoum et al. (2012[Chelghoum, M., Bahnous, M., Bouraiou, A., Bouacida, S. & Belfaitah, A. (2012). Tetrahedron Lett. 53, 4059-4061.]). For related structures, see: Tokes et al. (1992[Tokes, A. L., Litkei, G. & Szilagyi, L. (1992). Synth. Commun. 22, 2433-2445.]); Benzerka et al. (2011[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084-o2085.]); Bouraiou et al. (2011[Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474-477.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO

  • Mr = 237.29

  • Monoclinic, C 2/c

  • a = 17.6363 (14) Å

  • b = 10.7968 (9) Å

  • c = 13.6308 (9) Å

  • β = 103.260 (3)°

  • V = 2526.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.52 × 0.33 × 0.27 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.873, Tmax = 0.979

  • 6746 measured reflections

  • 2875 independent reflections

  • 2279 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.153

  • S = 1.05

  • 2875 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13–C18 and C3–C9 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O12i 0.88 (2) 2.09 (2) 2.9484 (17) 166.9 (18)
C4—H4⋯Cg1ii 0.95 2.70 3.546 (2) 149
C14—H14⋯Cg2iii 0.95 2.80 3.617 (2) 144
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker, (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker, (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Comment top

The role of heterocyclic compounds has become increasingly important in designing new classes of structural entities of medicinal importance. Quinolines are interesting synthetic targets because they act as building blocks for a large number of natural products (Hepworth, 1984). The formation of 2,3-dihydroquinolin-4(1H)-ones is generally accomplished by acid- or base-catalyzed isomerization of substituted 2'-aminochalcones (Donnelly & Farrell, 1990a,b; Tokes & Litkei, 1993). Most of these procedures involve the use of corrosive reagents such as orthophosphoric acid, acetic acid, or strong alkali. Many attempts have therefore been made to explore efficient catalysts to accelerate this reaction. Some of them are of limited synthetic scope due to low yields, long reaction times, and the need for a large amount of catalyst, specialized solvents (Tokes & Szilagyi, 1987; Tokes et al., 1992), or microwave activation (Kumar et al., 2004; Gordon, 2001; Olivier-Bourbigou & Magna, 2002). As part of our continuingeffort toward the development of new methods for the synthesis of biologically relevant heterocyclic compounds (Benzerka et al., 2012, 2013; Hayour et al., 2011), we have, recently, developed a procedure using butylmethylimidazolium(bmim).BF4 as a green solvent to provide an efficient and convenient protocol for the synthesis of 2,3-dihydroquinolin-4(1H)-ones from 2'-aminochalcones without the requirement for an additional catalyst (Chelghoum et al., 2012). We wish to describe herein the synthesis and single-crystal X-ray structure of 2-p-tolyl-2,3-dihydroquinolin-4(1H)-one (I). The molecular structure and the atom-numbering scheme of (I) are shown in Fig. 1. The molecule of consists of a dihydroquinolin-4(1H)-one moiety attached to tolyl group. The (1H)-dihydropyridine ring (C2/C10/C11/C13/C18/N1) is in a sofa conformation with atom C2 forming the flap. The dihedral angle between the two benzene rings (C3-C9/C13-C18) is 80.85 (8)°. The crystal packing can be described as alternating double layers parallel to (100) (Fig. 2). Intermolecular N—H···O hydrogen bonds (Fig.3; Table. 1) link the molecules along [100]. In addition, weak C—H···π interactions are observed.

Related literature top

For applications of quinolines, see: Hepworth (1984). For the synthesis and applications of similar compounds see: Donnelly & Farrell (1990a,b); Chandrasekhar et al. (2007); Kumar et al. (2004); Gordon (2001); Olivier-Bourbigou & Magna (2002); Tokes & Szilagyi (1987); Tokes & Litkei (1993); Benzerka et al. (2012, 2013); Hayour et al. (2011) Chelghoum et al. (2012). For related structures, see: Tokes et al. (1992); Benzerka et al. (2011); Bouraiou et al. (2011).

Experimental top

The substituted 2'-aminochalcone (0.5 mmol) and [bmim]BF4 (1 g) were heated at 423K for 2.5 h. Under these conditions, the title compound was successfully synthesized in good yield (92%). Single crystals suitable for the X-ray diffraction analysis were obtained by dissolving the pure compound in an Et2O/CHCl3 mixture and allowing the solution to slowly evaporate at room temperature.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated in idealized positions and the H-atoms were refined in a riding-motion approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å; Cmethylene—Hmethylene = 0.99 Å; Cmethyl—Hmethyl = 0.98 Å; and Cmethine—Hmethine = 1.0 Å; The idealized methyl group was allowed to rotate about the C—C bond during the refinement by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Haryl, methylene, methine) = 1.2 Ueq(Caryl, methylene and methine). Atom H1N was found in a difference electron density map and refined isotropically with Uiso(H) = 1.2Ueq(N)

Structure description top

The role of heterocyclic compounds has become increasingly important in designing new classes of structural entities of medicinal importance. Quinolines are interesting synthetic targets because they act as building blocks for a large number of natural products (Hepworth, 1984). The formation of 2,3-dihydroquinolin-4(1H)-ones is generally accomplished by acid- or base-catalyzed isomerization of substituted 2'-aminochalcones (Donnelly & Farrell, 1990a,b; Tokes & Litkei, 1993). Most of these procedures involve the use of corrosive reagents such as orthophosphoric acid, acetic acid, or strong alkali. Many attempts have therefore been made to explore efficient catalysts to accelerate this reaction. Some of them are of limited synthetic scope due to low yields, long reaction times, and the need for a large amount of catalyst, specialized solvents (Tokes & Szilagyi, 1987; Tokes et al., 1992), or microwave activation (Kumar et al., 2004; Gordon, 2001; Olivier-Bourbigou & Magna, 2002). As part of our continuingeffort toward the development of new methods for the synthesis of biologically relevant heterocyclic compounds (Benzerka et al., 2012, 2013; Hayour et al., 2011), we have, recently, developed a procedure using butylmethylimidazolium(bmim).BF4 as a green solvent to provide an efficient and convenient protocol for the synthesis of 2,3-dihydroquinolin-4(1H)-ones from 2'-aminochalcones without the requirement for an additional catalyst (Chelghoum et al., 2012). We wish to describe herein the synthesis and single-crystal X-ray structure of 2-p-tolyl-2,3-dihydroquinolin-4(1H)-one (I). The molecular structure and the atom-numbering scheme of (I) are shown in Fig. 1. The molecule of consists of a dihydroquinolin-4(1H)-one moiety attached to tolyl group. The (1H)-dihydropyridine ring (C2/C10/C11/C13/C18/N1) is in a sofa conformation with atom C2 forming the flap. The dihedral angle between the two benzene rings (C3-C9/C13-C18) is 80.85 (8)°. The crystal packing can be described as alternating double layers parallel to (100) (Fig. 2). Intermolecular N—H···O hydrogen bonds (Fig.3; Table. 1) link the molecules along [100]. In addition, weak C—H···π interactions are observed.

For applications of quinolines, see: Hepworth (1984). For the synthesis and applications of similar compounds see: Donnelly & Farrell (1990a,b); Chandrasekhar et al. (2007); Kumar et al. (2004); Gordon (2001); Olivier-Bourbigou & Magna (2002); Tokes & Szilagyi (1987); Tokes & Litkei (1993); Benzerka et al. (2012, 2013); Hayour et al. (2011) Chelghoum et al. (2012). For related structures, see: Tokes et al. (1992); Benzerka et al. (2011); Bouraiou et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing showing alternating double layers parallel to (100) viewed along the c axis.
[Figure 3] Fig. 3. Part of the crystal structure viewed along the b axis showing hydrogen bond as dashed lines.
2-p-Tolyl-2,3-dihydroquinolin-4(1H)-one top
Crystal data top
C16H15NOF(000) = 1008
Mr = 237.29Dx = 1.248 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2437 reflections
a = 17.6363 (14) Åθ = 2.4–27.5°
b = 10.7968 (9) ŵ = 0.08 mm1
c = 13.6308 (9) ÅT = 150 K
β = 103.260 (3)°Prism, colourless
V = 2526.3 (3) Å30.52 × 0.33 × 0.27 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
2279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2222
Tmin = 0.873, Tmax = 0.979k = 1410
6746 measured reflectionsl = 1710
2875 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0758P)2 + 2.2919P]
where P = (Fo2 + 2Fc2)/3
2875 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C16H15NOV = 2526.3 (3) Å3
Mr = 237.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.6363 (14) ŵ = 0.08 mm1
b = 10.7968 (9) ÅT = 150 K
c = 13.6308 (9) Å0.52 × 0.33 × 0.27 mm
β = 103.260 (3)°
Data collection top
Bruker APEXII
diffractometer
2875 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2279 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.979Rint = 0.026
6746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.69 e Å3
2875 reflectionsΔρmin = 0.28 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.58114 (9)0.12806 (16)0.08077 (12)0.0263 (4)
H20.52640.09720.05960.032*
C30.58821 (10)0.24612 (15)0.02362 (12)0.0260 (4)
C40.52341 (10)0.29679 (18)0.03934 (14)0.0346 (4)
H40.47440.25680.04690.042*
C50.52839 (11)0.40454 (19)0.09163 (15)0.0378 (4)
H50.48240.4380.13370.045*
C60.59864 (10)0.46561 (16)0.08463 (12)0.0273 (4)
C70.60403 (12)0.58261 (18)0.14265 (15)0.0402 (5)
H7A0.65870.6080.13170.06*
H7B0.5740.64830.11940.06*
H7C0.58290.56770.21470.06*
C80.66448 (9)0.41410 (17)0.02209 (12)0.0281 (4)
H80.71360.45320.01610.034*
C90.65959 (10)0.30599 (17)0.03197 (12)0.0295 (4)
H90.70520.27270.07490.035*
C100.60048 (10)0.14901 (16)0.19407 (11)0.0284 (4)
H10A0.65030.19480.21320.034*
H10B0.55950.20180.21130.034*
C110.60719 (10)0.03170 (16)0.25526 (12)0.0269 (4)
C130.63292 (9)0.07957 (16)0.21014 (11)0.0233 (3)
C140.64681 (10)0.19096 (17)0.26412 (12)0.0296 (4)
H140.63650.19560.32940.035*
C150.67503 (10)0.29353 (17)0.22452 (13)0.0312 (4)
H150.68430.36840.2620.037*
C160.68997 (9)0.28610 (16)0.12829 (13)0.0287 (4)
H160.70990.35640.10070.034*
C170.67624 (9)0.17860 (16)0.07284 (12)0.0253 (4)
H170.68680.17550.00760.03*
C180.64660 (8)0.07303 (15)0.11196 (11)0.0206 (3)
N10.63337 (8)0.03393 (13)0.05626 (10)0.0229 (3)
H1N0.6284 (11)0.0219 (18)0.0085 (16)0.028*
O120.59607 (9)0.03372 (13)0.34096 (9)0.0416 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0283 (8)0.0280 (9)0.0236 (8)0.0016 (7)0.0076 (6)0.0007 (6)
C30.0363 (9)0.0234 (8)0.0213 (7)0.0002 (7)0.0130 (6)0.0022 (6)
C40.0292 (8)0.0348 (10)0.0393 (10)0.0087 (7)0.0068 (7)0.0020 (8)
C50.0291 (9)0.0382 (11)0.0413 (10)0.0014 (8)0.0018 (7)0.0088 (8)
C60.0341 (9)0.0227 (8)0.0257 (8)0.0020 (7)0.0080 (6)0.0003 (6)
C70.0520 (11)0.0280 (10)0.0395 (10)0.0034 (8)0.0084 (8)0.0063 (8)
C80.0237 (7)0.0313 (9)0.0301 (8)0.0046 (7)0.0075 (6)0.0040 (7)
C90.0291 (8)0.0331 (10)0.0252 (8)0.0069 (7)0.0042 (6)0.0009 (7)
C100.0406 (9)0.0267 (9)0.0198 (7)0.0029 (7)0.0110 (7)0.0022 (6)
C110.0333 (8)0.0314 (9)0.0166 (7)0.0006 (7)0.0072 (6)0.0006 (6)
C130.0255 (7)0.0265 (8)0.0179 (7)0.0004 (6)0.0054 (6)0.0005 (6)
C140.0353 (9)0.0329 (10)0.0210 (7)0.0009 (7)0.0074 (6)0.0050 (7)
C150.0338 (9)0.0278 (9)0.0315 (9)0.0023 (7)0.0063 (7)0.0063 (7)
C160.0277 (8)0.0260 (9)0.0339 (9)0.0014 (7)0.0098 (7)0.0027 (7)
C170.0265 (8)0.0277 (9)0.0238 (7)0.0021 (6)0.0100 (6)0.0035 (6)
C180.0197 (7)0.0236 (8)0.0187 (7)0.0041 (6)0.0047 (5)0.0022 (6)
N10.0313 (7)0.0236 (7)0.0159 (6)0.0003 (5)0.0097 (5)0.0013 (5)
O120.0695 (10)0.0406 (8)0.0189 (6)0.0102 (7)0.0186 (6)0.0020 (5)
Geometric parameters (Å, º) top
C2—N11.461 (2)C10—C111.506 (2)
C2—C31.514 (2)C10—H10A0.99
C2—C101.520 (2)C10—H10B0.99
C2—H21C11—O121.228 (2)
C3—C41.376 (2)C11—C131.468 (2)
C3—C91.396 (2)C13—C141.402 (2)
C4—C51.378 (3)C13—C181.415 (2)
C4—H40.95C14—C151.374 (3)
C5—C61.387 (2)C14—H140.95
C5—H50.95C15—C161.398 (2)
C6—C81.389 (2)C15—H150.95
C6—C71.505 (2)C16—C171.376 (2)
C7—H7A0.98C16—H160.95
C7—H7B0.98C17—C181.409 (2)
C7—H7C0.98C17—H170.95
C8—C91.394 (2)C18—N11.372 (2)
C8—H80.95N1—H1N0.88 (2)
C9—H90.95
N1—C2—C3109.72 (13)C11—C10—C2114.09 (14)
N1—C2—C10109.24 (13)C11—C10—H10A108.7
C3—C2—C10111.82 (14)C2—C10—H10A108.7
N1—C2—H2108.7C11—C10—H10B108.7
C3—C2—H2108.7C2—C10—H10B108.7
C10—C2—H2108.7H10A—C10—H10B107.6
C4—C3—C9118.11 (15)O12—C11—C13123.04 (15)
C4—C3—C2120.08 (15)O12—C11—C10120.15 (15)
C9—C3—C2121.81 (15)C13—C11—C10116.66 (13)
C3—C4—C5121.08 (16)C14—C13—C18119.47 (15)
C3—C4—H4119.5C14—C13—C11121.05 (14)
C5—C4—H4119.5C18—C13—C11119.45 (14)
C4—C5—C6121.84 (16)C15—C14—C13121.38 (15)
C4—C5—H5119.1C15—C14—H14119.3
C6—C5—H5119.1C13—C14—H14119.3
C5—C6—C8117.36 (16)C14—C15—C16119.03 (16)
C5—C6—C7121.72 (16)C14—C15—H15120.5
C8—C6—C7120.92 (16)C16—C15—H15120.5
C6—C7—H7A109.5C17—C16—C15121.09 (16)
C6—C7—H7B109.5C17—C16—H16119.5
H7A—C7—H7B109.5C15—C16—H16119.5
C6—C7—H7C109.5C16—C17—C18120.56 (14)
H7A—C7—H7C109.5C16—C17—H17119.7
H7B—C7—H7C109.5C18—C17—H17119.7
C6—C8—C9121.02 (15)N1—C18—C17120.15 (13)
C6—C8—H8119.5N1—C18—C13121.39 (14)
C9—C8—H8119.5C17—C18—C13118.44 (14)
C8—C9—C3120.57 (15)C18—N1—C2119.67 (12)
C8—C9—H9119.7C18—N1—H1N113.4 (13)
C3—C9—H9119.7C2—N1—H1N114.2 (13)
N1—C2—C3—C4122.88 (17)C10—C11—C13—C14175.01 (15)
C10—C2—C3—C4115.76 (17)O12—C11—C13—C18178.14 (16)
N1—C2—C3—C956.54 (19)C10—C11—C13—C182.7 (2)
C10—C2—C3—C964.8 (2)C18—C13—C14—C151.4 (2)
C9—C3—C4—C50.9 (3)C11—C13—C14—C15176.33 (15)
C2—C3—C4—C5179.62 (17)C13—C14—C15—C160.1 (3)
C3—C4—C5—C61.0 (3)C14—C15—C16—C170.6 (3)
C4—C5—C6—C80.3 (3)C15—C16—C17—C180.0 (2)
C4—C5—C6—C7179.37 (18)C16—C17—C18—N1179.75 (14)
C5—C6—C8—C90.6 (3)C16—C17—C18—C131.3 (2)
C7—C6—C8—C9179.79 (16)C14—C13—C18—N1179.63 (14)
C6—C8—C9—C30.7 (3)C11—C13—C18—N12.6 (2)
C4—C3—C9—C80.1 (2)C14—C13—C18—C171.9 (2)
C2—C3—C9—C8179.54 (15)C11—C13—C18—C17175.80 (14)
N1—C2—C10—C1148.91 (19)C17—C18—N1—C2160.66 (14)
C3—C2—C10—C11170.55 (14)C13—C18—N1—C220.9 (2)
C2—C10—C11—O12155.13 (16)C3—C2—N1—C18168.89 (13)
C2—C10—C11—C1329.3 (2)C10—C2—N1—C1845.99 (19)
O12—C11—C13—C140.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 and C3–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O12i0.88 (2)2.09 (2)2.9484 (17)166.9 (18)
C4—H4···Cg1ii0.952.703.546 (2)149
C14—H14···Cg2iii0.952.803.617 (2)144
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z; (iii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 and C3–C9 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O12i0.88 (2)2.09 (2)2.9484 (17)166.9 (18)
C4—H4···Cg1ii0.952.703.546 (2)149
C14—H14···Cg2iii0.952.803.617 (2)144
Symmetry codes: (i) x, y, z1/2; (ii) x+1, y, z; (iii) x, y, z+1/2.
 

Acknowledgements

Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support. We are grateful to Dr Thierry Roisnel of the Centre de difractométrie de Rennes, Université de Rennes 1, France, for technical assistance with the data collection.

References

First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F. & Belfaitah, A. (2012). Lett. Org. Chem. 9, 309–313.  CrossRef CAS Google Scholar
First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T., Bentchouala, C., Smati, F., Carboni, B. & Belfaitah, A. (2013). Lett. Org. Chem. 10, 94–99.  CSD CrossRef CAS Google Scholar
First citationBouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.  CSD CrossRef Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker, (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChandrasekhar, S., Vijeender, K. & Sridhar, C. (2007). Tetrahedron Lett. 48, 4935–4937.  Web of Science CrossRef CAS Google Scholar
First citationChelghoum, M., Bahnous, M., Bouraiou, A., Bouacida, S. & Belfaitah, A. (2012). Tetrahedron Lett. 53, 4059–4061.  Web of Science CSD CrossRef CAS Google Scholar
First citationDonnelly, J. A. & Farrell, D. F. (1990a). Tetrahedron, 46, 885–894.  CrossRef CAS Web of Science Google Scholar
First citationDonnelly, J. A. & Farrell, D. F. (1990b). J. Org. Chem. 55, 1757–1761.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGordon, C. M. (2001). Appl. Catal. A, 222, 101–117.  Web of Science CrossRef CAS Google Scholar
First citationHayour, H., Bouraiou, A., Bouacida, S., Berrée, F., Carboni, B., Roisnel, T. & Belfaitah, A. (2011). Tetrahedron Lett. 52, 4868–4871.  Web of Science CSD CrossRef CAS Google Scholar
First citationHepworth, J. D. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritzky & C. W. Rees, Vol. 2, pp. 165–524. Oxford: Pergamon Press.  Google Scholar
First citationKumar, K. H., Muralidharan, D. & Perumal, P. T. (2004). Synthesis, pp. 63–68.  Google Scholar
First citationOlivier-Bourbigou, H. & Magna, L. (2002). J. Mol. Catal. A Chem. 182, 419–437.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTokes, A. L. & Litkei, G. (1993). Synth. Commun. 23, 895–902.  CAS Google Scholar
First citationTokes, A. L., Litkei, G. & Szilagyi, L. (1992). Synth. Commun. 22, 2433–2445.  CAS Google Scholar
First citationTokes, A. L. & Szilagyi, L. (1987). Synth. Commun. 17, 1235–1245.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o214-o215
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds