organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(1H-Benzimidazol-1-yl)meth­yl]phenol benzene hemisolvate

aUniversidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Cra 30 No.45-03, Bogotá, Código Postal 111321, Colombia, and bInstitut für Anorganische Chemie, J.-W.-Goethe-Universität, Max-von-Laue-Strasse 7, Frankfurt/Main, D-60438, Germany
*Correspondence e-mail: ariverau@unal.edu.co

(Received 8 January 2014; accepted 13 January 2014; online 22 January 2014)

In the title solvate, C14H12N2O·0.5C6H6, the complete benzene molecule is generated by a crystallographic inversion centre. The dihedral angle between the planes of the benzimidazole moiety and the phenol substituent is 75.28 (3)°. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into parallel chains propagating along [100]. The mol­ecules are further connected by C—H⋯π inter­actions.

Related literature

For related structures, see: Cai et al. (2006[Cai, M.-Y., Li, Z., Song, G.-H., Yu, T. & Wu, Y.-L. (2006). Acta Cryst. E62, o2374-o2376.]); Rivera et al. (2012[Rivera, A., Maldonado, M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o615.]); Shi et al. (2011[Shi, T., Jin, S., Zhu, J., Liu, Y. J. & Shi, C. C. (2011). Acta Cryst. E67, o2943.]). For another synthesis procedure, see: Milata et al. (2001[Milata, V., Kada, R., Zalibera, L. & Belicová, A. (2001). Boll. Chim. Farm. 140, 215-220.]); Rivera et al. (2008[Rivera, A., Navarro, M. A. & Rios-Motta, J. (2008). Heterocycles, 75, 1651-1658.]). For the pharmacological use of benzimidazoles, see: Alamgir et al. (2007[Alamgir, M., Black, D. St C. & Kumar, N. (2007). Top. Heterocycl. Chem. 9, 87-118.]). For C—H⋯π inter­actions, see: Malathy Sony & Ponnuswamy (2005[Malathy Sony, S. M. & Ponnuswamy, M. N. (2005). Cryst. Growth Des. 6, 736-742.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12N2O·0.5C6H6

  • Mr = 263.31

  • Triclinic, [P \overline 1]

  • a = 8.9351 (11) Å

  • b = 9.3268 (10) Å

  • c = 9.9579 (11) Å

  • α = 73.098 (8)°

  • β = 69.124 (8)°

  • γ = 62.148 (8)°

  • V = 677.75 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.42 × 0.12 × 0.12 mm

Data collection
  • Stoe IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.967, Tmax = 0.990

  • 8981 measured reflections

  • 2591 independent reflections

  • 2314 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.12

  • 2591 reflections

  • 185 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.98 (2) 1.74 (2) 2.7200 (16) 174 (2)
C22—H22⋯Cg1 0.95 3.25 3.868 124
Symmetry code: (i) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Introduction top

Appropriately substituted benzimidazole derivatives have found diverse therapeutic applications as anti­ulcer, anti­hypertensive, anti­viral, anti­fungal, anti­cancer, and anti­histaminic agents [Alamgir et al. 2007]. Although the synthesis of the title compound has been reported in the literature (Milata et al., 2001; Rivera et al., 2008), we have developed an alternative route to prepare this compound starting from N1,N2-bis­((1H-benzotriazol-1-yl)methyl)­benzene-1,2- di­amine.

The asymmetric unit contains one molecule of 2-((1H-benzimidazol-1-yl)methyl)­phenol and half a molecule of benzene (Fig. 1). The solvent molecule subtends a dihedral angle of 78.90 (6)° with respect to the phenol substituent and 70.99 (6)° with respect to the benzimidazole moiety, which suggest an edge-to-face (T-shaped) C—H···π inter­action according to the literature (Malathy Sony et al. 2005). The dihedral angle between the phenol substitutent and the benzimidazole ring [75.28 (3)°] is similar to the one in a related structure (Cai et al., 2006). In the benzimidazole moiety, the bond distances and angles are in good agreement with those found in bis­(1H-benzimidazol-1-yl)methane monohydrate (Shi et al., 2011), 1-(6-chloro­pyridin-3-yl­methyl)-1H-benzimidazole (Cai et al., 2006) and (1H-benzimidazol-1-yl)methanol (Rivera et al., 2012).

An inter­molecular hydrogen bond was observed in the crystal packing (Fig. 2) between the hydroxyl group of one molecule and a nitro­gen atom of another one (Table 1). The O—H distance is longer than in (1H-benzimidazol-1-yl)methanol [0.894 (19)Å] (Rivera et al., 2012). However, the O···N distance [2.7200 (16)Å and 2.7355 (16)Å] and the O—H···N angle [174 (2)°, 173.8 (17)°] are similar in both structures. The O—H···N hydrogen bond connects the molecules forming chains running along the a-axis. The benzene molecule is linked to molecules of 2-((1H-benzimidazol-1-yl)methyl)­phenol via C—H···π inter­actions (Fig. 3) acting as both a donor and an acceptor, Table 1. The benzimidazole moiety also forms two C—H···π inter­actions to the phenol rings of neighbouring molecules. These values are is similar to the values reported for other C—H···π inter­actions (Malathy Sony et al. 2005).

Experimental top

Synthesis and crystallization top

A mixture of phenol (0.282 g, 3.00 mmol) and N1,N2-bis­((1H-benzotriazol-1-yl)methyl)­benzene-1,2-di­amine (0.370 g, 1.00 mmol) was heated to 160 °C, after 5 minutes the mixture was cooled at room temperature until a sticky residue appeared. The product was purified by column chromatography using a mixture of benzene: ethyl acetate (80:20) as the mobile phase (yield 25 %, m.p.= 489-490 K). Single crystals were grown from a benzene:ethyl acetate solution by slow evaporation of the solvent at room temperature over a period of about one week.

Refinement top

All H atoms were located in a difference map. The hydroxyl H atom was freely refined. H atoms bonded to C atoms were refined using a riding model, with secondary C—H = 0.99 Å and aromatic C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Results and discussion top

Related literature top

For related structures, see: Cai et al. (2006); Rivera et al. (2012); Shi et al. (2011). For another synthesis procedure, see: Milata et al. (2001); Rivera et al. (2008). For the pharmacological use of benzimidazoles, see: Alamgir et al. (2007). For C—H···π interactions, see: Malathy Sony & Ponnuswamy (2005).

Structure description top

Appropriately substituted benzimidazole derivatives have found diverse therapeutic applications as anti­ulcer, anti­hypertensive, anti­viral, anti­fungal, anti­cancer, and anti­histaminic agents [Alamgir et al. 2007]. Although the synthesis of the title compound has been reported in the literature (Milata et al., 2001; Rivera et al., 2008), we have developed an alternative route to prepare this compound starting from N1,N2-bis­((1H-benzotriazol-1-yl)methyl)­benzene-1,2- di­amine.

The asymmetric unit contains one molecule of 2-((1H-benzimidazol-1-yl)methyl)­phenol and half a molecule of benzene (Fig. 1). The solvent molecule subtends a dihedral angle of 78.90 (6)° with respect to the phenol substituent and 70.99 (6)° with respect to the benzimidazole moiety, which suggest an edge-to-face (T-shaped) C—H···π inter­action according to the literature (Malathy Sony et al. 2005). The dihedral angle between the phenol substitutent and the benzimidazole ring [75.28 (3)°] is similar to the one in a related structure (Cai et al., 2006). In the benzimidazole moiety, the bond distances and angles are in good agreement with those found in bis­(1H-benzimidazol-1-yl)methane monohydrate (Shi et al., 2011), 1-(6-chloro­pyridin-3-yl­methyl)-1H-benzimidazole (Cai et al., 2006) and (1H-benzimidazol-1-yl)methanol (Rivera et al., 2012).

An inter­molecular hydrogen bond was observed in the crystal packing (Fig. 2) between the hydroxyl group of one molecule and a nitro­gen atom of another one (Table 1). The O—H distance is longer than in (1H-benzimidazol-1-yl)methanol [0.894 (19)Å] (Rivera et al., 2012). However, the O···N distance [2.7200 (16)Å and 2.7355 (16)Å] and the O—H···N angle [174 (2)°, 173.8 (17)°] are similar in both structures. The O—H···N hydrogen bond connects the molecules forming chains running along the a-axis. The benzene molecule is linked to molecules of 2-((1H-benzimidazol-1-yl)methyl)­phenol via C—H···π inter­actions (Fig. 3) acting as both a donor and an acceptor, Table 1. The benzimidazole moiety also forms two C—H···π inter­actions to the phenol rings of neighbouring molecules. These values are is similar to the values reported for other C—H···π inter­actions (Malathy Sony et al. 2005).

For related structures, see: Cai et al. (2006); Rivera et al. (2012); Shi et al. (2011). For another synthesis procedure, see: Milata et al. (2001); Rivera et al. (2008). For the pharmacological use of benzimidazoles, see: Alamgir et al. (2007). For C—H···π interactions, see: Malathy Sony & Ponnuswamy (2005).

Synthesis and crystallization top

A mixture of phenol (0.282 g, 3.00 mmol) and N1,N2-bis­((1H-benzotriazol-1-yl)methyl)­benzene-1,2-di­amine (0.370 g, 1.00 mmol) was heated to 160 °C, after 5 minutes the mixture was cooled at room temperature until a sticky residue appeared. The product was purified by column chromatography using a mixture of benzene: ethyl acetate (80:20) as the mobile phase (yield 25 %, m.p.= 489-490 K). Single crystals were grown from a benzene:ethyl acetate solution by slow evaporation of the solvent at room temperature over a period of about one week.

Refinement details top

All H atoms were located in a difference map. The hydroxyl H atom was freely refined. H atoms bonded to C atoms were refined using a riding model, with secondary C—H = 0.99 Å and aromatic C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the crystal structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing of the molecules of the title compound viewed along the b axis. H atoms bonded to C atoms are omitted for clarity. O—H···N hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. C—H···π interactions between 2-((1H-benzimidazol-1-yl)methyl)phenol and the benzene molecule.
2-[(1H-Benzimidazol-1-yl)methyl]phenol benzene hemisolvate top
Crystal data top
C14H12N2O·0.5C6H6Z = 2
Mr = 263.31F(000) = 278
Triclinic, P1Dx = 1.290 Mg m3
a = 8.9351 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3268 (10) ÅCell parameters from 14234 reflections
c = 9.9579 (11) Åθ = 3.6–26.3°
α = 73.098 (8)°µ = 0.08 mm1
β = 69.124 (8)°T = 173 K
γ = 62.148 (8)°Needle, light brown
V = 677.75 (15) Å30.42 × 0.12 × 0.12 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2314 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.043
ω scansθmax = 25.9°, θmin = 3.9°
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
h = 1010
Tmin = 0.967, Tmax = 0.990k = 1111
8981 measured reflectionsl = 1212
2591 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.039P)2 + 0.238P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2591 reflectionsΔρmax = 0.20 e Å3
185 parametersΔρmin = 0.17 e Å3
Crystal data top
C14H12N2O·0.5C6H6γ = 62.148 (8)°
Mr = 263.31V = 677.75 (15) Å3
Triclinic, P1Z = 2
a = 8.9351 (11) ÅMo Kα radiation
b = 9.3268 (10) ŵ = 0.08 mm1
c = 9.9579 (11) ÅT = 173 K
α = 73.098 (8)°0.42 × 0.12 × 0.12 mm
β = 69.124 (8)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2591 independent reflections
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2001)
2314 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.990Rint = 0.043
8981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.20 e Å3
2591 reflectionsΔρmin = 0.17 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26163 (13)0.72436 (14)0.00166 (12)0.0358 (3)
H10.155 (3)0.706 (3)0.023 (2)0.064 (6)*
N10.72313 (15)0.66159 (14)0.07264 (13)0.0272 (3)
N20.96889 (15)0.66557 (15)0.07838 (14)0.0323 (3)
C10.84911 (18)0.71998 (18)0.00788 (16)0.0298 (3)
H1A0.85060.79390.08090.036*
C20.91796 (18)0.56313 (17)0.20031 (15)0.0286 (3)
C30.76391 (18)0.55998 (16)0.19817 (15)0.0274 (3)
C40.6810 (2)0.46847 (19)0.30695 (17)0.0383 (4)
H40.57660.46700.30400.046*
C50.7585 (3)0.3802 (2)0.41906 (19)0.0478 (4)
H50.70570.31670.49630.057*
C60.9130 (3)0.3812 (2)0.42267 (18)0.0487 (5)
H60.96270.31760.50180.058*
C70.9953 (2)0.47195 (19)0.31466 (18)0.0397 (4)
H71.10000.47230.31800.048*
C80.57443 (18)0.69824 (19)0.02012 (16)0.0313 (3)
H8A0.57150.59400.01840.038*
H8B0.59080.75660.08080.038*
C110.40093 (17)0.80188 (16)0.11250 (15)0.0270 (3)
C120.24639 (18)0.80968 (17)0.09924 (15)0.0274 (3)
C130.08497 (18)0.90253 (18)0.18424 (16)0.0322 (3)
H130.02000.91010.17330.039*
C140.0764 (2)0.98409 (18)0.28484 (16)0.0341 (3)
H140.03411.04480.34440.041*
C150.2284 (2)0.97727 (18)0.29875 (16)0.0344 (3)
H150.22281.03350.36730.041*
C160.38896 (19)0.88763 (17)0.21170 (16)0.0309 (3)
H160.49300.88480.22010.037*
C210.4166 (2)0.9279 (2)0.62694 (19)0.0456 (4)
H210.35960.87810.71430.055*
C220.6494 (2)0.9049 (2)0.4094 (2)0.0455 (4)
H220.75290.83870.34700.055*
C230.5668 (2)0.8322 (2)0.5354 (2)0.0474 (4)
H230.61310.71610.55950.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0247 (5)0.0495 (7)0.0431 (6)0.0190 (5)0.0056 (4)0.0181 (5)
N10.0209 (6)0.0305 (6)0.0328 (6)0.0121 (5)0.0084 (5)0.0038 (5)
N20.0243 (6)0.0380 (7)0.0398 (7)0.0148 (5)0.0091 (5)0.0084 (5)
C10.0265 (7)0.0340 (7)0.0320 (7)0.0160 (6)0.0075 (6)0.0030 (6)
C20.0255 (7)0.0274 (7)0.0331 (7)0.0072 (5)0.0087 (6)0.0098 (6)
C30.0246 (7)0.0246 (6)0.0308 (7)0.0073 (5)0.0062 (5)0.0073 (5)
C40.0357 (8)0.0307 (8)0.0422 (9)0.0149 (6)0.0026 (7)0.0040 (6)
C50.0580 (11)0.0309 (8)0.0373 (9)0.0133 (8)0.0038 (8)0.0004 (7)
C60.0630 (12)0.0327 (8)0.0364 (9)0.0019 (8)0.0219 (8)0.0050 (7)
C70.0381 (8)0.0359 (8)0.0440 (9)0.0020 (7)0.0211 (7)0.0140 (7)
C80.0233 (7)0.0378 (8)0.0387 (8)0.0126 (6)0.0106 (6)0.0102 (6)
C110.0241 (7)0.0272 (7)0.0318 (7)0.0117 (5)0.0099 (5)0.0018 (5)
C120.0266 (7)0.0298 (7)0.0295 (7)0.0147 (6)0.0075 (5)0.0036 (5)
C130.0238 (7)0.0357 (8)0.0383 (8)0.0156 (6)0.0055 (6)0.0044 (6)
C140.0313 (8)0.0318 (7)0.0327 (8)0.0119 (6)0.0023 (6)0.0052 (6)
C150.0418 (8)0.0294 (7)0.0320 (7)0.0116 (6)0.0137 (6)0.0046 (6)
C160.0308 (7)0.0294 (7)0.0373 (8)0.0120 (6)0.0162 (6)0.0030 (6)
C210.0432 (9)0.0642 (11)0.0411 (9)0.0337 (9)0.0094 (7)0.0055 (8)
C220.0305 (8)0.0586 (11)0.0556 (10)0.0191 (8)0.0015 (7)0.0303 (9)
C230.0391 (9)0.0384 (9)0.0715 (12)0.0159 (7)0.0207 (8)0.0098 (8)
Geometric parameters (Å, º) top
O1—C121.3602 (17)C8—H8A0.9900
O1—H10.98 (2)C8—H8B0.9900
N1—C11.3531 (18)C11—C161.390 (2)
N1—C31.3807 (19)C11—C121.3999 (19)
N1—C81.4570 (17)C12—C131.391 (2)
N2—C11.3101 (19)C13—C141.386 (2)
N2—C21.390 (2)C13—H130.9500
C1—H1A0.9500C14—C151.385 (2)
C2—C71.395 (2)C14—H140.9500
C2—C31.398 (2)C15—C161.387 (2)
C3—C41.390 (2)C15—H150.9500
C4—C51.374 (3)C16—H160.9500
C4—H40.9500C21—C22i1.370 (3)
C5—C61.398 (3)C21—C231.383 (3)
C5—H50.9500C21—H210.9500
C6—C71.379 (3)C22—C21i1.370 (3)
C6—H60.9500C22—C231.375 (3)
C7—H70.9500C22—H220.9500
C8—C111.5114 (19)C23—H230.9500
C12—O1—H1111.1 (12)C11—C8—H8B109.0
C1—N1—C3106.30 (12)H8A—C8—H8B107.8
C1—N1—C8126.83 (12)C16—C11—C12118.72 (13)
C3—N1—C8126.86 (12)C16—C11—C8122.58 (12)
C1—N2—C2104.48 (11)C12—C11—C8118.69 (12)
N2—C1—N1114.07 (13)O1—C12—C13122.49 (12)
N2—C1—H1A123.0O1—C12—C11117.60 (12)
N1—C1—H1A123.0C13—C12—C11119.91 (13)
N2—C2—C7130.19 (14)C14—C13—C12120.37 (13)
N2—C2—C3109.62 (12)C14—C13—H13119.8
C7—C2—C3120.19 (14)C12—C13—H13119.8
N1—C3—C4131.74 (14)C15—C14—C13120.17 (13)
N1—C3—C2105.52 (12)C15—C14—H14119.9
C4—C3—C2122.74 (14)C13—C14—H14119.9
C5—C4—C3116.22 (16)C14—C15—C16119.39 (13)
C5—C4—H4121.9C14—C15—H15120.3
C3—C4—H4121.9C16—C15—H15120.3
C4—C5—C6121.83 (16)C15—C16—C11121.41 (13)
C4—C5—H5119.1C15—C16—H16119.3
C6—C5—H5119.1C11—C16—H16119.3
C7—C6—C5121.91 (15)C22i—C21—C23119.45 (16)
C7—C6—H6119.0C22i—C21—H21120.3
C5—C6—H6119.0C23—C21—H21120.3
C6—C7—C2117.10 (16)C21i—C22—C23120.50 (16)
C6—C7—H7121.4C21i—C22—H22119.8
C2—C7—H7121.4C23—C22—H22119.8
N1—C8—C11112.97 (11)C22—C23—C21120.05 (17)
N1—C8—H8A109.0C22—C23—H23120.0
C11—C8—H8A109.0C21—C23—H23120.0
N1—C8—H8B109.0
C2—N2—C1—N10.25 (16)C3—C2—C7—C60.1 (2)
C3—N1—C1—N20.43 (16)C1—N1—C8—C11110.59 (16)
C8—N1—C1—N2179.40 (12)C3—N1—C8—C1169.62 (17)
C1—N2—C2—C7179.68 (15)N1—C8—C11—C1615.8 (2)
C1—N2—C2—C30.02 (15)N1—C8—C11—C12163.13 (12)
C1—N1—C3—C4179.49 (15)C16—C11—C12—O1179.84 (12)
C8—N1—C3—C40.7 (2)C8—C11—C12—O10.84 (19)
C1—N1—C3—C20.40 (14)C16—C11—C12—C130.2 (2)
C8—N1—C3—C2179.42 (12)C8—C11—C12—C13179.21 (13)
N2—C2—C3—N10.27 (15)O1—C12—C13—C14178.38 (13)
C7—C2—C3—N1179.96 (12)C11—C12—C13—C141.7 (2)
N2—C2—C3—C4179.63 (12)C12—C13—C14—C151.7 (2)
C7—C2—C3—C40.1 (2)C13—C14—C15—C160.3 (2)
N1—C3—C4—C5179.58 (14)C14—C15—C16—C111.2 (2)
C2—C3—C4—C50.3 (2)C12—C11—C16—C151.2 (2)
C3—C4—C5—C60.6 (2)C8—C11—C16—C15177.73 (13)
C4—C5—C6—C70.6 (3)C21i—C22—C23—C210.3 (3)
C5—C6—C7—C20.2 (2)C22i—C21—C23—C220.3 (3)
N2—C2—C7—C6179.51 (14)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, N1/N2/C1–C3, C21–C23/C21'–C23' and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N2ii0.98 (2)1.74 (2)2.7200 (16)174 (2)
C22—H22···Cg10.953.253.868124
C22—H22···Cg20.953.103.844137
C15—H15···Cg30.953.063.761132
C16—H16···Cg30.953.303.883122
C1—H1A···Cg4iii0.952.653.467145
C5—H5···Cg4iv0.953.173.922138
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+2, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C2–C7, N1/N2/C1–C3, C21–C23/C21'–C23' and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.98 (2)1.74 (2)2.7200 (16)174 (2)
C22—H22···Cg10.953.253.868124
C22—H22···Cg20.953.103.844137
C15—H15···Cg30.953.063.761132
C16—H16···Cg30.953.303.883122
C1—H1A···Cg4ii0.952.653.467145
C5—H5···Cg4iii0.953.173.922138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+2, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

We acknowledge the Dirección de Investigaciones, Sede Bogotá (DIB) de la Universidad Nacional de Colombia, for financial support of this work. LJ-C acknowledges the Vicerrectoría Académica de la Universidad Nacional de Colombia for a fellowship.

References

First citationAlamgir, M., Black, D. St C. & Kumar, N. (2007). Top. Heterocycl. Chem. 9, 87–118.  CrossRef CAS Google Scholar
First citationCai, M.-Y., Li, Z., Song, G.-H., Yu, T. & Wu, Y.-L. (2006). Acta Cryst. E62, o2374–o2376.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalathy Sony, S. M. & Ponnuswamy, M. N. (2005). Cryst. Growth Des. 6, 736–742.  Web of Science CrossRef Google Scholar
First citationMilata, V., Kada, R., Zalibera, L. & Belicová, A. (2001). Boll. Chim. Farm. 140, 215–220.  PubMed CAS Google Scholar
First citationRivera, A., Maldonado, M., Ríos-Motta, J., Fejfarová, K. & Dušek, M. (2012). Acta Cryst. E68, o615.  CSD CrossRef IUCr Journals Google Scholar
First citationRivera, A., Navarro, M. A. & Rios-Motta, J. (2008). Heterocycles, 75, 1651–1658.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, T., Jin, S., Zhu, J., Liu, Y. J. & Shi, C. C. (2011). Acta Cryst. E67, o2943.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds