organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzotriazolium 4-methyl­benzene­sulfonate

aDepartment of Physics, Presidency College, Chennai 600 005, India, bKunthavai Naacchiyaar Govt. Arts College (W), Thanjavur 613 007, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: kan_uma6@yahoo.com, chakkaravarthi_2005@yahoo.com

(Received 18 February 2014; accepted 19 February 2014; online 22 February 2014)

In the title molecular salt, C6H6N3+·C7H7O3S, the components are linked by N—H⋯O hydrogen bonds into zigzag chains along [100]. These chains are further connected by weak C—H⋯O, C—H⋯π and ππ (centroid-to-centroid distances = 3.510, 3.701 and 3.754 Å) inter­actions into a three-dimensional network.

Related literature

For biological activities of benzotriazole derivates, see: Dubey et al. (2011[Dubey, A., Srivastava, S. K. & Srivastava, S. D. (2011). Bioorg. Med. Chem. Lett. 21, 569-573.]); Gaikwad et al. (2012[Gaikwad, N. D., Patil, S. V. & Bodade, V. D. (2012). Bioorg. Med. Chem. Lett. 22, 3449-3454.]). For related structures, see: Sudhahar et al. (2013[Sudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.]); Yang et al. (2010[Yang, Y. X., Li, K., Wang, Y. J. & Li, Q. (2010). Beijing Shifan Dax. Xue. Zir. Kex. (J. B. Norm. Univ.), 46, 160-165.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N3+·C7H7O3S

  • Mr = 291.32

  • Orthorhombic, P b c a

  • a = 12.2330 (5) Å

  • b = 13.4144 (6) Å

  • c = 16.3320 (9) Å

  • V = 2680.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.26 × 0.24 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.937, Tmax = 0.951

  • 45507 measured reflections

  • 3889 independent reflections

  • 2766 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.08

  • 3889 reflections

  • 191 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.87 (1) 1.82 (1) 2.661 (2) 161 (2)
N3—H3A⋯O3ii 0.87 (1) 1.77 (1) 2.6326 (19) 176 (2)
C3—H3⋯O2iii 0.93 2.48 3.359 (2) 158
C12—H12⋯Cg1iv 0.93 2.66 3.500 (2) 150
Symmetry codes: (i) -x+2, -y, -z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x-{\script{3\over 2}}, y, -z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzotriazole derivates exhibit antitubercular and antimicrobial (Dubey et al., 2011; Gaikwad et al., 2012) bio-activities. We herewith report the crystal structure of the title compound (Fig. 1). In the title compound, the geometric parameters are comparable with reported structures (Sudhahar et al., 2013; Yang et al., 2010).

The crystal structure exhibits intermolecular N-H···O, C-H···O, C-H···π (Table 1; Fig. 2) and π···π interactions [Cg1···Cg2i: 3.510Å; Cg2···Cg3ii: 3.754Å; Cg3···Cg3ii: 3.701Å; symmetry operators: (i) x,y,z; (ii) 1-x,-y,-z; Cg1, Cg2 and Cg3 are the centroids of the rings (C1-C6), (N1/N2/C8/C13/N3) and (C8-C13), respectively].

Related literature top

For biological activities of benzotriazole derivates, see: Dubey et al. (2011); Gaikwad et al. (2012). For reported structures, see: Sudhahar et al. (2013); Yang et al. (2010).

Experimental top

Benzotriazole (C6H5N3, 1.1913 g) and p-toluenesulfonic acid (CH3C6H4S03H, 1.90 g) were taken in an equimolar ratio and dissolved in methanol and water. The solution was allowed for slow evaporation at room temperature. The crystals were collected after a the period of 45 days.

Refinement top

All H atoms were located in a difference Fourier map. N-bound H atoms were refined with an N-H distance restraint of 0.86 (1)Å. The C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 and Uiso(H) = 1.2Ueq(C) for CH and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed down a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
Benzotriazolium 4-methylbenzenesulfonate top
Crystal data top
C6H6N3+·C7H7O3SF(000) = 1216
Mr = 291.32Dx = 1.444 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9880 reflections
a = 12.2330 (5) Åθ = 2.5–29.4°
b = 13.4144 (6) ŵ = 0.25 mm1
c = 16.3320 (9) ÅT = 295 K
V = 2680.1 (2) Å3Block, colourless
Z = 80.26 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3889 independent reflections
Radiation source: fine-focus sealed tube2766 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scanθmax = 30.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.937, Tmax = 0.951k = 1818
45507 measured reflectionsl = 2223
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0359P)2 + 1.3937P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3889 reflectionsΔρmax = 0.26 e Å3
191 parametersΔρmin = 0.35 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (5)
Crystal data top
C6H6N3+·C7H7O3SV = 2680.1 (2) Å3
Mr = 291.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.2330 (5) ŵ = 0.25 mm1
b = 13.4144 (6) ÅT = 295 K
c = 16.3320 (9) Å0.26 × 0.24 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3889 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2766 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.951Rint = 0.037
45507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.26 e Å3
3889 reflectionsΔρmin = 0.35 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90878 (12)0.03041 (12)0.16244 (9)0.0333 (3)
C20.81836 (14)0.05952 (13)0.20733 (11)0.0418 (4)
H20.79610.12580.20660.050*
C30.76102 (15)0.00918 (15)0.25324 (11)0.0460 (4)
H30.69980.01140.28240.055*
C40.79293 (15)0.10826 (14)0.25669 (11)0.0432 (4)
C50.88410 (16)0.13637 (13)0.21152 (12)0.0475 (4)
H50.90740.20230.21320.057*
C60.94106 (15)0.06856 (13)0.16406 (11)0.0429 (4)
H61.00090.08940.13330.051*
C70.73032 (19)0.18330 (17)0.30695 (13)0.0633 (6)
H7A0.67110.20970.27500.095*
H7B0.70170.15150.35500.095*
H7C0.77830.23660.32280.095*
C80.67586 (12)0.01515 (12)0.03229 (10)0.0344 (3)
C90.67158 (15)0.11875 (12)0.02304 (11)0.0414 (4)
H90.72280.15350.00790.050*
C100.58772 (16)0.16563 (14)0.06224 (12)0.0486 (4)
H100.58090.23440.05690.058*
C110.51133 (16)0.11404 (15)0.11036 (12)0.0504 (5)
H110.45630.14990.13630.061*
C120.51505 (15)0.01289 (14)0.12041 (11)0.0448 (4)
H120.46470.02110.15260.054*
C130.59940 (13)0.03593 (12)0.07916 (10)0.0349 (3)
N10.71524 (13)0.14630 (11)0.02730 (11)0.0486 (4)
N20.74412 (12)0.05667 (11)0.00306 (10)0.0430 (3)
N30.62856 (13)0.13358 (11)0.07344 (10)0.0425 (3)
O10.93251 (11)0.11850 (10)0.02148 (8)0.0524 (3)
O21.09402 (10)0.08554 (10)0.10320 (9)0.0507 (3)
O30.96735 (11)0.21352 (9)0.14451 (8)0.0507 (3)
S10.98089 (3)0.11794 (3)0.10202 (3)0.03644 (12)
H2A0.8027 (13)0.0538 (18)0.0271 (13)0.075 (8)*
H3A0.5961 (17)0.1848 (12)0.0946 (13)0.068 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (8)0.0359 (8)0.0310 (8)0.0049 (6)0.0028 (6)0.0038 (6)
C20.0387 (8)0.0433 (9)0.0434 (9)0.0115 (7)0.0001 (7)0.0048 (7)
C30.0345 (8)0.0616 (11)0.0419 (9)0.0035 (8)0.0046 (7)0.0070 (9)
C40.0439 (9)0.0508 (10)0.0349 (9)0.0100 (8)0.0045 (7)0.0063 (7)
C50.0605 (12)0.0349 (8)0.0471 (10)0.0004 (8)0.0034 (9)0.0053 (7)
C60.0455 (9)0.0392 (9)0.0440 (9)0.0079 (7)0.0083 (8)0.0063 (7)
C70.0662 (14)0.0698 (14)0.0539 (12)0.0192 (11)0.0060 (10)0.0002 (11)
C80.0292 (7)0.0383 (8)0.0356 (8)0.0036 (6)0.0033 (6)0.0015 (6)
C90.0429 (9)0.0369 (8)0.0443 (9)0.0090 (7)0.0000 (7)0.0052 (7)
C100.0580 (11)0.0344 (8)0.0534 (11)0.0022 (8)0.0013 (9)0.0022 (8)
C110.0490 (10)0.0524 (11)0.0499 (11)0.0039 (9)0.0062 (9)0.0123 (9)
C120.0415 (9)0.0531 (10)0.0399 (9)0.0085 (8)0.0070 (7)0.0001 (8)
C130.0349 (8)0.0343 (8)0.0356 (8)0.0063 (6)0.0049 (6)0.0023 (6)
N10.0438 (8)0.0392 (8)0.0628 (10)0.0038 (7)0.0060 (8)0.0024 (7)
N20.0329 (7)0.0426 (8)0.0536 (9)0.0011 (6)0.0020 (7)0.0027 (7)
N30.0429 (8)0.0352 (7)0.0496 (9)0.0059 (6)0.0045 (7)0.0072 (6)
O10.0532 (8)0.0656 (9)0.0383 (7)0.0041 (7)0.0027 (6)0.0063 (6)
O20.0346 (6)0.0543 (7)0.0631 (9)0.0069 (6)0.0037 (6)0.0067 (6)
O30.0629 (8)0.0335 (6)0.0558 (8)0.0072 (6)0.0009 (7)0.0004 (5)
S10.0347 (2)0.0360 (2)0.0387 (2)0.00720 (16)0.00031 (16)0.00142 (16)
Geometric parameters (Å, º) top
C1—C21.383 (2)C8—C91.399 (2)
C1—C61.385 (2)C9—C101.363 (3)
C1—S11.7694 (17)C9—H90.9300
C2—C31.380 (3)C10—C111.404 (3)
C2—H20.9300C10—H100.9300
C3—C41.386 (3)C11—C121.368 (3)
C3—H30.9300C11—H110.9300
C4—C51.389 (3)C12—C131.395 (2)
C4—C71.508 (3)C12—H120.9300
C5—C61.383 (3)C13—N31.361 (2)
C5—H50.9300N1—N31.312 (2)
C6—H60.9300N1—N21.314 (2)
C7—H7A0.9600N2—H2A0.871 (9)
C7—H7B0.9600N3—H3A0.866 (9)
C7—H7C0.9600O1—S11.4423 (14)
C8—N21.361 (2)O2—S11.4507 (13)
C8—C131.389 (2)O3—S11.4673 (13)
C2—C1—C6119.24 (16)C10—C9—H9122.1
C2—C1—S1120.46 (13)C8—C9—H9122.1
C6—C1—S1120.29 (13)C9—C10—C11122.46 (17)
C3—C2—C1120.40 (16)C9—C10—H10118.8
C3—C2—H2119.8C11—C10—H10118.8
C1—C2—H2119.8C12—C11—C10122.29 (18)
C2—C3—C4121.28 (16)C12—C11—H11118.9
C2—C3—H3119.4C10—C11—H11118.9
C4—C3—H3119.4C11—C12—C13115.62 (16)
C3—C4—C5117.69 (17)C11—C12—H12122.2
C3—C4—C7121.27 (18)C13—C12—H12122.2
C5—C4—C7121.04 (18)N3—C13—C8105.09 (15)
C6—C5—C4121.57 (17)N3—C13—C12132.75 (16)
C6—C5—H5119.2C8—C13—C12122.16 (15)
C4—C5—H5119.2N3—N1—N2105.75 (14)
C5—C6—C1119.81 (16)N1—N2—C8112.14 (15)
C5—C6—H6120.1N1—N2—H2A115.6 (16)
C1—C6—H6120.1C8—N2—H2A132.3 (16)
C4—C7—H7A109.5N1—N3—C13112.12 (14)
C4—C7—H7B109.5N1—N3—H3A119.8 (16)
H7A—C7—H7B109.5C13—N3—H3A128.1 (16)
C4—C7—H7C109.5O1—S1—O2113.90 (8)
H7A—C7—H7C109.5O1—S1—O3112.36 (8)
H7B—C7—H7C109.5O2—S1—O3111.30 (8)
N2—C8—C13104.90 (14)O1—S1—C1107.91 (8)
N2—C8—C9133.48 (16)O2—S1—C1105.62 (7)
C13—C8—C9121.62 (15)O3—S1—C1105.06 (8)
C10—C9—C8115.83 (16)
C6—C1—C2—C30.1 (3)N2—C8—C13—C12179.46 (15)
S1—C1—C2—C3178.81 (13)C9—C8—C13—C120.8 (3)
C1—C2—C3—C40.9 (3)C11—C12—C13—N3179.15 (18)
C2—C3—C4—C50.7 (3)C11—C12—C13—C81.2 (3)
C2—C3—C4—C7179.93 (18)N3—N1—N2—C80.8 (2)
C3—C4—C5—C60.5 (3)C13—C8—N2—N10.63 (19)
C7—C4—C5—C6178.86 (18)C9—C8—N2—N1179.05 (18)
C4—C5—C6—C11.5 (3)N2—N1—N3—C130.6 (2)
C2—C1—C6—C51.2 (3)C8—C13—N3—N10.21 (19)
S1—C1—C6—C5180.00 (14)C12—C13—N3—N1179.87 (18)
N2—C8—C9—C10179.18 (18)C2—C1—S1—O189.85 (15)
C13—C8—C9—C100.4 (3)C6—C1—S1—O188.90 (15)
C8—C9—C10—C111.2 (3)C2—C1—S1—O2147.97 (14)
C9—C10—C11—C120.8 (3)C6—C1—S1—O233.28 (16)
C10—C11—C12—C130.5 (3)C2—C1—S1—O330.22 (15)
N2—C8—C13—N30.24 (17)C6—C1—S1—O3151.04 (14)
C9—C8—C13—N3179.48 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.87 (1)1.82 (1)2.661 (2)161 (2)
N3—H3A···O3ii0.87 (1)1.77 (1)2.6326 (19)176 (2)
C3—H3···O2iii0.932.483.359 (2)158
C12—H12···Cg1iv0.932.663.500 (2)150
Symmetry codes: (i) x+2, y, z; (ii) x+3/2, y1/2, z; (iii) x1/2, y, z+1/2; (iv) x3/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.871 (9)1.822 (12)2.661 (2)161 (2)
N3—H3A···O3ii0.866 (9)1.768 (10)2.6326 (19)176 (2)
C3—H3···O2iii0.932.483.359 (2)158
C12—H12···Cg1iv0.932.663.500 (2)150
Symmetry codes: (i) x+2, y, z; (ii) x+3/2, y1/2, z; (iii) x1/2, y, z+1/2; (iv) x3/2, y, z1/2.
 

Acknowledgements

The authors thank SAIF, IIT, Madras, for data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubey, A., Srivastava, S. K. & Srivastava, S. D. (2011). Bioorg. Med. Chem. Lett. 21, 569–573.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGaikwad, N. D., Patil, S. V. & Bodade, V. D. (2012). Bioorg. Med. Chem. Lett. 22, 3449–3454.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSudhahar, S., Krishnakumar, M., Sornamurthy, B. M., Chakkaravarthi, G. & Mohankumar, R. (2013). Acta Cryst. E69, o279.  CSD CrossRef IUCr Journals Google Scholar
First citationYang, Y. X., Li, K., Wang, Y. J. & Li, Q. (2010). Beijing Shifan Dax. Xue. Zir. Kex. (J. B. Norm. Univ.), 46, 160–165.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds