organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o202-o203

2-(4-Chloro­phen­yl)-2,3-di­hydro­quinolin-4(1H)-one

aLaboratoire des Produits Naturels d'Origine Végétale et de Synthèse Organique, PHYSYNOR Université Constantine 1, 25000 Constantine, Algeria, bUnité de Recherche de Chemie de l'Environnement et Moléculaire Structurale, CHEMS, Université Constantine 1, 25000 , Algeria, and cDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 17 January 2014; accepted 22 January 2014; online 25 January 2014)

The title mol­ecule, C15H12ClNO, features a di­hydro­quinolin-4(1H)-one moiety attached to a chloro­benzene ring. The heterocyclic ring has a half-chair conformation with the methine C atom lying 0.574 (3) Å above the plane of the five remaining atoms (r.m.s. deviation = 0.0240 Å). The dihedral angles between the terminal benzene rings is 77.53 (9)°, indicating a significant twist in the mol­ecule. In the crystal, supra­molecular zigzag chains along the c-axis direction are sustained by N—H⋯O hydrogen bonds. These are connected into double chains by C—H⋯π inter­actions.

Related literature

For background to and chemical reactivity of quinolone heterocycles, see: Diesbach & Kramer (1945[Diesbach, H. & Kramer, H. (1945). Helv. Chim. Acta, 28, 1399-1405.]); Prakash et al. (1994[Prakash, O., Kumar, D., Saini, R. K. & Singh, S. P. (1994). Synth. Commun. 24, 2167-2172.]); Singh & Kapil (1993[Singh, O. V. & Kapil, R. S. (1993). Synth. Commun. 23, 277-283.]); Kalinin et al. (1992[Kalinin, V. N., Shostakovsky, M. V. & Ponomaryov, A. B. (1992). Tetrahedron Lett. 33, 373-376.]); Chauvin & Olivier (1996[Chauvin, Y. & Olivier, H. (1996). In Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, Vol. 1, p. 245. New York: Wiley-VCH.]). For related structures, see: Bouraiou et al. (2008[Bouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329-333.], 2011[Bouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474-477.]); Benzerka et al. (2011[Benzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084-o2085.]); Chelghoum et al. (2012[Chelghoum, M., Bahnous, M., Bouraiou, A., Bouacida, S. & Belfaitah, A. (2012). Tetrahedron Lett. 53, 4059-4061.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClNO

  • Mr = 257.71

  • Monoclinic, C 2/c

  • a = 17.703 (2) Å

  • b = 10.7537 (17) Å

  • c = 13.658 (2) Å

  • β = 105.486 (6)°

  • V = 2505.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.17 × 0.12 × 0.06 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 0.983

  • 15688 measured reflections

  • 2852 independent reflections

  • 2314 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.107

  • S = 1.08

  • 2852 reflections

  • 166 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.15 (2) 2.957 (2) 162 (2)
C5—H5⋯Cg3ii 0.93 2.83 3.641 (2) 146
C11—H11⋯Cg2iii 0.93 2.63 3.465 (2) 149
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{5\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{5\over 2}}, z+1].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Experimental top

Synthesis and crystallization top

The corresponding 2'-amino­chalcone (0.5 mmol) and [bmim]BF4 (1 g) were heating at 150 °C for 2.5 h; bmim is butyl­methyl­imidazolium. The crude product was isolated by repeated extraction with di­ethyl ether (7×10 ml). Filtration of the residue through a silica plug gave the 2-(4-chloro­phenyl)-2,3-di­hydro­quinolin-4(1H)-one (I). Single crystals suitable for the X-ray diffraction analysis were obtained by dissolving the pure compound in an Et2O/CHCl3 mixture and allowing the solution to slowly evaporate at room temperature.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The H1N atom was refined with Uiso(H) = 1.2Ueq(N). Owing to poor agreement, the (1 1 0) reflection was omitted from the final cycles of refinement.

Results and discussion top

2-Aryl­quinolo-4-ones are nitro­gen-containing analogues flavanones and flavones, and are characterized by a benzo ring fused to six-membered nitro­gen containing heterocyclic ring with an aryl substituent at position 2. The quinolone heterocyclic ring has many reactive sites for possible transformation and can also result in different degree of unsaturation (Diesbach & Kramer, 1945; Prakash et al., 1994; Singh & Kapil, 1993; Kalinin et al., 1992). To date, numerous accounts have been reported in the literature for the synthesis of quinolone, due to their frequent occurrence in biologically inter­esting molecules. RTILs have proven to be viable reaction media for numerous types of reaction, including, for example, Friedel–Crafts alkyl­ations, Diels–Alder, Knoevenagel, 1,3-dipolar cyclo­additions, and in three component coupling reactions (Chauvin & Olivier, 1996). As a part of our program directed toward the synthesis of new suitably functionalized heterocyclic compounds of potential biological activity (Bouraiou et al., 2008, 2011; Benzerka et al., 2011) and following our successes in the area of ionic liquid catalyzed 2-amino­chalones isomerization into the corresponding 2-phenyl-2,3-di­hydro­quinolin-4(1H)-one (Chelghoum et al., 2012), we envisioned to get some information on the spatial arrangements of this type of compounds. We report herein the synthesis and single-crystal X-ray structure of 2-(4-chloro­phenyl)-2,3-di­hydro­quinolin-4(1H)-one (I). The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1 and features a di­hydro­quinolin-4(1H)-one moiety attached to a chloro­benzene group. The crystal packing can be described as alternating double layers parallel to the (100) along the a axis (Fig. 2). It is stabilized by N—H···O hydrogen bonding and C—H···π inter­actions (Fig. 3; Table 1).

Related literature top

For background to and chemical reactivity of quinolone heterocycles, see: Diesbach & Kramer (1945); Prakash et al. (1994); Singh & Kapil (1993); Kalinin et al. (1992); Chauvin & Olivier (1996). For related structures, see: Bouraiou et al. (2008, 2011); Benzerka et al. (2011).

Structure description top

2-Aryl­quinolo-4-ones are nitro­gen-containing analogues flavanones and flavones, and are characterized by a benzo ring fused to six-membered nitro­gen containing heterocyclic ring with an aryl substituent at position 2. The quinolone heterocyclic ring has many reactive sites for possible transformation and can also result in different degree of unsaturation (Diesbach & Kramer, 1945; Prakash et al., 1994; Singh & Kapil, 1993; Kalinin et al., 1992). To date, numerous accounts have been reported in the literature for the synthesis of quinolone, due to their frequent occurrence in biologically inter­esting molecules. RTILs have proven to be viable reaction media for numerous types of reaction, including, for example, Friedel–Crafts alkyl­ations, Diels–Alder, Knoevenagel, 1,3-dipolar cyclo­additions, and in three component coupling reactions (Chauvin & Olivier, 1996). As a part of our program directed toward the synthesis of new suitably functionalized heterocyclic compounds of potential biological activity (Bouraiou et al., 2008, 2011; Benzerka et al., 2011) and following our successes in the area of ionic liquid catalyzed 2-amino­chalones isomerization into the corresponding 2-phenyl-2,3-di­hydro­quinolin-4(1H)-one (Chelghoum et al., 2012), we envisioned to get some information on the spatial arrangements of this type of compounds. We report herein the synthesis and single-crystal X-ray structure of 2-(4-chloro­phenyl)-2,3-di­hydro­quinolin-4(1H)-one (I). The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1 and features a di­hydro­quinolin-4(1H)-one moiety attached to a chloro­benzene group. The crystal packing can be described as alternating double layers parallel to the (100) along the a axis (Fig. 2). It is stabilized by N—H···O hydrogen bonding and C—H···π inter­actions (Fig. 3; Table 1).

For background to and chemical reactivity of quinolone heterocycles, see: Diesbach & Kramer (1945); Prakash et al. (1994); Singh & Kapil (1993); Kalinin et al. (1992); Chauvin & Olivier (1996). For related structures, see: Bouraiou et al. (2008, 2011); Benzerka et al. (2011).

Synthesis and crystallization top

The corresponding 2'-amino­chalcone (0.5 mmol) and [bmim]BF4 (1 g) were heating at 150 °C for 2.5 h; bmim is butyl­methyl­imidazolium. The crude product was isolated by repeated extraction with di­ethyl ether (7×10 ml). Filtration of the residue through a silica plug gave the 2-(4-chloro­phenyl)-2,3-di­hydro­quinolin-4(1H)-one (I). Single crystals suitable for the X-ray diffraction analysis were obtained by dissolving the pure compound in an Et2O/CHCl3 mixture and allowing the solution to slowly evaporate at room temperature.

Refinement details top

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The H1N atom was refined with Uiso(H) = 1.2Ueq(N). Owing to poor agreement, the (1 1 0) reflection was omitted from the final cycles of refinement.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular geometry of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Alternating double layers parallel to (100) in (I), viewed down the c axis.
[Figure 3] Fig. 3. A diagram of the layered crystal packing of (I), viewed down the b axis showing hydrogen bonds as dashed lines.
2-(4-Chlorophenyl)-2,3-dihydroquinolin-4(1H)-one top
Crystal data top
C15H12ClNOF(000) = 1072
Mr = 257.71Dx = 1.366 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5286 reflections
a = 17.703 (2) Åθ = 2.4–27.2°
b = 10.7537 (17) ŵ = 0.29 mm1
c = 13.658 (2) ÅT = 150 K
β = 105.486 (6)°Prism, colourless
V = 2505.8 (6) Å30.17 × 0.12 × 0.06 mm
Z = 8
Data collection top
Bruker APEXII
diffractometer
2314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 2221
Tmin = 0.932, Tmax = 0.983k = 1313
15688 measured reflectionsl = 1617
2852 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0328P)2 + 4.0966P]
where P = (Fo2 + 2Fc2)/3
2852 reflections(Δ/σ)max = 0.001
166 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C15H12ClNOV = 2505.8 (6) Å3
Mr = 257.71Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.703 (2) ŵ = 0.29 mm1
b = 10.7537 (17) ÅT = 150 K
c = 13.658 (2) Å0.17 × 0.12 × 0.06 mm
β = 105.486 (6)°
Data collection top
Bruker APEXII
diffractometer
2852 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2314 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 0.983Rint = 0.037
15688 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.53 e Å3
2852 reflectionsΔρmin = 0.39 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14660 (10)1.07351 (16)0.61189 (13)0.0207 (4)
C20.17699 (11)1.17882 (17)0.57430 (14)0.0245 (4)
H20.18761.17520.51120.029*
C30.19115 (11)1.28710 (18)0.63005 (15)0.0281 (4)
H30.21181.35550.60440.034*
C40.17487 (12)1.29588 (18)0.72502 (15)0.0307 (4)
H40.18391.36970.76180.037*
C50.14538 (11)1.19394 (18)0.76280 (14)0.0283 (4)
H50.13431.19940.82550.034*
C60.13150 (10)1.08117 (16)0.70848 (13)0.0225 (4)
C70.10478 (11)0.97037 (18)0.75251 (13)0.0271 (4)
C80.09756 (12)0.85216 (18)0.69154 (13)0.0282 (4)
H8A0.05630.80160.70560.034*
H8B0.14620.8060.71380.034*
C90.07953 (11)0.87276 (17)0.57716 (13)0.0256 (4)
H90.02580.9040.55230.031*
C100.08698 (11)0.75256 (16)0.52145 (13)0.0241 (4)
C110.02108 (12)0.69804 (18)0.45834 (15)0.0315 (4)
H110.02760.73510.45080.038*
C120.02618 (12)0.58890 (19)0.40597 (16)0.0329 (5)
H120.01860.55270.3640.04*
C130.09869 (11)0.53526 (16)0.41728 (14)0.0264 (4)
C140.16620 (11)0.58739 (18)0.47938 (14)0.0277 (4)
H140.21480.55050.48580.033*
C150.15978 (11)0.69599 (18)0.53192 (14)0.0274 (4)
H150.20450.73140.57460.033*
N10.13339 (9)0.96526 (14)0.55585 (11)0.0224 (3)
H1N0.1307 (12)0.9735 (19)0.4941 (16)0.027*
O10.09352 (10)0.96926 (14)0.83773 (10)0.0422 (4)
Cl10.10656 (4)0.39956 (5)0.35097 (4)0.04532 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (8)0.0223 (9)0.0191 (8)0.0041 (7)0.0061 (7)0.0013 (7)
C20.0264 (9)0.0259 (9)0.0238 (9)0.0020 (7)0.0112 (7)0.0023 (7)
C30.0274 (10)0.0244 (9)0.0338 (10)0.0023 (8)0.0103 (8)0.0022 (8)
C40.0348 (11)0.0257 (10)0.0300 (10)0.0025 (8)0.0060 (8)0.0080 (8)
C50.0340 (11)0.0308 (10)0.0197 (9)0.0009 (8)0.0068 (8)0.0045 (7)
C60.0258 (9)0.0243 (9)0.0168 (8)0.0013 (7)0.0048 (7)0.0003 (7)
C70.0368 (11)0.0291 (10)0.0161 (8)0.0002 (8)0.0083 (7)0.0010 (7)
C80.0415 (11)0.0256 (9)0.0203 (9)0.0012 (8)0.0133 (8)0.0025 (7)
C90.0315 (10)0.0250 (9)0.0224 (9)0.0014 (7)0.0106 (7)0.0013 (7)
C100.0345 (10)0.0206 (9)0.0210 (8)0.0002 (7)0.0142 (7)0.0013 (7)
C110.0282 (10)0.0289 (10)0.0377 (11)0.0059 (8)0.0092 (8)0.0023 (8)
C120.0286 (10)0.0291 (10)0.0370 (11)0.0013 (8)0.0017 (8)0.0054 (8)
C130.0367 (10)0.0182 (9)0.0253 (9)0.0036 (7)0.0098 (8)0.0026 (7)
C140.0260 (9)0.0271 (10)0.0305 (10)0.0054 (8)0.0085 (8)0.0040 (8)
C150.0272 (10)0.0296 (10)0.0244 (9)0.0061 (8)0.0049 (7)0.0003 (7)
N10.0332 (8)0.0215 (8)0.0154 (7)0.0008 (6)0.0118 (6)0.0012 (6)
O10.0737 (11)0.0384 (8)0.0198 (7)0.0086 (8)0.0219 (7)0.0018 (6)
Cl10.0608 (4)0.0271 (3)0.0468 (3)0.0075 (2)0.0122 (3)0.0135 (2)
Geometric parameters (Å, º) top
C1—N11.378 (2)C8—H8B0.97
C1—C21.408 (2)C9—N11.460 (2)
C1—C61.417 (2)C9—C101.523 (2)
C2—C31.377 (3)C9—H90.98
C2—H20.93C10—C111.382 (3)
C3—C41.405 (3)C10—C151.398 (3)
C3—H30.93C11—C121.390 (3)
C4—C51.373 (3)C11—H110.93
C4—H40.93C12—C131.378 (3)
C5—C61.409 (2)C12—H120.93
C5—H50.93C13—C141.386 (3)
C6—C71.469 (3)C13—Cl11.7425 (18)
C7—O11.232 (2)C14—C151.391 (3)
C7—C81.506 (3)C14—H140.93
C8—C91.525 (2)C15—H150.93
C8—H8A0.97N1—H1N0.84 (2)
N1—C1—C2120.10 (15)N1—C9—C10109.29 (14)
N1—C1—C6121.33 (15)N1—C9—C8109.52 (15)
C2—C1—C6118.56 (16)C10—C9—C8111.48 (15)
C3—C2—C1120.62 (16)N1—C9—H9108.8
C3—C2—H2119.7C10—C9—H9108.8
C1—C2—H2119.7C8—C9—H9108.8
C2—C3—C4121.02 (17)C11—C10—C15118.75 (17)
C2—C3—H3119.5C11—C10—C9120.02 (17)
C4—C3—H3119.5C15—C10—C9121.23 (17)
C5—C4—C3119.06 (17)C10—C11—C12121.28 (18)
C5—C4—H4120.5C10—C11—H11119.4
C3—C4—H4120.5C12—C11—H11119.4
C4—C5—C6121.32 (17)C13—C12—C11118.85 (18)
C4—C5—H5119.3C13—C12—H12120.6
C6—C5—H5119.3C11—C12—H12120.6
C5—C6—C1119.40 (16)C12—C13—C14121.64 (17)
C5—C6—C7120.84 (16)C12—C13—Cl1119.59 (15)
C1—C6—C7119.71 (16)C14—C13—Cl1118.77 (15)
O1—C7—C6123.07 (17)C13—C14—C15118.64 (17)
O1—C7—C8120.19 (17)C13—C14—H14120.7
C6—C7—C8116.57 (15)C15—C14—H14120.7
C7—C8—C9114.05 (15)C14—C15—C10120.85 (17)
C7—C8—H8A108.7C14—C15—H15119.6
C9—C8—H8A108.7C10—C15—H15119.6
C7—C8—H8B108.7C1—N1—C9119.19 (14)
C9—C8—H8B108.7C1—N1—H1N115.2 (15)
H8A—C8—H8B107.6C9—N1—H1N114.2 (14)
N1—C1—C2—C3179.37 (16)N1—C9—C10—C11126.55 (18)
C6—C1—C2—C30.5 (3)C8—C9—C10—C11112.2 (2)
C1—C2—C3—C40.7 (3)N1—C9—C10—C1552.8 (2)
C2—C3—C4—C50.9 (3)C8—C9—C10—C1568.4 (2)
C3—C4—C5—C60.2 (3)C15—C10—C11—C120.1 (3)
C4—C5—C6—C11.4 (3)C9—C10—C11—C12179.52 (18)
C4—C5—C6—C7176.00 (18)C10—C11—C12—C130.4 (3)
N1—C1—C6—C5179.59 (16)C11—C12—C13—C140.0 (3)
C2—C1—C6—C51.5 (3)C11—C12—C13—Cl1179.13 (15)
N1—C1—C6—C73.0 (3)C12—C13—C14—C150.6 (3)
C2—C1—C6—C7175.94 (16)Cl1—C13—C14—C15179.75 (14)
C5—C6—C7—O10.3 (3)C13—C14—C15—C100.8 (3)
C1—C6—C7—O1177.09 (18)C11—C10—C15—C140.5 (3)
C5—C6—C7—C8175.52 (17)C9—C10—C15—C14178.88 (16)
C1—C6—C7—C81.9 (3)C2—C1—N1—C9159.94 (16)
O1—C7—C8—C9156.11 (19)C6—C1—N1—C921.2 (2)
C6—C7—C8—C928.6 (2)C10—C9—N1—C1168.81 (15)
C7—C8—C9—N149.0 (2)C8—C9—N1—C146.4 (2)
C7—C8—C9—C10170.10 (16)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.15 (2)2.957 (2)162 (2)
C5—H5···Cg3ii0.932.833.641 (2)146
C11—H11···Cg2iii0.932.633.465 (2)149
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1/2, y+5/2, z+1/2; (iii) x+1/2, y+5/2, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.15 (2)2.957 (2)162 (2)
C5—H5···Cg3ii0.932.833.641 (2)146
C11—H11···Cg2iii0.932.633.465 (2)149
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1/2, y+5/2, z+1/2; (iii) x+1/2, y+5/2, z+1.
 

Acknowledgements

Thanks are due to MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algeria) for financial support. We are grateful to Dr Roisnel Thierry from the Centre de difractométrie de Rennes, Université de Rennes 1, France, for his technical assistance with the data collection.

References

First citationBenzerka, S., Bouraiou, A., Bouacida, S., Roisnel, T. & Belfaitah, A. (2011). Acta Cryst. E67, o2084–o2085.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBouraiou, A., Berrée, F., Bouacida, S., Carboni, C., Debache, A., Roisnel, T. & Belfaitah, A. (2011). Lett. Org. Chem. 8, 474–477.  CSD CrossRef Google Scholar
First citationBouraiou, A., Debbache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2008). J. Heterocycl. Chem. 45, 329–333.  CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChauvin, Y. & Olivier, H. (1996). In Applied Homogeneous Catalysis with Organometallic Compounds, edited by B. Cornils & W. A. Herrmann, Vol. 1, p. 245. New York: Wiley-VCH.  Google Scholar
First citationChelghoum, M., Bahnous, M., Bouraiou, A., Bouacida, S. & Belfaitah, A. (2012). Tetrahedron Lett. 53, 4059–4061.  Web of Science CSD CrossRef CAS Google Scholar
First citationDiesbach, H. & Kramer, H. (1945). Helv. Chim. Acta, 28, 1399–1405.  PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKalinin, V. N., Shostakovsky, M. V. & Ponomaryov, A. B. (1992). Tetrahedron Lett. 33, 373–376.  CrossRef CAS Web of Science Google Scholar
First citationPrakash, O., Kumar, D., Saini, R. K. & Singh, S. P. (1994). Synth. Commun. 24, 2167–2172.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2002). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, O. V. & Kapil, R. S. (1993). Synth. Commun. 23, 277–283.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 2| February 2014| Pages o202-o203
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds