inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages i12-i13

Twinned caesium cerium(IV) penta­fluoride

aInstitute of Crystallography, RWTH Aachen University, Jägerstr. 17-19, 52066 Aachen, Germany, and bDepartment of Chemistry, Clemson University, Clemson SC 29634, USA
*Correspondence e-mail: grzechnik@xtal.rwth-aachen.de

(Received 28 January 2014; accepted 13 February 2014; online 19 February 2014)

Single-crystals of CsCeF5 were synthesized hydro­thermally. The crystal under investigation was twinned by pseudo-merohedry with a twofold rotation around the c axis as an additional twinning operation. The crystal structure is built of layers of distorted edge- and corner-sharing CeF8 square-anti­prisms. The Cs+ cations are located between the layers and exhibit coordination numbers of nine. Upon compression, CsCeF5 undergoes an irreversible phase transition at about 1 GPa.

Related literature

For background to the applications of complex cerium(IV) and thorium fluorides, see: Friese et al. (2011[Friese, K., Morgenroth, W., Posse, J. M. & Grzechnik, A. (2011). Dalton Trans. 40, 1902-1910.]); Grzechnik et al. (2007[Grzechnik, A., Fechtelkord, M., Morgenroth, W., Posse, J. M. & Friese, K. (2007). J. Phys. Condens. Matter, 19, 266219 (11pp).], 2008[Grzechnik, A., Morgenroth, W. & Friese, K. (2008). J. Solid State Chem. 181, 971-975.], 2013a[Grzechnik, A., Underwood, C. C., Kolis, J. W. & Friese, K. (2013a). J. Fluor. Chem. 150, 8-13.],b[Grzechnik, A., Underwood, C. C., Kolis, J. W. & Friese, K. (2013b). J. Fluor. Chem. 156, 124-129.]); Rouse & Weller (2009[Rouse, J. & Weller, M. T. (2009). Dalton Trans. 38, 10330-10337.]); Underwood (2013[Underwood, C. C. (2013). PhD Thesis, Hydrothermal Chemistry, Crystal Structures, and Spectroscopy of Novel Fluorides and Borates, Clemson University, USA.]); Underwood et al. (2012[Underwood, C. C., Mann, M., McMillen, C. D., Musgraves, J. D. & Kolis, J. W. (2012). Solid State Sci. 14, 574-579.]). For related structures, see: Underwood et al. (2012[Underwood, C. C., Mann, M., McMillen, C. D., Musgraves, J. D. & Kolis, J. W. (2012). Solid State Sci. 14, 574-579.]). The ruby luminescence method (Mao et al., 1986[Mao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673-4676.]) was used for pressure calibration. According to a recent review of twinning at high pressures (Friese & Grzechnik, 2014[Friese, K. & Grzechnik, A. (2014). Z. Kristallogr. DOI: 10.1515/zkri-2013-1662.]), pseudo-merohedral twinning in general is not significantly affected on compression.

Experimental

Crystal data
  • CsCeF5

  • Mr = 368

  • Monoclinic, P 21 /c

  • a = 8.3125 (5) Å

  • b = 14.2434 (6) Å

  • c = 8.4507 (5) Å

  • β = 104.566 (5)°

  • V = 968.39 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 16.80 mm−1

  • T = 295 K

  • 0.10 × 0.08 × 0.05 mm

Data collection
  • STOE IPDS 2 diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.207, Tmax = 0.406

  • 55729 measured reflections

  • 6402 independent reflections

  • 2543 reflections with I > 3σ(I)

  • Rint = 0.136

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.038

  • S = 1.04

  • 6402 reflections

  • 129 parameters

  • Δρmax = 1.85 e Å−3

  • Δρmin = −1.89 e Å−3

Table 1
Selected bond lengths (Å)

Ce1—F3 2.133 (6)
Ce1—F4 2.304 (5)
Ce1—F5 2.256 (6)
Ce1—F5i 2.311 (6)
Ce1—F6 2.320 (5)
Ce1—F7 2.306 (6)
Ce1—F8 2.119 (7)
Ce1—F9 2.487 (6)
Ce1—F9i 2.882 (7)
Ce2—F1 2.123 (7)
Ce2—F2 2.128 (7)
Ce2—F4ii 2.329 (5)
Ce2—F6 2.395 (6)
Ce2—F6iii 3.150 (7)
Ce2—F7iii 2.322 (6)
Ce2—F9 2.304 (6)
Ce2—F10 2.242 (5)
Ce2—F10i 2.279 (6)
Cs1—F1iv 2.928 (8)
Cs1—F2 3.152 (6)
Cs1—F2v 2.982 (6)
Cs1—F3vi 3.222 (7)
Cs1—F3iii 3.229 (7)
Cs1—F5vi 3.099 (6)
Cs1—F8 3.095 (6)
Cs1—F8vii 3.218 (6)
Cs1—F9 2.982 (5)
Cs2—F1vi 2.998 (6)
Cs2—F1viii 2.998 (7)
Cs2—F2ix 3.042 (8)
Cs2—F3vi 3.437 (6)
Cs2—F3iii 2.981 (6)
Cs2—F6vi 3.125 (6)
Cs2—F7vii 3.140 (6)
Cs2—F8 2.980 (7)
Cs2—F10viii 3.162 (6)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x+2, -y+1, -z+1; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) -x+1, -y+1, -z; (viii) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ix) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2006[Petříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Most of the work on structural inorganic chemistry of actinide fluorides has been primarily based on the materials that crystallize from molten alkali fluoride salts (Grzechnik et al., 2007; Grzechnik et al., 2008; Friese et al., 2011). Recently, several complex thorium fluorides have been synthesized (Underwood et al., 2012; Grzechnik et al., 2013a) and advances in the synthesis of cerium (IV) fluorides have been made (Rouse et al., 2009; Grzechnik et al., 2013b). The successful use of fluoride mineralizers in the hydro­thermal crystal growth of alkali thorium fluorides suggests that additional investigations into inorganic cerium (IV) fluorides may be fruitful. The chemistry of monovalent metal cerium(IV) fluorides in hydro­thermal fluids was examined by Underwood (2013) and it was found that it is considerably richer than anti­cipated.

We are inter­ested in the crystal structures and stabilities of cerium (IV) fluorides as they are thought to be isostructural with the actinide fluorides (Grzechnik et al., 2013b). In the recent study by Underwood et al. (2012), three new polymorphs of CsThF5 have been synthesized hydro­thermally. The tetra­gonal phase (phase I, P4/nmm, Z = 2), consisting of sheets of ThF9 tricapped trigonal prisms separated by layers of Cs atoms, is a minor product in the hydro­thermal conditions. Two monoclinic polymorphs (phases II and III) are synthesized at various conditions. The phase II (P21/c, Z = 4) is built of chains of corner-sharing ThF9 polyhedra, while the phase III (P21/c, Z = 8) is built of sheets of edge- and corner-sharing ThF9 polyhedra. The chain structure of the phase II converts into the sheet structure of the phase III at 500°C. In this study, we examine cesium cerium(IV) penta­fluoride, CsCeF5, to see whether it is indeed isostructural with CsThF5.

Experimental top

A series of crystals mounted on glass pins was tested on a STOE IPDS 2 diffractometer and the best one was selected for the structure determination at ambient conditions and high-pressure single-crystal x-ray studies. High-pressure data were collected in the Ahsbahs-type diamond anvil cell at room temperature at 1.2, 3.1, and 5.0 GPa. A 0.250 mm hole was drilled into a stainless steel gasket preindented to a thickness of about 0.120 mm. A 4:1 mixture of methanol and ethanol was used as a pressure medium. The ruby luminescence method (Mao et al., 1986) was used for pressure calibration.

The intensities were indexed and integrated with the software X-AREA (Stoe & Cie, 2002). Due to the pseudomerohedral twinning, some reflections in the lower θ range partly overlap. During the integration the orientation matrices of both twin individuals were used simultaneously. The overlap tolerance was set to 100%, so that all overlapped reflections were included. The faces of the crystal were optimized for each individual with the program X-SHAPE (Stoe & Cie, 2002) and an absorption correction was applied with the program Jana2006 (Petříček et al., 2006). Figures 1-3 were drawn using the program DIAMOND (Brandenburg, 2000).

Synthesis and crystallization top

All reagents for the synthesis of CsCeF5 were of analytical grade and used as purchased. The compound in this study was prepared hydro­thermally as follows: 0.20 g CeF4 (Strem Chemical, 99.9%) was combined with five molar equivalents (0.703 g) of CsF (Alfa Aesar, 99.9%), placed into a Parr Instruments Teflon-lined autoclave and filled with 10.0 mL water. The autoclave was then heated at 250 °C for 24 h and slowly cooled at a rate of 10 °C/h to room temperature. When the reaction was complete, the content of the autoclave was filtered and the product washed with deionized water to yield a colorless material. Powder X-ray diffraction was used to characterize the bulk solid and single crystal X-ray diffraction was used to structurally characterize the new species.

Refinement top

Crystal data, data collection and structure refinement details at ambient conditions are summarized in Table 1. The diffraction pattern could be explained assuming a monoclinic lattice with a = 8.3125 (5) Å, b = 14.2434 (6) Å, c = 8.4507 (5) Å, and b = 104.566 (5)° and a two-fold rotation around the c axis as an additional twinning operation. The twinning matrix corresponds to (-1, 0, -0.4948; 0, -1, 0; 0, 0, 1). The twinning could be classified as pseudomerohedral.

The structure was solved with the program SIR97 (Altomare et al., 1999) an it was refined with the program Jana2006 (Petříček et al., 2006). The reflections from both individuals and the twinning operation were taken into account during the refinement process. The refined twin volumes of the two individuals are 0.8830 (7) and 0.1170 (7).

Results and discussion top

All the examined crystals of CsCeF5 are pseudomerohedrally twinned and have their lattice parameters close to those for the high-temperature polymorph of CsThF5 (phase III) (Underwood et al., 2012). We do not find any material whose single-crystal or powder x-ray intensities could be indexed with the lattices analogous to those in the phases I and II of CsThF5. It indicates that CsCeF5 does not exhibit any temperature-induced polymorphism within the synthesis conditions.

The analysis of the structural data in Table 2 shows that, unlike the Th atoms in the phase III of CsThF5, the Ce atoms are eight-fold coordinated to the fluorine atoms in the distorted square anti­prismatic geometry (Figure 1): the distances Ce1—F and Ce2—F are in the ranges 2.12-2.49 Å and 2.12-2.40 Å, respectively. The average Ce1—F and Ce2—F distances are the same: 2.3 (1) Å. The doublets of edge-sharing CeF8 polyhedra share their corners to form sheets perpendicular to the b axis (Figures 2 and 3). The Cs atoms are between the sheets and are coordinated to nine fluorine atoms. The average distances Cs1—F and Cs2—F are identical: 3.1 (1) Å. Altogether, it is clear from our data that, unlike LiCeF5 and LiThF5 (Grzechnik et al., 2013b), CsCeF5 and CsThF5 are not isostructural at ambient conditions. This suggests that inorganic structural chemistries of actinide and lanthanide (IV) fluorides are not exactly analogous.

Above about 1 GPa, the single-crystal x-ray reflections in CsCeF5 lose their intensities, become brodened and smeared, while the crystal itself is cracked into tiny pieces. The reflections can no longer be indexed with any lattice and integrated. These changes in the diffraction pattern are irreversible on decompression to atmospheric conditions. Such a behaviour suggest a pressure-induced first-order phase transition in CsCeF5. According to a recent review of twinned structures at high pressures (Friese et al., 2014), pseudomerohedral twinning in general is not significantly affected on compression. The broadening and smearing of the reflections could thus rather be due to the collapse of the layer structure. However, the structure of the pressure-induced form of this material cannot be determined from the current single-crystal x-ray data.

Related literature top

For background to the applications of complex cerium(IV) and thorium fluorides, see: Friese et al. (2011); Grzechnik et al. (2007, 2008, 2013a,b); Rouse & Weller (2009); Underwood (2013); Underwood et al. (2012). For related structures, see: Underwood et al. (2012). The ruby luminescence method (Mao et al., 1986) was used for pressure calibration. According to a recent review of twinning at high pressures (Friese et al., 2014), twinning by pseudo-merohedry in general is not significantly affected on compression.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An edge-sharing doublet of distorted square antiprisms CeF8.
[Figure 2] Fig. 2. Layers of CeF8 (left) and CsF9 (right) polyhedra viewed along the b axis.
[Figure 3] Fig. 3. Crystal structure in different projections. The polyhedra around the Ce atoms are drawn.
Caesium cerium(IV) pentafluoride top
Crystal data top
CsCeF5F(000) = 1264
Mr = 368Dx = 5.047 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 10057 reflections
a = 8.3125 (5) Åθ = 5.0–32.1°
b = 14.2434 (6) ŵ = 16.80 mm1
c = 8.4507 (5) ÅT = 295 K
β = 104.566 (5)°Irregular shape, colourless
V = 968.39 (9) Å30.10 × 0.08 × 0.05 mm
Z = 8
Data collection top
STOE IPDS 2
diffractometer
6402 independent reflections
Radiation source: X-ray tube2543 reflections with I > 3σ(I)
Plane graphite monochromatorRint = 0.136
Detector resolution: 6.67 pixels mm-1θmax = 32.0°, θmin = 4.9°
rotation method scansh = 1212
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2002)
k = 2121
Tmin = 0.207, Tmax = 0.406l = 1212
55729 measured reflections
Refinement top
Refinement on F0 constraints
R[F2 > 2σ(F2)] = 0.037Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F2) = 0.038(Δ/σ)max = 0.010
S = 1.04Δρmax = 1.85 e Å3
6402 reflectionsΔρmin = 1.89 e Å3
129 parametersExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 320 (20)
Crystal data top
CsCeF5V = 968.39 (9) Å3
Mr = 368Z = 8
Monoclinic, P21/cMo Kα radiation
a = 8.3125 (5) ŵ = 16.80 mm1
b = 14.2434 (6) ÅT = 295 K
c = 8.4507 (5) Å0.10 × 0.08 × 0.05 mm
β = 104.566 (5)°
Data collection top
STOE IPDS 2
diffractometer
6402 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2002)
2543 reflections with I > 3σ(I)
Tmin = 0.207, Tmax = 0.406Rint = 0.136
55729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037129 parameters
wR(F2) = 0.0380 restraints
S = 1.04Δρmax = 1.85 e Å3
6402 reflectionsΔρmin = 1.89 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce10.55769 (5)0.74670 (6)0.03297 (5)0.01796 (12)
Ce20.98279 (5)0.75627 (6)0.38963 (5)0.01810 (12)
Cs10.72055 (8)0.47560 (6)0.29747 (8)0.0279 (2)
Cs20.23935 (7)0.52409 (6)0.21659 (8)0.0285 (2)
F11.0580 (7)0.8988 (5)0.3904 (9)0.031 (2)
F21.0275 (8)0.6097 (5)0.4251 (9)0.030 (2)
F30.5084 (7)0.8919 (4)0.0200 (8)0.0306 (19)
F40.2716 (6)0.7548 (6)0.0383 (6)0.0332 (13)
F50.4735 (6)0.7877 (4)0.2572 (7)0.0309 (17)
F60.8051 (7)0.8239 (4)0.1490 (7)0.0286 (17)
F70.7769 (7)0.6649 (4)0.0219 (7)0.0280 (16)
F80.4839 (7)0.6055 (5)0.0505 (8)0.0311 (19)
F90.7275 (7)0.6849 (4)0.2977 (8)0.0309 (15)
F101.0714 (7)0.7753 (4)0.6611 (6)0.032 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.01799 (17)0.0192 (2)0.01669 (18)0.0006 (3)0.00442 (13)0.0005 (3)
Ce20.01748 (17)0.0193 (3)0.01749 (18)0.0000 (2)0.00426 (13)0.0001 (3)
Cs10.0277 (2)0.0267 (4)0.0302 (3)0.0012 (3)0.0091 (2)0.0004 (3)
Cs20.0279 (3)0.0285 (4)0.0285 (3)0.0021 (3)0.0060 (2)0.0004 (2)
F10.026 (3)0.031 (4)0.035 (3)0.003 (2)0.008 (2)0.001 (3)
F20.033 (3)0.016 (3)0.041 (4)0.006 (2)0.010 (3)0.001 (3)
F30.031 (3)0.025 (3)0.037 (3)0.000 (2)0.012 (3)0.005 (3)
F40.0222 (16)0.049 (3)0.0287 (17)0.006 (4)0.0073 (15)0.004 (5)
F50.022 (2)0.040 (3)0.031 (3)0.007 (2)0.008 (2)0.005 (3)
F60.025 (2)0.025 (3)0.032 (3)0.003 (2)0.001 (2)0.004 (2)
F70.022 (2)0.029 (3)0.034 (3)0.003 (2)0.010 (2)0.003 (2)
F80.031 (3)0.025 (3)0.036 (3)0.004 (2)0.006 (2)0.005 (3)
F90.028 (2)0.022 (2)0.036 (3)0.002 (2)0.004 (2)0.008 (3)
F100.030 (2)0.050 (5)0.016 (2)0.001 (2)0.0065 (18)0.005 (2)
Geometric parameters (Å, º) top
Ce1—F32.133 (6)F1—F8ii3.458 (8)
Ce1—F42.304 (5)F1—F102.865 (9)
Ce1—F52.256 (6)F1—F10i3.166 (10)
Ce1—F5i2.311 (6)F2—F2v3.445 (10)
Ce1—F62.320 (5)F2—F4ii2.761 (10)
Ce1—F72.306 (6)F2—F6iii3.107 (10)
Ce1—F82.119 (7)F2—F92.679 (8)
Ce1—F92.487 (6)F2—F103.051 (9)
Ce1—F9i2.882 (7)F2—F10i2.864 (9)
Ce2—F12.123 (7)F3—F3x3.106 (9)
Ce2—F22.128 (7)F3—F42.749 (10)
Ce2—F4ii2.329 (5)F3—F52.848 (9)
Ce2—F62.395 (6)F3—F5i3.146 (9)
Ce2—F6iii3.150 (7)F3—F62.700 (8)
Ce2—F7iii2.322 (6)F3—F9i2.881 (10)
Ce2—F92.304 (6)F4—F52.676 (7)
Ce2—F102.242 (5)F4—F5i2.762 (9)
Ce2—F10i2.279 (6)F4—F82.745 (10)
Cs1—F1iv2.928 (8)F4—F10xi2.680 (6)
Cs1—F23.152 (6)F4—F10viii2.684 (8)
Cs1—F2v2.982 (6)F5—F63.157 (9)
Cs1—F3vi3.222 (7)F5—F7iii2.817 (7)
Cs1—F3iii3.229 (7)F5—F83.142 (9)
Cs1—F5vi3.099 (6)F5—F8iii2.891 (9)
Cs1—F83.095 (6)F5—F92.521 (8)
Cs1—F8vii3.218 (6)F5—F10viii3.357 (8)
Cs1—F92.982 (5)F6—F72.664 (8)
Cs2—F1vi2.998 (6)F6—F7iii2.853 (9)
Cs2—F1viii2.998 (7)F6—F92.514 (9)
Cs2—F2ix3.042 (8)F6—F9i2.878 (9)
Cs2—F3vi3.437 (6)F6—F10i2.607 (8)
Cs2—F3iii2.981 (6)F7—F82.788 (9)
Cs2—F6vi3.125 (6)F7—F92.847 (9)
Cs2—F7vii3.140 (6)F7—F9i2.598 (8)
Cs2—F82.980 (7)F7—F10i2.684 (7)
Cs2—F10viii3.162 (6)F8—F8vii3.153 (9)
F1—F4ii2.786 (10)F8—F92.760 (8)
F1—F62.750 (8)F9—F10i3.390 (9)
F1—F7iii2.776 (9)
F3—Ce1—F476.4 (3)F3iii—F5—F6110.5 (2)
F3—Ce1—F580.9 (2)F3iii—F5—F7iii82.3 (2)
F3—Ce1—F5i90.0 (2)F3iii—F5—F869.5 (2)
F3—Ce1—F674.5 (2)F3iii—F5—F8iii86.3 (2)
F3—Ce1—F7124.6 (2)F3iii—F5—F959.9 (2)
F3—Ce1—F8153.0 (2)F3iii—F5—F10viii82.2 (2)
F3—Ce1—F9124.6 (2)F4—F5—F4iii102.0 (2)
F3—Ce1—F9i68.3 (2)F4—F5—F698.4 (2)
F4—Ce1—F571.86 (18)F4—F5—F7iii155.1 (3)
F4—Ce1—F5i73.51 (19)F4—F5—F855.6 (2)
F4—Ce1—F6146.4 (3)F4—F5—F8iii140.2 (3)
F4—Ce1—F7142.0 (2)F4—F5—F9109.4 (3)
F4—Ce1—F876.6 (3)F4—F5—F10viii51.32 (17)
F4—Ce1—F9124.6 (2)F4iii—F5—F6158.3 (2)
F4—Ce1—F9i117.07 (18)F4iii—F5—F7iii102.8 (2)
F5—Ce1—F5i145.35 (18)F4iii—F5—F8105.8 (3)
F5—Ce1—F687.2 (2)F4iii—F5—F8iii58.0 (2)
F5—Ce1—F7136.69 (19)F4iii—F5—F9114.1 (3)
F5—Ce1—F891.8 (2)F4iii—F5—F10viii50.83 (16)
F5—Ce1—F964.0 (2)F6—F5—F7iii56.7 (2)
F5—Ce1—F9i143.25 (19)F6—F5—F880.0 (2)
F5i—Ce1—F6122.6 (2)F6—F5—F8iii108.8 (2)
F5i—Ce1—F775.19 (19)F6—F5—F951.1 (2)
F5i—Ce1—F881.4 (2)F6—F5—F10viii149.6 (2)
F5i—Ce1—F9142.4 (2)F7iii—F5—F8114.9 (2)
F5i—Ce1—F9i56.81 (18)F7iii—F5—F8iii58.5 (2)
F6—Ce1—F770.3 (2)F7iii—F5—F957.9 (2)
F6—Ce1—F8131.4 (2)F7iii—F5—F10viii153.6 (3)
F6—Ce1—F962.9 (2)F8—F5—F8iii155.8 (3)
F6—Ce1—F9i66.2 (2)F8—F5—F957.1 (2)
F7—Ce1—F878.0 (2)F8—F5—F10viii79.02 (19)
F7—Ce1—F972.8 (2)F8iii—F5—F9110.2 (3)
F7—Ce1—F9i58.87 (18)F8iii—F5—F10viii99.3 (2)
F8—Ce1—F973.1 (2)F9—F5—F10viii128.8 (3)
F8—Ce1—F9i124.7 (2)Ce1—F6—Ce2117.4 (3)
F9—Ce1—F9i118.33 (19)Ce1—F6—Ce2i93.16 (19)
F1—Ce2—F2153.7 (2)Ce1—F6—Cs2xiii114.4 (2)
F1—Ce2—F4ii77.3 (3)Ce1—F6—F1158.2 (3)
F1—Ce2—F674.7 (2)Ce1—F6—F2i119.1 (3)
F1—Ce2—F6iii122.3 (2)Ce1—F6—F349.59 (17)
F1—Ce2—F7iii77.1 (2)Ce1—F6—F545.54 (15)
F1—Ce2—F9131.9 (2)Ce1—F6—F754.58 (17)
F1—Ce2—F1082.0 (3)Ce1—F6—F7iii99.0 (3)
F1—Ce2—F10i91.9 (3)Ce1—F6—F961.76 (19)
F2—Ce2—F4ii76.4 (3)Ce1—F6—F9i66.33 (18)
F2—Ce2—F6124.2 (2)Ce1—F6—F10i114.4 (3)
F2—Ce2—F6iii69.0 (2)Ce2—F6—Ce2i98.51 (19)
F2—Ce2—F7iii123.1 (3)Ce2—F6—Cs2xiii99.35 (19)
F2—Ce2—F974.2 (2)Ce2—F6—F148.14 (18)
F2—Ce2—F1088.5 (2)Ce2—F6—F2i107.8 (2)
F2—Ce2—F10i81.0 (3)Ce2—F6—F3151.6 (3)
F4ii—Ce2—F6128.6 (2)Ce2—F6—F594.9 (2)
F4ii—Ce2—F6iii115.26 (18)Ce2—F6—F794.0 (2)
F4ii—Ce2—F7iii138.0 (2)Ce2—F6—F7iii51.62 (16)
F4ii—Ce2—F9149.3 (3)Ce2—F6—F955.94 (18)
F4ii—Ce2—F1071.9 (2)Ce2—F6—F9i142.1 (3)
F4ii—Ce2—F10i71.13 (18)Ce2—F6—F10i54.00 (16)
F6—Ce2—F6iii116.07 (18)Ce2i—F6—Cs2xiii134.6 (2)
F6—Ce2—F7iii74.4 (2)Ce2i—F6—F1104.6 (2)
F6—Ce2—F964.7 (2)Ce2i—F6—F2i39.77 (15)
F6—Ce2—F10142.5 (2)Ce2i—F6—F3106.7 (2)
F6—Ce2—F10i67.8 (2)Ce2i—F6—F5137.6 (2)
F6iii—Ce2—F7iii55.83 (18)Ce2i—F6—F746.15 (17)
F6iii—Ce2—F961.40 (19)Ce2i—F6—F7iii150.0 (2)
F6iii—Ce2—F1054.76 (18)Ce2i—F6—F9106.7 (2)
F6iii—Ce2—F10i145.75 (19)Ce2i—F6—F9i44.67 (15)
F7iii—Ce2—F968.3 (2)Ce2i—F6—F10i44.62 (15)
F7iii—Ce2—F1072.0 (2)Cs2xiii—F6—F160.97 (19)
F7iii—Ce2—F10i142.19 (19)Cs2xiii—F6—F2i94.9 (2)
F9—Ce2—F10115.9 (2)Cs2xiii—F6—F371.90 (19)
F9—Ce2—F10i95.4 (2)Cs2xiii—F6—F581.50 (19)
F10—Ce2—F10i142.9 (2)Cs2xiii—F6—F7166.0 (2)
F1iv—Cs1—F281.20 (19)Cs2xiii—F6—F7iii63.18 (17)
F1iv—Cs1—F2v82.0 (2)Cs2xiii—F6—F9117.9 (3)
F1iv—Cs1—F3vi136.22 (19)Cs2xiii—F6—F9i113.5 (2)
F1iv—Cs1—F3iii166.16 (19)Cs2xiii—F6—F10i131.1 (2)
F1iv—Cs1—F5vi88.34 (18)F1—F6—F2i82.7 (2)
F1iv—Cs1—F8103.73 (19)F1—F6—F3132.8 (3)
F1iv—Cs1—F8vii68.29 (17)F1—F6—F5114.1 (3)
F1iv—Cs1—F9111.1 (2)F1—F6—F7132.7 (3)
F2—Cs1—F2v68.27 (17)F1—F6—F7iii59.4 (2)
F2—Cs1—F3vi124.79 (18)F1—F6—F9100.3 (3)
F2—Cs1—F3iii88.55 (17)F1—F6—F9i135.5 (3)
F2—Cs1—F5vi156.99 (15)F1—F6—F10i72.4 (2)
F2—Cs1—F8101.01 (16)F2i—F6—F3100.0 (3)
F2—Cs1—F8vii136.56 (19)F2i—F6—F5157.3 (2)
F2—Cs1—F951.69 (16)F2i—F6—F785.0 (3)
F2v—Cs1—F3vi77.96 (18)F2i—F6—F7iii141.6 (3)
F2v—Cs1—F3iii102.87 (18)F2i—F6—F9144.2 (3)
F2v—Cs1—F5vi90.09 (16)F2i—F6—F9i53.0 (2)
F2v—Cs1—F8167.23 (17)F2i—F6—F10i63.8 (2)
F2v—Cs1—F8vii132.64 (17)F3—F6—F557.6 (2)
F2v—Cs1—F9113.41 (16)F3—F6—F794.2 (2)
F3vi—Cs1—F3iii57.57 (16)F3—F6—F7iii102.0 (3)
F3vi—Cs1—F5vi53.52 (16)F3—F6—F9103.4 (3)
F3vi—Cs1—F8104.26 (16)F3—F6—F9i62.1 (2)
F3vi—Cs1—F8vii98.44 (16)F3—F6—F10i150.3 (3)
F3vi—Cs1—F9112.58 (18)F5—F6—F793.1 (2)
F3iii—Cs1—F5vi104.46 (16)F5—F6—F7iii55.62 (19)
F3iii—Cs1—F869.01 (17)F5—F6—F951.3 (2)
F3iii—Cs1—F8vii114.83 (15)F5—F6—F9i107.8 (2)
F3iii—Cs1—F955.10 (18)F5—F6—F10i134.0 (3)
F5vi—Cs1—F8101.36 (15)F7—F6—F7iii123.9 (3)
F5vi—Cs1—F8vii54.44 (16)F7—F6—F966.6 (2)
F5vi—Cs1—F9150.79 (15)F7—F6—F9i55.8 (2)
F8—Cs1—F8vii59.89 (16)F7—F6—F10i61.2 (2)
F8—Cs1—F953.97 (16)F7iii—F6—F957.5 (2)
F8vii—Cs1—F9111.41 (16)F7iii—F6—F9i162.9 (3)
F1vi—Cs2—F1viii75.84 (19)F7iii—F6—F10i105.6 (2)
F1vi—Cs2—F2ix81.94 (19)F9—F6—F9i117.5 (3)
F1vi—Cs2—F3vi101.58 (17)F9—F6—F10i82.9 (3)
F1vi—Cs2—F3iii150.6 (2)F9i—F6—F10i89.1 (3)
F1vi—Cs2—F6vi53.32 (16)Ce1—F7—Ce2i120.3 (2)
F1vi—Cs2—F7vii53.71 (18)Ce1—F7—Cs2vii127.3 (2)
F1vi—Cs2—F8134.27 (19)Ce1—F7—F1i168.5 (3)
F1vi—Cs2—F10viii101.15 (17)Ce1—F7—F5i52.49 (17)
F1viii—Cs2—F2ix98.94 (19)Ce1—F7—F655.10 (18)
F1viii—Cs2—F3vi163.34 (19)Ce1—F7—F6i115.5 (2)
F1viii—Cs2—F3iii130.44 (18)Ce1—F7—F848.02 (18)
F1viii—Cs2—F6vi126.19 (17)Ce1—F7—F956.55 (18)
F1viii—Cs2—F7vii83.52 (17)Ce1—F7—F9i71.7 (2)
F1viii—Cs2—F870.68 (17)Ce1—F7—F10i112.1 (3)
F1viii—Cs2—F10viii55.35 (17)Ce2i—F7—Cs2vii100.6 (2)
F2ix—Cs2—F3vi96.96 (17)Ce2i—F7—F1i48.22 (19)
F2ix—Cs2—F3iii80.87 (18)Ce2i—F7—F5i106.3 (2)
F2ix—Cs2—F6vi90.96 (18)Ce2i—F7—F678.0 (2)
F2ix—Cs2—F7vii133.81 (17)Ce2i—F7—F6i53.95 (18)
F2ix—Cs2—F8132.82 (18)Ce2i—F7—F8166.6 (3)
F2ix—Cs2—F10viii54.94 (17)Ce2i—F7—F9123.4 (2)
F3vi—Cs2—F3iii57.36 (16)Ce2i—F7—F9i55.52 (19)
F3vi—Cs2—F6vi48.29 (14)Ce2i—F7—F10i52.62 (17)
F3vi—Cs2—F7vii81.88 (15)Cs2vii—F7—F1i60.53 (18)
F3vi—Cs2—F8101.76 (16)Cs2vii—F7—F5i86.83 (19)
F3vi—Cs2—F10viii140.30 (14)Cs2vii—F7—F6177.4 (2)
F3iii—Cs2—F6vi103.30 (16)Cs2vii—F7—F6i62.65 (17)
F3iii—Cs2—F7vii131.37 (16)Cs2vii—F7—F886.0 (2)
F3iii—Cs2—F873.91 (18)Cs2vii—F7—F9125.8 (2)
F3iii—Cs2—F10viii88.18 (15)Cs2vii—F7—F9i114.8 (2)
F6vi—Cs2—F7vii54.18 (16)Cs2vii—F7—F10i119.1 (2)
F6vi—Cs2—F8133.07 (17)F1i—F7—F5i125.1 (3)
F6vi—Cs2—F10viii142.19 (16)F1i—F7—F6117.2 (3)
F7vii—Cs2—F891.80 (17)F1i—F7—F6i58.5 (2)
F7vii—Cs2—F10viii137.52 (13)F1i—F7—F8143.1 (3)
F8—Cs2—F10viii84.64 (17)F1i—F7—F9128.2 (3)
Ce2—F1—Cs1xii125.5 (3)F1i—F7—F9i97.6 (3)
Ce2—F1—Cs2xiii110.4 (2)F1i—F7—F10i63.3 (2)
Ce2—F1—Cs2ii115.6 (3)F5i—F7—F695.6 (2)
Ce2—F1—F4ii54.7 (2)F5i—F7—F6i67.7 (2)
Ce2—F1—F657.14 (19)F5i—F7—F862.1 (2)
Ce2—F1—F7iii54.6 (2)F5i—F7—F9106.6 (3)
Ce2—F1—F8ii104.8 (3)F5i—F7—F9i55.3 (2)
Ce2—F1—F1050.81 (19)F5i—F7—F10i147.2 (3)
Ce2—F1—F10i45.99 (18)F6—F7—F6i117.6 (3)
Cs1xii—F1—Cs2xiii101.4 (2)F6—F7—F895.8 (3)
Cs1xii—F1—Cs2ii97.03 (18)F6—F7—F954.2 (2)
Cs1xii—F1—F4ii87.6 (2)F6—F7—F9i66.3 (2)
Cs1xii—F1—F6102.2 (3)F6—F7—F10i58.4 (2)
Cs1xii—F1—F7iii162.4 (3)F6i—F7—F8121.4 (2)
Cs1xii—F1—F8ii59.84 (16)F6i—F7—F9170.4 (3)
Cs1xii—F1—F10139.3 (3)F6i—F7—F9i54.7 (2)
Cs1xii—F1—F10i80.6 (2)F6i—F7—F10i104.9 (3)
Cs2xiii—F1—Cs2ii104.2 (2)F8—F7—F958.6 (2)
Cs2xiii—F1—F4ii164.8 (3)F8—F7—F9i111.2 (3)
Cs2xiii—F1—F665.71 (18)F8—F7—F10i133.7 (3)
Cs2xiii—F1—F7iii65.76 (18)F9—F7—F9i115.8 (3)
Cs2xiii—F1—F8ii144.5 (3)F9—F7—F10i75.5 (2)
Cs2xiii—F1—F10118.0 (3)F9i—F7—F10i93.7 (2)
Cs2xiii—F1—F10i115.8 (2)Ce1—F8—Cs1117.9 (2)
Cs2ii—F1—F4ii86.7 (2)Ce1—F8—Cs1vii111.9 (2)
Cs2ii—F1—F6159.7 (3)Ce1—F8—Cs2130.2 (3)
Cs2ii—F1—F7iii97.8 (3)Ce1—F8—F1viii106.0 (2)
Cs2ii—F1—F8ii54.42 (15)Ce1—F8—F454.7 (2)
Cs2ii—F1—F1065.24 (19)Ce1—F8—F545.86 (17)
Cs2ii—F1—F10i139.7 (2)Ce1—F8—F5i52.21 (18)
F4ii—F1—F6100.5 (3)Ce1—F8—F754.00 (19)
F4ii—F1—F7iii102.7 (3)Ce1—F8—F8vii147.1 (3)
F4ii—F1—F8ii50.8 (2)Ce1—F8—F959.58 (19)
F4ii—F1—F1056.7 (2)Cs1—F8—Cs1vii120.1 (2)
F4ii—F1—F10i53.06 (19)Cs1—F8—Cs280.98 (17)
F6—F1—F7iii62.2 (2)Cs1—F8—F1viii131.9 (2)
F6—F1—F8ii143.1 (3)Cs1—F8—F4154.6 (3)
F6—F1—F10102.9 (3)Cs1—F8—F5102.8 (2)
F6—F1—F10i51.7 (2)Cs1—F8—F5i140.3 (3)
F7iii—F1—F8ii137.5 (3)Cs1—F8—F783.54 (19)
F7iii—F1—F1056.8 (2)Cs1—F8—F8vii61.99 (16)
F7iii—F1—F10i94.0 (3)Cs1—F8—F960.92 (16)
F8ii—F1—F1081.2 (2)Cs1vii—F8—Cs291.41 (16)
F8ii—F1—F10i92.0 (2)Cs1vii—F8—F1viii51.88 (15)
F10—F1—F10i90.4 (3)Cs1vii—F8—F482.68 (19)
Ce2—F2—Cs1116.7 (2)Cs1vii—F8—F5136.2 (2)
Ce2—F2—Cs1v125.0 (3)Cs1vii—F8—F5i60.67 (16)
Ce2—F2—Cs2xiv114.7 (3)Cs1vii—F8—F7101.4 (2)
Ce2—F2—F2v155.1 (3)Cs1vii—F8—F8vii58.11 (15)
Ce2—F2—F4ii55.1 (2)Cs1vii—F8—F9163.2 (3)
Ce2—F2—F6iii71.2 (2)Cs2—F8—F1viii54.90 (16)
Ce2—F2—F955.89 (18)Cs2—F8—F487.8 (2)
Ce2—F2—F1047.28 (17)Cs2—F8—F586.7 (2)
Ce2—F2—F10i51.8 (2)Cs2—F8—F5i137.0 (2)
Cs1—F2—Cs1v111.7 (2)Cs2—F8—F7163.5 (3)
Cs1—F2—Cs2xiv95.48 (19)Cs2—F8—F8vii82.6 (2)
Cs1—F2—F2v53.51 (14)Cs2—F8—F9105.1 (3)
Cs1—F2—F4ii166.1 (3)F1viii—F8—F451.8 (2)
Cs1—F2—F6iii80.7 (2)F1viii—F8—F593.6 (2)
Cs1—F2—F960.88 (17)F1viii—F8—F5i82.3 (2)
Cs1—F2—F10130.2 (3)F1viii—F8—F7141.6 (3)
Cs1—F2—F10i109.3 (2)F1viii—F8—F8vii91.5 (2)
Cs1v—F2—Cs2xiv84.12 (17)F1viii—F8—F9141.9 (3)
Cs1v—F2—F2v58.21 (15)F4—F8—F553.57 (19)
Cs1v—F2—F4ii81.1 (2)F4—F8—F5i58.6 (2)
Cs1v—F2—F6iii93.0 (2)F4—F8—F7104.0 (3)
Cs1v—F2—F9151.4 (3)F4—F8—F8vii139.2 (3)
Cs1v—F2—F1081.74 (19)F4—F8—F9100.8 (3)
Cs1v—F2—F10i130.1 (3)F5—F8—F5i92.5 (2)
Cs2xiv—F2—F2v89.9 (2)F5—F8—F791.1 (2)
Cs2xiv—F2—F4ii80.1 (2)F5—F8—F8vii162.5 (3)
Cs2xiv—F2—F6iii174.1 (3)F5—F8—F950.06 (18)
Cs2xiv—F2—F9122.9 (3)F5i—F8—F759.4 (2)
Cs2xiv—F2—F10134.2 (3)F5i—F8—F8vii104.8 (3)
Cs2xiv—F2—F10i64.7 (2)F5i—F8—F9106.9 (3)
F2v—F2—F4ii139.0 (3)F7—F8—F8vii95.3 (3)
F2v—F2—F6iii84.2 (2)F7—F8—F961.7 (2)
F2v—F2—F9108.3 (3)F8vii—F8—F9120.0 (2)
F2v—F2—F10117.8 (3)Ce1—F9—Ce1iii103.6 (2)
F2v—F2—F10i149.3 (3)Ce1—F9—Ce2114.4 (3)
F4ii—F2—F6iii104.6 (3)Ce1—F9—Cs1110.27 (19)
F4ii—F2—F9110.4 (3)Ce1—F9—F2139.8 (3)
F4ii—F2—F1054.7 (2)Ce1—F9—F3iii108.9 (2)
F4ii—F2—F10i56.9 (2)Ce1—F9—F553.54 (18)
F6iii—F2—F959.1 (2)Ce1—F9—F655.29 (17)
F6iii—F2—F1050.09 (19)Ce1—F9—F6iii150.8 (3)
F6iii—F2—F10i120.8 (3)Ce1—F9—F750.68 (16)
F9—F2—F1084.2 (2)Ce1—F9—F7iii101.9 (2)
F9—F2—F10i75.3 (2)Ce1—F9—F847.29 (17)
F10—F2—F10i92.8 (2)Ce1—F9—F10i88.3 (2)
Ce1—F3—Cs1xiii110.3 (3)Ce1iii—F9—Ce2100.8 (2)
Ce1—F3—Cs1i124.6 (3)Ce1iii—F9—Cs1109.0 (2)
Ce1—F3—Cs2xiii109.0 (2)Ce1iii—F9—F2115.2 (3)
Ce1—F3—Cs2i127.9 (2)Ce1iii—F9—F3iii43.46 (17)
Ce1—F3—F3x161.8 (3)Ce1iii—F9—F550.11 (18)
Ce1—F3—F454.6 (2)Ce1iii—F9—F6108.1 (2)
Ce1—F3—F551.44 (19)Ce1iii—F9—F6iii47.52 (16)
Ce1—F3—F5i47.28 (16)Ce1iii—F9—F7154.3 (2)
Ce1—F3—F655.92 (18)Ce1iii—F9—F7iii49.44 (18)
Ce1—F3—F9i68.3 (2)Ce1iii—F9—F8105.5 (2)
Cs1xiii—F3—Cs1i122.4 (2)Ce1iii—F9—F10i141.3 (2)
Cs1xiii—F3—Cs2xiii72.60 (14)Ce2—F9—Cs1117.2 (2)
Cs1xiii—F3—Cs2i81.08 (15)Ce2—F9—F249.88 (18)
Cs1xiii—F3—F3x61.33 (18)Ce2—F9—F3iii129.8 (3)
Cs1xiii—F3—F477.1 (2)Ce2—F9—F5117.3 (3)
Cs1xiii—F3—F561.03 (19)Ce2—F9—F659.41 (18)
Cs1xiii—F3—F5i132.2 (2)Ce2—F9—F6iii73.93 (19)
Cs1xiii—F3—F6114.8 (3)Ce2—F9—F791.3 (2)
Cs1xiii—F3—F9i176.8 (2)Ce2—F9—F7iii56.16 (18)
Cs1i—F3—Cs2xiii74.44 (13)Ce2—F9—F8150.9 (3)
Cs1i—F3—Cs2i78.80 (16)Ce2—F9—F10i42.01 (14)
Cs1i—F3—F3x61.10 (18)Cs1—F9—F267.43 (18)
Cs1i—F3—F4149.1 (3)Cs1—F9—F3iii66.80 (18)
Cs1i—F3—F5151.4 (2)Cs1—F9—F5124.4 (3)
Cs1i—F3—F5i99.7 (2)Cs1—F9—F6142.6 (3)
Cs1i—F3—F685.8 (2)Cs1—F9—F6iii87.5 (2)
Cs1i—F3—F9i58.10 (17)Cs1—F9—F784.64 (19)
Cs2xiii—F3—Cs2i122.6 (2)Cs1—F9—F7iii145.4 (3)
Cs2xiii—F3—F3x53.91 (14)Cs1—F9—F865.10 (17)
Cs2xiii—F3—F4136.5 (3)Cs1—F9—F10i100.6 (2)
Cs2xiii—F3—F580.86 (19)F2—F9—F3iii106.4 (3)
Cs2xiii—F3—F5i147.0 (2)F2—F9—F5161.8 (3)
Cs2xiii—F3—F659.80 (17)F2—F9—F6100.7 (3)
Cs2xiii—F3—F9i104.9 (2)F2—F9—F6iii67.9 (2)
Cs2i—F3—F3x68.73 (17)F2—F9—F790.0 (3)
Cs2i—F3—F481.45 (19)F2—F9—F7iii95.7 (3)
Cs2i—F3—F5127.7 (2)F2—F9—F8124.9 (3)
Cs2i—F3—F5i86.59 (18)F2—F9—F10i54.8 (2)
Cs2i—F3—F6162.4 (3)F3iii—F9—F570.9 (2)
Cs2i—F3—F9i102.1 (2)F3iii—F9—F6147.4 (3)
F3x—F3—F4131.3 (3)F3iii—F9—F6iii55.9 (2)
F3x—F3—F5114.2 (3)F3iii—F9—F7137.0 (3)
F3x—F3—F5i150.6 (3)F3iii—F9—F7iii91.5 (3)
F3x—F3—F6111.0 (2)F3iii—F9—F878.9 (2)
F3x—F3—F9i119.1 (3)F3iii—F9—F10i161.2 (2)
F4—F3—F557.1 (2)F5—F9—F677.7 (2)
F4—F3—F5i55.4 (2)F5—F9—F6iii97.4 (3)
F4—F3—F6108.7 (3)F5—F9—F7104.2 (3)
F4—F3—F9i103.9 (3)F5—F9—F7iii66.7 (2)
F5—F3—F5i93.2 (2)F5—F9—F872.9 (2)
F5—F3—F669.3 (2)F5—F9—F10i127.3 (3)
F5—F3—F9i116.8 (3)F6—F9—F6iii122.1 (3)
F5i—F3—F687.7 (2)F6—F9—F759.2 (2)
F5i—F3—F9i49.21 (18)F6—F9—F7iii67.8 (2)
F6—F3—F9i62.0 (2)F6—F9—F8100.1 (3)
Ce1—F4—Ce2viii173.3 (4)F6—F9—F10i49.8 (2)
Ce1—F4—F1viii125.2 (4)F6iii—F9—F7157.8 (3)
Ce1—F4—F2viii138.2 (4)F6iii—F9—F7iii58.0 (2)
Ce1—F4—F348.98 (18)F6iii—F9—F8134.0 (3)
Ce1—F4—F553.23 (16)F6iii—F9—F10i111.7 (2)
Ce1—F4—F5i53.36 (16)F7—F9—F7iii126.9 (3)
Ce1—F4—F848.67 (18)F7—F9—F859.6 (2)
Ce1—F4—F10xi127.4 (3)F7—F9—F10i50.06 (18)
Ce1—F4—F10viii126.2 (2)F7iii—F9—F8139.4 (3)
Ce2viii—F4—F1viii48.04 (19)F7iii—F9—F10i92.3 (2)
Ce2viii—F4—F2viii48.52 (18)F8—F9—F10i109.4 (3)
Ce2viii—F4—F3137.6 (4)Ce2—F10—Ce2iii138.6 (3)
Ce2viii—F4—F5128.2 (3)Ce2—F10—Cs2ii106.3 (2)
Ce2viii—F4—F5i124.8 (2)Ce2—F10—F147.22 (17)
Ce2viii—F4—F8124.7 (4)Ce2—F10—F1iii118.6 (3)
Ce2viii—F4—F10xi53.56 (16)Ce2—F10—F244.21 (16)
Ce2viii—F4—F10viii52.57 (15)Ce2—F10—F2iii142.4 (3)
F1viii—F4—F2viii96.5 (2)Ce2—F10—F4xv157.3 (3)
F1viii—F4—F3168.0 (3)Ce2—F10—F4ii55.57 (16)
F1viii—F4—F5123.7 (3)Ce2—F10—F5ii105.4 (2)
F1viii—F4—F5i98.5 (3)Ce2—F10—F6iii80.6 (2)
F1viii—F4—F877.4 (3)Ce2—F10—F7iii55.37 (17)
F1viii—F4—F10xi70.8 (2)Ce2—F10—F9iii106.3 (2)
F1viii—F4—F10viii63.1 (3)Ce2iii—F10—Cs2ii106.1 (2)
F2viii—F4—F390.3 (3)Ce2iii—F10—F1147.4 (3)
F2viii—F4—F5104.6 (3)Ce2iii—F10—F1iii42.08 (17)
F2viii—F4—F5i128.9 (3)Ce2iii—F10—F2113.0 (3)
F2viii—F4—F8167.5 (3)Ce2iii—F10—F2iii47.22 (18)
F2viii—F4—F10xi63.5 (2)Ce2iii—F10—F4xv55.32 (16)
F2viii—F4—F10viii68.1 (2)Ce2iii—F10—F4ii152.2 (3)
F3—F4—F563.3 (2)Ce2iii—F10—F5ii104.9 (2)
F3—F4—F5i69.6 (2)Ce2iii—F10—F6iii58.2 (2)
F3—F4—F897.6 (2)Ce2iii—F10—F7iii96.2 (2)
F3—F4—F10xi103.9 (3)Ce2iii—F10—F9iii42.60 (14)
F3—F4—F10viii128.8 (3)Cs2ii—F10—F159.42 (18)
F5—F4—F5i106.6 (2)Cs2ii—F10—F1iii134.3 (2)
F5—F4—F870.8 (2)Cs2ii—F10—F2140.5 (3)
F5—F4—F10xi163.6 (4)Cs2ii—F10—F2iii60.40 (18)
F5—F4—F10viii77.6 (2)Cs2ii—F10—F4xv79.2 (2)
F5i—F4—F863.3 (2)Cs2ii—F10—F4ii85.3 (2)
F5i—F4—F10xi76.2 (2)Cs2ii—F10—F5ii80.24 (16)
F5i—F4—F10viii158.1 (4)Cs2ii—F10—F6iii146.5 (3)
F8—F4—F10xi123.2 (3)Cs2ii—F10—F7iii96.0 (2)
F8—F4—F10viii99.3 (3)Cs2ii—F10—F9iii100.21 (19)
F10xi—F4—F10viii106.1 (2)F1—F10—F1iii165.7 (3)
Ce1—F5—Ce1iii135.5 (3)F1—F10—F288.8 (2)
Ce1—F5—Cs1xiii111.0 (2)F1—F10—F2iii106.5 (3)
Ce1—F5—F347.69 (18)F1—F10—F4xv135.6 (3)
Ce1—F5—F3iii106.9 (2)F1—F10—F4ii60.2 (2)
Ce1—F5—F454.91 (17)F1—F10—F5ii101.2 (2)
Ce1—F5—F4iii146.6 (3)F1—F10—F6iii116.1 (2)
Ce1—F5—F647.24 (15)F1—F10—F7iii59.9 (2)
Ce1—F5—F7iii101.7 (2)F1—F10—F9iii107.6 (2)
Ce1—F5—F842.39 (17)F1iii—F10—F277.1 (2)
Ce1—F5—F8iii155.2 (3)F1iii—F10—F2iii86.6 (2)
Ce1—F5—F962.5 (2)F1iii—F10—F4xv56.2 (2)
Ce1—F5—F10viii103.2 (2)F1iii—F10—F4ii112.4 (3)
Ce1iii—F5—Cs1xiii110.3 (2)F1iii—F10—F5ii80.1 (2)
Ce1iii—F5—F3150.7 (3)F1iii—F10—F6iii55.9 (2)
Ce1iii—F5—F3iii42.70 (15)F1iii—F10—F7iii115.7 (3)
Ce1iii—F5—F4149.7 (3)F1iii—F10—F9iii76.1 (2)
Ce1iii—F5—F4iii53.13 (16)F2—F10—F2iii159.0 (3)
Ce1iii—F5—F6105.16 (19)F2—F10—F4xv118.6 (3)
Ce1iii—F5—F7iii52.32 (16)F2—F10—F4ii57.1 (2)
Ce1iii—F5—F8110.0 (2)F2—F10—F5ii84.2 (2)
Ce1iii—F5—F8iii46.43 (17)F2—F10—F6iii66.1 (2)
Ce1iii—F5—F973.1 (2)F2—F10—F7iii85.8 (2)
Ce1iii—F5—F10viii102.6 (2)F2—F10—F9iii112.3 (2)
Cs1xiii—F5—F365.45 (18)F2iii—F10—F4xv59.6 (2)
Cs1xiii—F5—F3iii139.2 (3)F2iii—F10—F4ii143.2 (3)
Cs1xiii—F5—F480.3 (2)F2iii—F10—F5ii106.2 (2)
Cs1xiii—F5—F4iii84.7 (2)F2iii—F10—F6iii93.8 (3)
Cs1xiii—F5—F6106.0 (2)F2iii—F10—F7iii89.5 (3)
Cs1xiii—F5—F7iii103.7 (2)F2iii—F10—F9iii49.86 (18)
Cs1xiii—F5—F8135.8 (2)F4xv—F10—F4ii104.0 (2)
Cs1xiii—F5—F8iii64.89 (17)F4xv—F10—F5ii53.02 (19)
Cs1xiii—F5—F9155.3 (3)F4xv—F10—F6iii107.2 (3)
Cs1xiii—F5—F10viii75.28 (16)F4xv—F10—F7iii147.1 (3)
F3—F5—F3iii154.5 (3)F4xv—F10—F9iii94.1 (2)
F3—F5—F459.6 (2)F4ii—F10—F5ii51.12 (17)
F3—F5—F4iii146.3 (3)F4ii—F10—F6iii122.9 (3)
F3—F5—F653.13 (19)F4ii—F10—F7iii108.0 (2)
F3—F5—F7iii99.3 (2)F4ii—F10—F9iii161.8 (2)
F3—F5—F887.2 (2)F5ii—F10—F6iii130.4 (3)
F3—F5—F8iii116.3 (3)F5ii—F10—F7iii158.8 (3)
F3—F5—F999.2 (3)F5ii—F10—F9iii146.7 (2)
F3—F5—F10viii104.0 (2)F6iii—F10—F7iii60.4 (2)
F3iii—F5—F4111.0 (3)F6iii—F10—F9iii47.38 (19)
F3iii—F5—F4iii55.0 (2)F7iii—F10—F9iii54.4 (2)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+2, y+1, z+1; (vi) x+1, y1/2, z+1/2; (vii) x+1, y+1, z; (viii) x1, y+3/2, z1/2; (ix) x1, y, z; (x) x+1, y+2, z; (xi) x1, y, z1; (xii) x+2, y+1/2, z+1/2; (xiii) x+1, y+1/2, z+1/2; (xiv) x+1, y, z; (xv) x+1, y, z+1.
Selected bond lengths (Å) top
Ce1—F32.133 (6)Cs1—F23.152 (6)
Ce1—F42.304 (5)Cs1—F2v2.982 (6)
Ce1—F52.256 (6)Cs1—F3vi3.222 (7)
Ce1—F5i2.311 (6)Cs1—F3iii3.229 (7)
Ce1—F62.320 (5)Cs1—F5vi3.099 (6)
Ce1—F72.306 (6)Cs1—F83.095 (6)
Ce1—F82.119 (7)Cs1—F8vii3.218 (6)
Ce1—F92.487 (6)Cs1—F92.982 (5)
Ce2—F12.123 (7)Cs2—F1vi2.998 (6)
Ce2—F22.128 (7)Cs2—F1viii2.998 (7)
Ce2—F4ii2.329 (5)Cs2—F2ix3.042 (8)
Ce2—F62.395 (6)Cs2—F3vi3.437 (6)
Ce2—F7iii2.322 (6)Cs2—F3iii2.981 (6)
Ce2—F92.304 (6)Cs2—F6vi3.125 (6)
Ce2—F102.242 (5)Cs2—F7vii3.140 (6)
Ce2—F10i2.279 (6)Cs2—F82.980 (7)
Cs1—F1iv2.928 (8)Cs2—F10viii3.162 (6)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+3/2, z+1/2; (iii) x, y+3/2, z+1/2; (iv) x+2, y1/2, z+1/2; (v) x+2, y+1, z+1; (vi) x+1, y1/2, z+1/2; (vii) x+1, y+1, z; (viii) x1, y+3/2, z1/2; (ix) x1, y, z.
 

Acknowledgements

We thank Karen Friese for discussions. We also acknowledge the National Science Foundation grant No. DMR-0907359 for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFriese, K. & Grzechnik, A. (2014). Z. Kristallogr. DOI: 10.1515/zkri-2013-1662.  Google Scholar
First citationFriese, K., Morgenroth, W., Posse, J. M. & Grzechnik, A. (2011). Dalton Trans. 40, 1902–1910.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGrzechnik, A., Fechtelkord, M., Morgenroth, W., Posse, J. M. & Friese, K. (2007). J. Phys. Condens. Matter, 19, 266219 (11pp).  Google Scholar
First citationGrzechnik, A., Morgenroth, W. & Friese, K. (2008). J. Solid State Chem. 181, 971–975.  Web of Science CrossRef CAS Google Scholar
First citationGrzechnik, A., Underwood, C. C., Kolis, J. W. & Friese, K. (2013a). J. Fluor. Chem. 150, 8–13.  Web of Science CrossRef CAS Google Scholar
First citationGrzechnik, A., Underwood, C. C., Kolis, J. W. & Friese, K. (2013b). J. Fluor. Chem. 156, 124–129.  Web of Science CrossRef CAS Google Scholar
First citationMao, H. K., Xu, J. & Bell, P. M. (1986). J. Geophys. Res. 91, 4673–4676.  CrossRef CAS Web of Science Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRouse, J. & Weller, M. T. (2009). Dalton Trans. 38, 10330–10337.  Web of Science CrossRef Google Scholar
First citationStoe & Cie (2002). X-AREA and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUnderwood, C. C. (2013). PhD Thesis, Hydrothermal Chemistry, Crystal Structures, and Spectroscopy of Novel Fluorides and Borates, Clemson University, USA.  Google Scholar
First citationUnderwood, C. C., Mann, M., McMillen, C. D., Musgraves, J. D. & Kolis, J. W. (2012). Solid State Sci. 14, 574–579.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages i12-i13
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds