organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(3,4-Di­meth­­oxy­phen­yl)-3-phenyl­prop-2-en-1-one

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 14 February 2014; accepted 18 February 2014; online 28 February 2014)

In the title compound, C17H16O3, the dihedral angle between the mean planes of the benzene rings is 57.1 (1)°. The mean plane of the ketone group is twisted by 10.0 (5)° from that of the di­meth­oxy­phenyl ring. The two di­meth­oxy­phenyl groups are twisted slighly from the mean plane of the phenyl ring, with C—O—C—C torsion angles of 6.4 (2) and −7.9 (2)° [r.m.s. deviations = 0.15 (3) and 0.18 (3) Å for the two methoxy C atoms]. In the crystal, weak centroid–centroid ππ stacking inter­actions, with inter­centroid distances of 3.8939 (11) and 3.9430 (10) Å are observed.

Related literature

For applications of the title compound as an inter­mediate in the synthesis of pyrazole derivatives, which have pharmaceutical applications, see: Basavaraju & Devaraju (2002[Basavaraju, Y. B. & Devaraju (2002). Indian J. Heterocycl. Chem. 11, 229-232.]). For applications of chalcone derivatives in biological studies, see: Choudhary & Juyal (2011[Choudhary, A. N. & Juyal, V. (2011). Int. J. Pharm. Pharm. Sci. 3, 125-128.]). For applications of chalcone derivatives for their blue-light transmittance, see: Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). For the synthesis, see: Umesha & Basavaraju (2013[Umesha, B. & Basavaraju, Y. B. (2013). Eur. J. Chem. 4, 235-239.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16O3

  • Mr = 268.30

  • Triclinic, [P \overline 1]

  • a = 7.3269 (7) Å

  • b = 9.8923 (11) Å

  • c = 10.7668 (11) Å

  • α = 102.408 (9)°

  • β = 109.255 (9)°

  • γ = 98.951 (9)°

  • V = 697.48 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 173 K

  • 0.36 × 0.28 × 0.16 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.842, Tmax = 1.000

  • 4094 measured reflections

  • 2671 independent reflections

  • 2261 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.152

  • S = 1.05

  • 2671 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

1-(3,4-dimethoxyphenyl)-3-phenylprop-2-en-1-one is an intermediate for the synthesis of pyrazole derivatives, podophyllotoxin and its derivatives which have pharmaceutical applications (Basavaraju & Devaraju, 2002). More generally, chalcone derivatives have many applications in biological studies (Choudhary & Juyal, 2011). Chalcone derivatives are notable for their excellent blue-light transmittance and good crystallizability (Uchida et al., 1998). In continuation of our work on chalcone derivatives, this paper reports the crystal structure of the title compound C17H16O3.

In the title compound the dihedral angle between the mean planes of the two phenyl rings is 57.1 (1)° (Fig. 1). The mean plane of the ketone group (C2/C1/O1/C10) is twisted by 10.0 (5)° from that of the dimethoxyphenyl ring. The two dimethoxyphenyl groups are twisted slighly from the mean plane of the phenyl ring with torsion angles of 6.4 (2)° (C16/O2/C14/C15) and -7.9 (2)° (C17/O3/C13/C12) [r.m.s. deviations = 0.15 (3) and 0.18 (3)Å for the two methoxy C atoms]. Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, while no classical hydrogen bonds are observed, weak Cg1–Cg1 and Cg2–Cg2 ππ stacking interactions with intercentroid distances of 3.8939 (11) Å and 3.9430 (10) Å (Symmetry operations 1 - x, 2 - y, 1 - z and -x, 1 - y, 2 - z; Cg1 and Cg2 are the centroids of the phenyl rings, C4–C9 and C10–C15) between the phenyl rings are observed and contribute to the crystal packing.

Related literature top

For applications of the title compound as an intermediate in the synthesis of pyrazole derivatives, podophyllotoxin and its derivatives which have pharmaceutical applications, see: Basavaraju & Devaraju (2002). For applications of chalcone derivatives in biological studies, see: Choudhary & Juyal (2011). For applications of chalcone derivatives for their blue-light transmittance and crystallizability properties, see: Uchida et al. (1998). For the synthesis of (I), see: Umesha & Basavaraju (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

1-(3,4-Dimethoxyphenyl)ethanone (1.80 g 10 mmol) and benzaldehyde (1.02 ml, 10 mmol) were stirred in water (40 ml) and ethanol (20 ml) mixture in the presence of sodium hydroxide (0.8 g, 20 mmol) at 288–303 K for 4 h (Fig. 2). The reaction mixture was kept overnight in an ice bath. The precipitated products were filtered and recrystallized from methanol. Anal. calcd. for C17H16O3: C, 76.10; H, 6.01. Found: C, 76.04; H, 5.89% (Umesha & Basavaraju, 2013).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95 Å (CH) or 0.98 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. Idealized Me were refined as a rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I), C17H16O3, showing the labeling scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The formation of the title compound.
1-(3,4-Dimethoxyphenyl)-3-phenylprop-2-en-1-one top
Crystal data top
C17H16O3Z = 2
Mr = 268.30F(000) = 284
Triclinic, P1Dx = 1.278 Mg m3
a = 7.3269 (7) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.8923 (11) ÅCell parameters from 1960 reflections
c = 10.7668 (11) Åθ = 4.5–72.3°
α = 102.408 (9)°µ = 0.70 mm1
β = 109.255 (9)°T = 173 K
γ = 98.951 (9)°Irregular, orange
V = 697.48 (13) Å30.36 × 0.28 × 0.16 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2671 independent reflections
Radiation source: Enhance (Cu) X-ray Source2261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.0416 pixels mm-1θmax = 72.4°, θmin = 4.5°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1112
Tmin = 0.842, Tmax = 1.000l = 1213
4094 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0909P)2 + 0.0371P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.30 e Å3
2671 reflectionsΔρmin = 0.20 e Å3
184 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.016 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
C17H16O3γ = 98.951 (9)°
Mr = 268.30V = 697.48 (13) Å3
Triclinic, P1Z = 2
a = 7.3269 (7) ÅCu Kα radiation
b = 9.8923 (11) ŵ = 0.70 mm1
c = 10.7668 (11) ÅT = 173 K
α = 102.408 (9)°0.36 × 0.28 × 0.16 mm
β = 109.255 (9)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2671 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2261 reflections with I > 2σ(I)
Tmin = 0.842, Tmax = 1.000Rint = 0.034
4094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.05Δρmax = 0.30 e Å3
2671 reflectionsΔρmin = 0.20 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1915 (2)0.40453 (12)0.63226 (11)0.0458 (4)
O20.11843 (19)0.13233 (12)0.97010 (11)0.0408 (3)
O30.17608 (19)0.32198 (13)1.19243 (11)0.0412 (3)
C10.2507 (2)0.49627 (17)0.74331 (15)0.0340 (4)
C20.3317 (2)0.64736 (17)0.75594 (16)0.0354 (4)
H20.42210.70920.84250.042*
C30.2797 (2)0.69778 (17)0.64760 (15)0.0349 (4)
H30.19030.63220.56270.042*
C40.3472 (2)0.84500 (16)0.64690 (15)0.0335 (4)
C50.2255 (3)0.89601 (17)0.54684 (16)0.0379 (4)
H50.10580.83400.47810.046*
C60.2791 (3)1.03693 (18)0.54759 (17)0.0426 (4)
H60.19421.07180.48060.051*
C70.4548 (3)1.12685 (18)0.64490 (18)0.0439 (4)
H70.49061.22340.64500.053*
C80.5793 (3)1.07642 (18)0.74269 (17)0.0423 (4)
H80.70131.13810.80890.051*
C90.5262 (2)0.93635 (17)0.74404 (16)0.0375 (4)
H90.61180.90220.81130.045*
C100.2372 (2)0.45707 (16)0.86635 (15)0.0315 (4)
C110.2692 (2)0.55923 (17)0.98761 (16)0.0349 (4)
H110.30500.65790.99450.042*
C120.2489 (2)0.51738 (17)1.09853 (15)0.0361 (4)
H120.26980.58771.18070.043*
C130.1986 (2)0.37465 (17)1.09029 (15)0.0335 (4)
C140.1668 (2)0.26993 (17)0.96737 (15)0.0322 (4)
C150.1855 (2)0.31230 (16)0.85772 (14)0.0318 (4)
H150.16300.24230.77500.038*
C160.1048 (3)0.02320 (18)0.85413 (17)0.0456 (5)
H16A0.00490.02460.77260.068*
H16B0.07970.07010.87110.068*
H16C0.23030.04020.83910.068*
C170.2323 (3)0.4222 (2)1.32445 (16)0.0475 (5)
H17A0.14810.49021.31750.071*
H17B0.37230.47381.35620.071*
H17C0.21510.37111.38990.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0689 (9)0.0374 (6)0.0314 (6)0.0090 (6)0.0214 (6)0.0095 (5)
O20.0594 (8)0.0336 (6)0.0330 (6)0.0083 (5)0.0237 (5)0.0092 (5)
O30.0523 (7)0.0461 (7)0.0281 (6)0.0104 (5)0.0194 (5)0.0106 (5)
C10.0356 (8)0.0368 (8)0.0314 (8)0.0102 (6)0.0135 (6)0.0106 (6)
C20.0359 (8)0.0376 (9)0.0319 (8)0.0070 (6)0.0134 (6)0.0092 (6)
C30.0385 (8)0.0343 (8)0.0316 (7)0.0085 (6)0.0145 (6)0.0068 (6)
C40.0388 (8)0.0342 (8)0.0310 (7)0.0108 (6)0.0173 (6)0.0085 (6)
C50.0416 (9)0.0390 (9)0.0313 (8)0.0092 (7)0.0124 (6)0.0088 (6)
C60.0504 (10)0.0417 (9)0.0383 (9)0.0158 (7)0.0152 (7)0.0156 (7)
C70.0540 (10)0.0326 (8)0.0486 (9)0.0113 (7)0.0233 (8)0.0116 (7)
C80.0388 (9)0.0385 (9)0.0432 (9)0.0048 (7)0.0130 (7)0.0060 (7)
C90.0377 (9)0.0390 (9)0.0362 (8)0.0109 (7)0.0133 (7)0.0117 (6)
C100.0305 (7)0.0362 (8)0.0285 (7)0.0090 (6)0.0117 (6)0.0090 (6)
C110.0351 (8)0.0332 (8)0.0340 (8)0.0060 (6)0.0128 (6)0.0068 (6)
C120.0373 (8)0.0386 (9)0.0287 (7)0.0085 (7)0.0131 (6)0.0017 (6)
C130.0330 (8)0.0409 (8)0.0271 (7)0.0084 (6)0.0132 (6)0.0085 (6)
C140.0317 (8)0.0356 (8)0.0288 (7)0.0077 (6)0.0116 (6)0.0084 (6)
C150.0325 (8)0.0362 (8)0.0254 (7)0.0081 (6)0.0111 (6)0.0060 (6)
C160.0664 (12)0.0332 (8)0.0426 (9)0.0097 (8)0.0303 (9)0.0079 (7)
C170.0549 (11)0.0619 (11)0.0258 (8)0.0141 (9)0.0185 (7)0.0078 (7)
Geometric parameters (Å, º) top
O1—C11.2290 (18)C8—H80.9500
O2—C141.3613 (19)C8—C91.384 (2)
O2—C161.4282 (18)C9—H90.9500
O3—C131.3592 (18)C10—C111.392 (2)
O3—C171.4331 (19)C10—C151.398 (2)
C1—C21.479 (2)C11—H110.9500
C1—C101.487 (2)C11—C121.389 (2)
C2—H20.9500C12—H120.9500
C2—C31.331 (2)C12—C131.378 (2)
C3—H30.9500C13—C141.418 (2)
C3—C41.466 (2)C14—C151.375 (2)
C4—C51.396 (2)C15—H150.9500
C4—C91.397 (2)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C5—C61.386 (2)C16—H16C0.9800
C6—H60.9500C17—H17A0.9800
C6—C71.378 (3)C17—H17B0.9800
C7—H70.9500C17—H17C0.9800
C7—C81.387 (2)
C14—O2—C16117.05 (12)C11—C10—C15119.33 (14)
C13—O3—C17117.20 (13)C15—C10—C1118.37 (13)
O1—C1—C2120.69 (14)C10—C11—H11119.9
O1—C1—C10120.23 (14)C12—C11—C10120.20 (15)
C2—C1—C10119.06 (13)C12—C11—H11119.9
C1—C2—H2119.6C11—C12—H12119.7
C3—C2—C1120.82 (14)C13—C12—C11120.51 (14)
C3—C2—H2119.6C13—C12—H12119.7
C2—C3—H3116.9O3—C13—C12125.41 (14)
C2—C3—C4126.11 (14)O3—C13—C14114.96 (14)
C4—C3—H3116.9C12—C13—C14119.63 (14)
C5—C4—C3118.50 (14)O2—C14—C13114.95 (13)
C5—C4—C9119.08 (15)O2—C14—C15125.58 (14)
C9—C4—C3122.41 (14)C15—C14—C13119.47 (14)
C4—C5—H5119.9C10—C15—H15119.6
C6—C5—C4120.12 (15)C14—C15—C10120.86 (14)
C6—C5—H5119.9C14—C15—H15119.6
C5—C6—H6119.8O2—C16—H16A109.5
C7—C6—C5120.37 (16)O2—C16—H16B109.5
C7—C6—H6119.8O2—C16—H16C109.5
C6—C7—H7120.0H16A—C16—H16B109.5
C6—C7—C8120.02 (16)H16A—C16—H16C109.5
C8—C7—H7120.0H16B—C16—H16C109.5
C7—C8—H8119.9O3—C17—H17A109.5
C9—C8—C7120.13 (16)O3—C17—H17B109.5
C9—C8—H8119.9O3—C17—H17C109.5
C4—C9—H9119.9H17A—C17—H17B109.5
C8—C9—C4120.23 (15)H17A—C17—H17C109.5
C8—C9—H9119.9H17B—C17—H17C109.5
C11—C10—C1122.28 (14)
O1—C1—C2—C324.6 (2)C5—C6—C7—C80.1 (3)
O1—C1—C10—C11168.54 (15)C6—C7—C8—C90.9 (3)
O1—C1—C10—C159.7 (2)C7—C8—C9—C40.1 (3)
O2—C14—C15—C10179.58 (14)C9—C4—C5—C62.3 (2)
O3—C13—C14—O20.0 (2)C10—C1—C2—C3153.98 (15)
O3—C13—C14—C15179.85 (13)C10—C11—C12—C130.5 (2)
C1—C2—C3—C4179.22 (14)C11—C10—C15—C140.3 (2)
C1—C10—C11—C12178.00 (14)C11—C12—C13—O3179.57 (15)
C1—C10—C15—C14178.63 (13)C11—C12—C13—C140.2 (2)
C2—C1—C10—C1110.0 (2)C12—C13—C14—O2179.81 (14)
C2—C1—C10—C15171.68 (13)C12—C13—C14—C150.4 (2)
C2—C3—C4—C5154.28 (17)C13—C14—C15—C100.6 (2)
C2—C3—C4—C924.4 (2)C15—C10—C11—C120.3 (2)
C3—C4—C5—C6176.43 (15)C16—O2—C14—C13173.81 (14)
C3—C4—C9—C8177.18 (15)C16—O2—C14—C156.4 (2)
C4—C5—C6—C71.5 (3)C17—O3—C13—C127.9 (2)
C5—C4—C9—C81.5 (2)C17—O3—C13—C14171.84 (14)

Experimental details

Crystal data
Chemical formulaC17H16O3
Mr268.30
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.3269 (7), 9.8923 (11), 10.7668 (11)
α, β, γ (°)102.408 (9), 109.255 (9), 98.951 (9)
V3)697.48 (13)
Z2
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.36 × 0.28 × 0.16
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.842, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4094, 2671, 2261
Rint0.034
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.152, 1.05
No. of reflections2671
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.20

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBasavaraju, Y. B. & Devaraju (2002). Indian J. Heterocycl. Chem. 11, 229–232.  Google Scholar
First citationChoudhary, A. N. & Juyal, V. (2011). Int. J. Pharm. Pharm. Sci. 3, 125–128.  CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationUmesha, B. & Basavaraju, Y. B. (2013). Eur. J. Chem. 4, 235–239.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds