organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[2-(2-Hy­dr­oxy-5-meth­­oxy­benzyl­­idene)hydrazin-1-yl­­idene]meth­yl}-4-meth­­oxy­phenol

aAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Malaysia, cFaculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia, and dH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 25 October 2013; accepted 26 December 2013; online 11 January 2014)

The title phenyl­hydrazine derivative, C16H16N2O4, has a crystallographically imposed centre of symmetry. Except for the methyl group, all non-H atoms are almost coplanar (r.m.s. deviation = 0.0095 Å). Intra­molecular O—H⋯N hydrogen bonds are observed, generating S(6) graph-set ring motifs.

Related literature

For applications and the biological activity of phenyl­hydrazine derivatives, see: Khan et al. (2013[Khan, K. M., Taha, M., Rahim, F., Fakhri, M. I., Jamil, W., Khan, M., Rasheed, S., Karim, A., Perveen, S. & Choudhary, M. I. (2013). J. Chem. Soc. Pak. 35, 929-937.]); Patel et al. (1984[Patel, J. M., Dave, M. P., Langalia, N. A. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 718-720.]); Taha, Baharudin et al. (2013[Taha, M., Baharudin, M. S., Ismail, N. H., Khan, K. M., Jaafar, F. M., Samreen, Siddiqui, S. & Choudhary, M. I. (2013). Bioorg. Med. Chem. Lett. 23, 3463-3466.]); Taha, Ismail et al. (2013[Taha, M., Ismail, N. H., Jamil, W., Yousuf, S., Jaafar, F. M., Ali, M. I., Kashif, S. M. & Hussain, E. (2013). Molecules, 18, 10912-10929.]); Khan, Shah et al. (2012[Khan, K. M., Shah, Z., Ahmad, V. U., Khan, M., Taha, M., Rahim, F., Ali, S., Ambreen, N., Perveen, S., Choudhary, M. I. & Voelter, W. (2012). Med. Chem. 8, 452-461.]); Khan, Taha et al. (2012[Khan, K. M., Taha, M., Naz, F., Ali, S., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705-710.]). For structures of related compounds, see: Taha et al. (2012[Taha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012). Acta Cryst. E68, o2778.]); Kargar et al. (2012[Kargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2321-o2322.]); Zhang et al. (2008[Zhang, J.-H., Dong, W.-L., Ge, Y.-Q. & Zhao, B.-X. (2008). Acta Cryst. E64, o166.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4

  • Mr = 300.31

  • Monoclinic, P 21 /c

  • a = 6.7132 (4) Å

  • b = 15.9369 (10) Å

  • c = 6.8022 (4) Å

  • β = 91.192 (2)°

  • V = 727.59 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 K

  • 0.58 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.983

  • 4243 measured reflections

  • 1327 independent reflections

  • 1093 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.06

  • 1327 reflections

  • 106 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.94 (2) 1.82 (2) 2.6451 (16) 145.0 (18)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazone derivatives constitute an important class of biologically active drugs (Khan, Shah et al., 2012). In particular, heterocyclic compounds containing the hydrazone moiety are known to possess excellent activity against Mycobacterium tuberculosis H37Rv (Patel et al., 1984). Recently the antioxidant, antiglycating, and antileishmanial activities of different hydrazine derivatives has also been reported by our group (Taha, Baharudin et al., 2013; Taha, Ismail et al., 2013; Khan, Taha et al., 2012; Khan et al., 2013).

The title compound (Fig. 1) has crystallographically imposed centre of symmetry, the inversion centre lying midway along the N—N bond. Except for the methyl group, all non-hydrogen atoms in the asymmetric unit are coplanar with an r.m.s. deviation of 0.0095 Å. The carbon atom of the methyl group is displaced by 0.1806 (17) Å from this plane. All bond angles and lengths are found to be normal and similar to those observed in structurally related compounds (Taha et al., 2012; Kargar et al., 2012; Zhang et al., 2008). The molecular configuration is stabilized by a pair of intramolecular O2—H2···N1 hydrogen interactions generating S(6) graph-set ring motifs. The crystal structure is stabilized only by van der Waals contacts (Fig. 2).

Related literature top

For applications and the biological activity of phenylhydrazine derivatives, see: Khan et al. (2013); Patel et al. (1984); Taha, Baharudin et al. (2013); Taha, Ismail et al. (2013); Khan, Shah et al. (2012); Khan, Taha et al. (2012). For structures of related compounds, see: Taha et al. (2012); Kargar et al. (2012); Zhang et al. (2008).

Experimental top

The title compound was synthesized by refluxing a mixture of 2-hydroxy-5-methoxybenzaldehyde (2 mmol, 0.304 g) and hydrazine hydrate (55%, 2 ml) in methanol with a catalytical amount of acetic acid for 1 hour. After completion of the reaction, the solvent was evaporated by vacuum to afford the crude product which was further recrystallized in methanol to obtain needle-like crystals suitable for X-ray analysis (yield 88%, 0.524 g).

Refinement top

H atoms were positioned geometrically with C—H = 0.93-0.96 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl group. The hydroxy H atom was located in a difference Fourier map and refined isotropically.

Structure description top

Hydrazone derivatives constitute an important class of biologically active drugs (Khan, Shah et al., 2012). In particular, heterocyclic compounds containing the hydrazone moiety are known to possess excellent activity against Mycobacterium tuberculosis H37Rv (Patel et al., 1984). Recently the antioxidant, antiglycating, and antileishmanial activities of different hydrazine derivatives has also been reported by our group (Taha, Baharudin et al., 2013; Taha, Ismail et al., 2013; Khan, Taha et al., 2012; Khan et al., 2013).

The title compound (Fig. 1) has crystallographically imposed centre of symmetry, the inversion centre lying midway along the N—N bond. Except for the methyl group, all non-hydrogen atoms in the asymmetric unit are coplanar with an r.m.s. deviation of 0.0095 Å. The carbon atom of the methyl group is displaced by 0.1806 (17) Å from this plane. All bond angles and lengths are found to be normal and similar to those observed in structurally related compounds (Taha et al., 2012; Kargar et al., 2012; Zhang et al., 2008). The molecular configuration is stabilized by a pair of intramolecular O2—H2···N1 hydrogen interactions generating S(6) graph-set ring motifs. The crystal structure is stabilized only by van der Waals contacts (Fig. 2).

For applications and the biological activity of phenylhydrazine derivatives, see: Khan et al. (2013); Patel et al. (1984); Taha, Baharudin et al. (2013); Taha, Ismail et al. (2013); Khan, Shah et al. (2012); Khan, Taha et al. (2012). For structures of related compounds, see: Taha et al. (2012); Kargar et al. (2012); Zhang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Symmetry code: (A) -x, 1-y, 1-z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis.
2,2'-[Hydrazine-1,2-diylidenebis(methan-1-yl-1-ylidene)]bis(4-methoxyphenol) top
Crystal data top
C16H16N2O4F(000) = 316
Mr = 300.31Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1747 reflections
a = 6.7132 (4) Åθ = 2.6–27.0°
b = 15.9369 (10) ŵ = 0.10 mm1
c = 6.8022 (4) ÅT = 273 K
β = 91.192 (2)°Needle, yellow
V = 727.59 (8) Å30.58 × 0.22 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1327 independent reflections
Radiation source: fine-focus sealed tube1093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scanθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 87
Tmin = 0.944, Tmax = 0.983k = 1819
4243 measured reflectionsl = 78
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.0718P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1327 reflectionsΔρmax = 0.14 e Å3
106 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (6)
Crystal data top
C16H16N2O4V = 727.59 (8) Å3
Mr = 300.31Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.7132 (4) ŵ = 0.10 mm1
b = 15.9369 (10) ÅT = 273 K
c = 6.8022 (4) Å0.58 × 0.22 × 0.17 mm
β = 91.192 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1093 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.983Rint = 0.016
4243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.14 e Å3
1327 reflectionsΔρmin = 0.12 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45722 (17)0.62697 (7)0.27087 (17)0.0865 (4)
O20.21947 (15)0.62524 (8)0.17505 (19)0.0767 (4)
H20.199 (3)0.5903 (15)0.284 (3)0.118 (8)*
N10.01775 (16)0.52608 (7)0.41923 (16)0.0588 (3)
C10.1157 (2)0.67416 (8)0.2207 (2)0.0626 (4)
H1C0.11360.70550.33610.075*
C20.0501 (2)0.67158 (9)0.1050 (2)0.0636 (4)
H2B0.16320.70150.14360.076*
C30.0522 (2)0.62571 (8)0.0666 (2)0.0562 (4)
C40.12003 (18)0.58088 (7)0.12530 (19)0.0518 (3)
C50.28603 (19)0.58474 (8)0.0070 (2)0.0585 (4)
H5A0.40080.55590.04530.070*
C60.2857 (2)0.63003 (8)0.1651 (2)0.0594 (4)
C70.4762 (3)0.68202 (11)0.4318 (2)0.0842 (5)
H7A0.60650.67620.48560.126*
H7B0.45770.73880.38840.126*
H7C0.37730.66860.53070.126*
C80.12864 (19)0.53066 (8)0.3019 (2)0.0564 (4)
H8A0.24420.50060.33140.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0721 (7)0.0981 (9)0.0899 (8)0.0108 (6)0.0178 (6)0.0323 (6)
O20.0593 (6)0.0892 (8)0.0818 (8)0.0171 (5)0.0052 (5)0.0019 (6)
N10.0624 (7)0.0524 (6)0.0614 (7)0.0025 (5)0.0015 (5)0.0012 (5)
C10.0741 (9)0.0526 (8)0.0607 (9)0.0041 (6)0.0104 (7)0.0025 (6)
C20.0633 (8)0.0590 (8)0.0678 (9)0.0147 (6)0.0135 (7)0.0034 (6)
C30.0529 (7)0.0509 (7)0.0647 (9)0.0039 (5)0.0051 (6)0.0089 (6)
C40.0528 (7)0.0427 (6)0.0597 (8)0.0012 (5)0.0049 (6)0.0028 (5)
C50.0524 (7)0.0519 (7)0.0711 (9)0.0051 (5)0.0038 (6)0.0063 (6)
C60.0591 (8)0.0535 (7)0.0654 (9)0.0007 (6)0.0010 (6)0.0039 (6)
C70.0942 (12)0.0909 (12)0.0679 (10)0.0096 (9)0.0087 (9)0.0141 (8)
C80.0549 (7)0.0473 (7)0.0666 (9)0.0004 (5)0.0045 (6)0.0006 (6)
Geometric parameters (Å, º) top
O1—C61.3713 (17)C2—H2B0.9300
O1—C71.4105 (18)C3—C41.4101 (18)
O2—C31.3563 (16)C4—C51.3894 (17)
O2—H20.93 (2)C4—C81.4436 (18)
N1—C81.2809 (15)C5—C61.3752 (19)
N1—N1i1.394 (2)C5—H5A0.9300
C1—C21.377 (2)C7—H7A0.9600
C1—C61.386 (2)C7—H7B0.9600
C1—H1C0.9300C7—H7C0.9600
C2—C31.377 (2)C8—H8A0.9300
C6—O1—C7118.38 (12)C6—C5—C4121.95 (12)
C3—O2—H2109.0 (13)C6—C5—H5A119.0
C8—N1—N1i113.84 (13)C4—C5—H5A119.0
C2—C1—C6119.96 (14)O1—C6—C5116.20 (12)
C2—C1—H1C120.0O1—C6—C1124.77 (13)
C6—C1—H1C120.0C5—C6—C1119.03 (13)
C1—C2—C3121.54 (12)O1—C7—H7A109.5
C1—C2—H2B119.2O1—C7—H7B109.5
C3—C2—H2B119.2H7A—C7—H7B109.5
O2—C3—C2119.17 (12)O1—C7—H7C109.5
O2—C3—C4121.76 (13)H7A—C7—H7C109.5
C2—C3—C4119.07 (13)H7B—C7—H7C109.5
C5—C4—C3118.45 (12)N1—C8—C4122.15 (12)
C5—C4—C8119.20 (11)N1—C8—H8A118.9
C3—C4—C8122.35 (12)C4—C8—H8A118.9
C6—C1—C2—C30.1 (2)C7—O1—C6—C5170.46 (14)
C1—C2—C3—O2179.95 (12)C7—O1—C6—C110.2 (2)
C1—C2—C3—C40.4 (2)C4—C5—C6—O1178.37 (12)
O2—C3—C4—C5179.65 (11)C4—C5—C6—C11.0 (2)
C2—C3—C4—C50.03 (18)C2—C1—C6—O1178.72 (13)
O2—C3—C4—C81.09 (19)C2—C1—C6—C50.6 (2)
C2—C3—C4—C8179.29 (12)N1i—N1—C8—C4179.45 (12)
C3—C4—C5—C60.68 (19)C5—C4—C8—N1178.39 (12)
C8—C4—C5—C6178.60 (12)C3—C4—C8—N12.36 (19)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.94 (2)1.82 (2)2.6451 (16)145.0 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.94 (2)1.82 (2)2.6451 (16)145.0 (18)
 

Acknowledgements

The authors acknowledge Universiti Teknologi MARA (UiTM) for the financial support under the Principal Investigator Support Initiative Grant Scheme [600-RMI/DANA 5/3/PSI (251/2013)].

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R. & Tahir, M. N. (2012). Acta Cryst. E68, o2321–o2322.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, K. M., Shah, Z., Ahmad, V. U., Khan, M., Taha, M., Rahim, F., Ali, S., Ambreen, N., Perveen, S., Choudhary, M. I. & Voelter, W. (2012). Med. Chem. 8, 452–461.  Web of Science CAS PubMed Google Scholar
First citationKhan, K. M., Taha, M., Naz, F., Ali, S., Perveen, S. & Choudhary, M. I. (2012). Med. Chem. 8, 705–710.  Web of Science CAS PubMed Google Scholar
First citationKhan, K. M., Taha, M., Rahim, F., Fakhri, M. I., Jamil, W., Khan, M., Rasheed, S., Karim, A., Perveen, S. & Choudhary, M. I. (2013). J. Chem. Soc. Pak. 35, 929–937.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPatel, J. M., Dave, M. P., Langalia, N. A. & Thaker, K. A. (1984). J. Indian Chem. Soc. 61, 718–720.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M., Baharudin, M. S., Ismail, N. H., Khan, K. M., Jaafar, F. M., Samreen, Siddiqui, S. & Choudhary, M. I. (2013). Bioorg. Med. Chem. Lett. 23, 3463-3466.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTaha, M., Ismail, N. H., Jamil, W., Yousuf, S., Jaafar, F. M., Ali, M. I., Kashif, S. M. & Hussain, E. (2013). Molecules, 18, 10912–10929.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTaha, M., Naz, H., Rahman, A. A., Ismail, N. H. & Sammer, Y. (2012). Acta Cryst. E68, o2778.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, J.-H., Dong, W.-L., Ge, Y.-Q. & Zhao, B.-X. (2008). Acta Cryst. E64, o166.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds