organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-N-(2-nitro­phen­yl)benzamide

aDepartamento de Química - Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: rodimo26@yahoo.es

(Received 30 January 2014; accepted 13 February 2014; online 22 February 2014)

The title nitro­phenyl benzamide, C13H9BrN2O3, with two mol­ecules in the asymmetric unit, has dihedral angles of 16.78 (15) and 18.87 (14)° between the benzene rings. An intra­molecular N—H⋯O hydrogen bond is observed in each mol­ecule. In the crystal, the molecules are linked by weak C—H⋯O inter­actions; halogen–halogen inter­actions are also observed [Br⋯Br = 3.4976 (7) Å]. These inter­actions form R22(10), R22(15) and R66(32) edge-fused rings along [010].

Related literature

For properties of amide compounds, see: Bisson et al. (2000[Bisson, A. P., Carver, F. J., Eggleston, D. S., Haltiwanger, R. C., Hunter, C. A., Livingstone, D. L., McCabe, J. F., Rotger, C. & Rowan, A. E. (2000). J. Am. Chem. Soc. 122, 8856-8868.]). For the anti­bacterial and anti­fungal activity of amide compounds, see: Aytemir et al. (2003[Aytemir, M. D., Hider, R. C., Erol, D. D., Ozalp, M. & Ekizoglu, M. (2003). Turk. J. Chem. 27, 445-452.]). For similar compounds, see: Moreno-Fuquen et al. (2013[Moreno-Fuquen, R., Azcárate, A., Kennedy, A. R., Gilmour, D. & De Almeida Santos, R. H. (2013). Acta Cryst. E69, o1592.]); Sripet et al. (2012[Sripet, W., Chantrapromma, S., Ruanwas, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1234.]). For halogen–halogen inter­actions, see: Awwadi et al. (2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]); For hydrogen-bonding information, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9BrN2O3

  • Mr = 321.13

  • Triclinic, [P \overline 1]

  • a = 3.8338 (4) Å

  • b = 12.6784 (13) Å

  • c = 24.918 (2) Å

  • α = 81.875 (8)°

  • β = 88.386 (7)°

  • γ = 85.460 (8)°

  • V = 1195.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 123 K

  • 0.49 × 0.05 × 0.03 mm

Data collection
  • Oxford Diffraction Xcalibur E diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.380, Tmax = 0.914

  • 9979 measured reflections

  • 9979 independent reflections

  • 7814 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.135

  • S = 1.04

  • 9979 reflections

  • 344 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 0.95 2.65 3.378 (5) 134
C16—H16⋯O2ii 0.95 2.64 3.349 (5) 132
C19—H19⋯O1iii 0.95 2.52 3.262 (5) 135
C3—H3⋯O5iv 0.95 2.58 3.299 (5) 133
C23—H23⋯O6v 0.95 2.56 3.334 (5) 139
N1—H1N⋯O2 0.88 1.92 2.615 (5) 134
N3—H3N⋯O5 0.88 1.92 2.628 (5) 136
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) x, y-1, z; (iv) x, y+1, z; (v) -x-1, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Experimental top

Synthesis and crystallization top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was synthesized using equimolar qu­anti­ties of 4-bromo­benzoyl chloride (0.328 g., 1.495 mmol) and 2-nitro­aniline (0.206 g). The reagents were dissolved in 10 mL of aceto­nitrile and the solution was taken to reflux in constant stirring for 1 hour. Yellow crystals of good quality were obtained after leaving the solvent to evaporate. Yellow crystals of good quality were obtained with m.p of 423 (1)K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H-atoms were positioned at geometrically idealized positions with C—H distance of 0.95 Å and N—H distance of 0.88 Å and Uiso(H) = 1.2 times Ueq of the atoms to which they were bonded.

Results and discussion top

The present compound forms part of a systematic work on N-aromatic amides. The formation of oligomers with properties of molecular zippers have been obtained using molecular templates which include amido ligands (Bisson et al., 2000). Anti­bacterial and anti­fungal activities of different carb­oxy­amide derivatives have been reported (Aytemir et al., 2003). In the synthesis of amides in our group, the 2-nitro­aniline is taken as a template, in order to study the structural changes and the supra­molecular behavior by the reaction of different ligands with this precursor (Moreno-Fuquen et al., 2013). In the reactions involving the 2-nitro­aniline, as precursor, we aimed to synthesize the N-(2-nitro­phenyl)-4-bromo­benzamide (I). A close structure, the 4-bromo-N-(4-meth­oxy-2-nitro­phenyl)-benzamide, (4MNB), (Sripet et al., 2012), has been used as comparison with the structural parameters of the title compound. The title compound has two molecules (A and B) per asymmetric unit (see Fig. 1). The compound exhibits dihedral angles between the benzene rings, very similar: 16.78 (15)° and 18.87 (14)° for A and B molecules, respectively. These dihedral angles are somewhat different when compared with the related compound (4MNB) [2.90 (8)°]. In (I) the other bond lengths and bond angles agree closely with those values presented in its homologous amide (4MNB). The nitro groups form dihedral angles with the adjacent benzene ring of 6.7 (2)° and 9.9 (2)° for O2—N2—O3 and O5—N4—O6, respectively. The crystal packing shows no classical inter­molecular hydrogen bonds and the molecules pack by forming weak C—H···O inter­actions that are propagated along [010] (see Fig. 2). According to the graph-set assignment, the intra­molecular hydrogen-bond pattern generates a S(6) ring motif (Etter, 1990). The crystal packing is stabilized by weak C—H···O inter­molecular inter­actions. The C6 and C3 atoms of the phenyl ring at (x,y,z) act as hydrogen-bond donors to carbonyl O4 atom at (x-1, +y, +z) and to nitro O5 atom at (x,+y+1,+z) respectively. The C16 and C19 atoms of the phenyl ring at (x, y, z) act as hydrogen-bond donors to nitro O2 atom at (x+1, y, z) and to carbonyl O1 atom at (x,y-1,z), respectively. Additionally the C23 atom at (x,y,z) acts as a hydrogen-bond donor to nitro O6 atom at (-x-1, -y, -z+1), (see Table 1; Nardelli, 1995). All these inter­actions form R22(10), R22(15) and R66(32) edge-fused rings along the [010] direction (see Fig. 2). Recent theoretical calculations show that halogen···halogen inter­actions are controlled by electrostatic forces and they display directional character (Awwadi et al., 2006). In the title structure, halogen···halogen inter­actions [Br···Br = 3.4976 (7) Å] within the chains stabilized by C—H···O inter­actions are observed. This Br···Br distance is much shorter than the sum of the van der Waals radii (3.70 Å).

Related literature top

For properties of amide compounds, see: Bisson et al. (2000). For the antibacterial and antifungal activity of amide compounds, see: Aytemir et al. (2003). For similar compounds, see: Moreno-Fuquen et al. (2013); Sripet et al. (2012). For halogen–halogen interactions, see: Awwadi et al. (2006); For hydrogen-bonding information, see: Nardelli (1995). For hydrogen-bond motifs, see: Etter (1990).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of edge-fused R22(10), R22(15) and R22(32) rings running along [010].
4-Bromo-N-(2-nitrophenyl)-benzamide top
Crystal data top
C13H9BrN2O3Z = 4
Mr = 321.13F(000) = 640
Triclinic, P1Dx = 1.785 Mg m3
Hall symbol: -P 1Melting point: 423(1) K
a = 3.8338 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.6784 (13) ÅCell parameters from 4010 reflections
c = 24.918 (2) Åθ = 3.1–28.0°
α = 81.875 (8)°µ = 3.45 mm1
β = 88.386 (7)°T = 123 K
γ = 85.460 (8)°Needle, yellow
V = 1195.1 (2) Å30.49 × 0.05 × 0.03 mm
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
9979 independent reflections
Radiation source: fine-focus sealed tube7814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 27.0°, θmin = 3.2°
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
h = 44
Tmin = 0.380, Tmax = 0.914k = 1416
9979 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0479P)2 + 3.1562P]
where P = (Fo2 + 2Fc2)/3
9979 reflections(Δ/σ)max < 0.001
344 parametersΔρmax = 0.62 e Å3
1 restraintΔρmin = 0.77 e Å3
Crystal data top
C13H9BrN2O3γ = 85.460 (8)°
Mr = 321.13V = 1195.1 (2) Å3
Triclinic, P1Z = 4
a = 3.8338 (4) ÅMo Kα radiation
b = 12.6784 (13) ŵ = 3.45 mm1
c = 24.918 (2) ÅT = 123 K
α = 81.875 (8)°0.49 × 0.05 × 0.03 mm
β = 88.386 (7)°
Data collection top
Oxford Diffraction Xcalibur E
diffractometer
9979 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Oxford Diffraction, 2010; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
7814 reflections with I > 2σ(I)
Tmin = 0.380, Tmax = 0.914Rint = 0.000
9979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0491 restraint
wR(F2) = 0.135H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
9979 reflectionsΔρmin = 0.77 e Å3
344 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.49930 (10)0.56740 (4)0.433729 (18)0.02208 (13)
Br20.96920 (10)0.05996 (4)0.084392 (18)0.02296 (13)
O10.2537 (8)0.8253 (2)0.20551 (12)0.0270 (7)
O20.0265 (8)0.4919 (3)0.14483 (13)0.0334 (8)
O30.1224 (9)0.4476 (3)0.06706 (14)0.0384 (9)
O40.4069 (8)0.3367 (3)0.29067 (13)0.0313 (8)
O50.0468 (8)0.0126 (2)0.35060 (13)0.0312 (8)
O60.3517 (8)0.0460 (2)0.42413 (13)0.0285 (8)
N10.1677 (9)0.6691 (3)0.17304 (14)0.0202 (8)
H1N0.09340.60520.18300.024*
N20.1123 (9)0.5117 (3)0.09994 (16)0.0229 (9)
N30.2077 (8)0.1750 (3)0.32592 (14)0.0197 (8)
H3N0.17320.11200.31700.024*
N40.1642 (9)0.0120 (3)0.39439 (15)0.0209 (8)
C10.3041 (10)0.6174 (3)0.36484 (17)0.0168 (9)
C20.2476 (11)0.7244 (3)0.35235 (18)0.0214 (10)
H20.30980.77270.37750.026*
C30.0988 (10)0.7599 (4)0.30253 (18)0.0215 (10)
H30.05610.83310.29370.026*
C40.0101 (10)0.6895 (3)0.26489 (17)0.0158 (9)
C50.0678 (10)0.5813 (3)0.27900 (17)0.0180 (9)
H50.00410.53210.25430.022*
C60.2171 (10)0.5459 (3)0.32875 (17)0.0201 (10)
H60.25980.47280.33810.024*
C70.1510 (10)0.7357 (3)0.21253 (18)0.0194 (10)
C80.2861 (10)0.6897 (3)0.11986 (17)0.0173 (9)
C90.2622 (10)0.6145 (3)0.08342 (18)0.0186 (9)
C100.3722 (10)0.6340 (3)0.02913 (17)0.0194 (10)
H100.34860.58240.00560.023*
C110.5139 (10)0.7282 (3)0.01035 (18)0.0212 (10)
H110.59150.74240.02630.025*
C120.5432 (10)0.8028 (4)0.04532 (18)0.0228 (10)
H120.64110.86820.03210.027*
C130.4345 (10)0.7847 (3)0.09874 (18)0.0193 (10)
H130.46040.83750.12160.023*
C140.7748 (10)0.1158 (3)0.14657 (17)0.0177 (9)
C150.7605 (10)0.2246 (3)0.14817 (18)0.0200 (10)
H150.84320.27180.11830.024*
C160.6236 (10)0.2633 (3)0.19396 (18)0.0213 (10)
H160.61280.33780.19570.026*
C170.5013 (10)0.1945 (3)0.23763 (17)0.0184 (10)
C180.5160 (10)0.0848 (3)0.23493 (18)0.0193 (10)
H180.42910.03750.26440.023*
C190.6571 (10)0.0450 (4)0.18936 (18)0.0202 (10)
H190.67260.02960.18750.024*
C200.3678 (11)0.2434 (4)0.28646 (18)0.0194 (10)
C210.0933 (10)0.1912 (3)0.37755 (17)0.0180 (9)
C220.0783 (10)0.1120 (3)0.41268 (18)0.0187 (10)
C230.1763 (10)0.1250 (3)0.46513 (18)0.0204 (10)
H230.28800.07010.48750.024*
C240.1133 (11)0.2167 (4)0.48520 (18)0.0233 (10)
H240.17780.22540.52150.028*
C250.0461 (10)0.2968 (3)0.45179 (18)0.0198 (10)
H250.08820.36080.46540.024*
C260.1440 (10)0.2850 (3)0.39935 (18)0.0197 (10)
H260.24860.34180.37730.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0215 (2)0.0273 (3)0.0174 (3)0.00393 (18)0.00245 (17)0.00226 (19)
Br20.0207 (2)0.0277 (3)0.0208 (3)0.00279 (18)0.00324 (17)0.0047 (2)
O10.0428 (19)0.0170 (18)0.0223 (19)0.0113 (14)0.0046 (15)0.0028 (14)
O20.052 (2)0.031 (2)0.020 (2)0.0187 (16)0.0162 (16)0.0100 (15)
O30.067 (2)0.020 (2)0.032 (2)0.0136 (17)0.0130 (18)0.0141 (16)
O40.047 (2)0.021 (2)0.028 (2)0.0090 (15)0.0118 (15)0.0079 (15)
O50.049 (2)0.027 (2)0.020 (2)0.0157 (15)0.0125 (15)0.0091 (15)
O60.0359 (18)0.0234 (19)0.028 (2)0.0123 (14)0.0114 (15)0.0056 (15)
N10.029 (2)0.014 (2)0.018 (2)0.0049 (15)0.0032 (16)0.0033 (15)
N20.029 (2)0.016 (2)0.024 (2)0.0024 (16)0.0005 (17)0.0049 (17)
N30.0251 (19)0.014 (2)0.020 (2)0.0045 (15)0.0007 (15)0.0029 (16)
N40.0220 (19)0.021 (2)0.019 (2)0.0017 (15)0.0012 (16)0.0000 (17)
C10.014 (2)0.022 (3)0.014 (2)0.0017 (17)0.0008 (16)0.0008 (18)
C20.024 (2)0.023 (3)0.019 (3)0.0006 (19)0.0036 (18)0.010 (2)
C30.025 (2)0.017 (2)0.024 (3)0.0035 (18)0.0004 (19)0.0044 (19)
C40.018 (2)0.013 (2)0.016 (2)0.0002 (16)0.0023 (17)0.0016 (17)
C50.024 (2)0.016 (2)0.016 (2)0.0044 (17)0.0020 (18)0.0056 (18)
C60.022 (2)0.016 (2)0.022 (3)0.0012 (17)0.0036 (18)0.0041 (19)
C70.019 (2)0.019 (3)0.019 (3)0.0025 (18)0.0001 (17)0.0024 (19)
C80.013 (2)0.019 (2)0.019 (3)0.0009 (16)0.0022 (17)0.0006 (18)
C90.020 (2)0.015 (2)0.021 (3)0.0043 (17)0.0003 (18)0.0019 (18)
C100.022 (2)0.017 (2)0.019 (3)0.0009 (17)0.0042 (18)0.0031 (18)
C110.021 (2)0.029 (3)0.012 (2)0.0021 (18)0.0040 (17)0.0013 (19)
C120.021 (2)0.022 (3)0.025 (3)0.0058 (18)0.0020 (19)0.001 (2)
C130.023 (2)0.015 (2)0.019 (3)0.0040 (17)0.0042 (18)0.0027 (18)
C140.015 (2)0.021 (3)0.017 (2)0.0007 (17)0.0004 (17)0.0050 (18)
C150.019 (2)0.023 (3)0.017 (3)0.0059 (18)0.0026 (18)0.0010 (19)
C160.021 (2)0.012 (2)0.029 (3)0.0024 (17)0.0003 (19)0.0019 (19)
C170.016 (2)0.020 (3)0.020 (3)0.0047 (17)0.0015 (17)0.0037 (19)
C180.021 (2)0.018 (2)0.018 (3)0.0022 (17)0.0030 (18)0.0002 (19)
C190.018 (2)0.019 (3)0.024 (3)0.0033 (17)0.0022 (18)0.0030 (19)
C200.022 (2)0.020 (3)0.017 (3)0.0017 (18)0.0008 (18)0.0041 (19)
C210.015 (2)0.020 (3)0.018 (2)0.0002 (17)0.0015 (17)0.0011 (18)
C220.016 (2)0.016 (2)0.025 (3)0.0016 (16)0.0027 (18)0.0042 (19)
C230.022 (2)0.019 (3)0.020 (3)0.0008 (18)0.0001 (18)0.0035 (19)
C240.021 (2)0.030 (3)0.018 (3)0.0067 (19)0.0013 (18)0.006 (2)
C250.020 (2)0.017 (2)0.024 (3)0.0017 (17)0.0022 (18)0.0094 (19)
C260.024 (2)0.015 (2)0.020 (3)0.0010 (17)0.0020 (18)0.0014 (18)
Geometric parameters (Å, º) top
Br1—C11.898 (4)C9—C101.400 (6)
Br2—C141.902 (4)C10—C111.368 (6)
O1—C71.219 (5)C10—H100.9500
O2—N21.227 (5)C11—C121.386 (6)
O3—N21.230 (5)C11—H110.9500
O4—C201.223 (5)C12—C131.377 (6)
O5—N41.239 (5)C12—H120.9500
O6—N41.227 (4)C13—H130.9500
N1—C71.382 (5)C14—C151.383 (6)
N1—C81.385 (5)C14—C191.383 (6)
N1—H1N0.8800C15—C161.378 (6)
N2—C91.467 (5)C15—H150.9500
N3—C201.380 (5)C16—C171.390 (6)
N3—C211.385 (5)C16—H160.9500
N3—H3N0.8800C17—C181.399 (6)
N4—C221.470 (5)C17—C201.502 (6)
C1—C61.381 (6)C18—C191.386 (6)
C1—C21.382 (6)C18—H180.9500
C2—C31.383 (6)C19—H190.9500
C2—H20.9500C21—C261.404 (6)
C3—C41.401 (6)C21—C221.425 (6)
C3—H30.9500C22—C231.378 (6)
C4—C51.400 (6)C23—C241.370 (6)
C4—C71.491 (6)C23—H230.9500
C5—C61.382 (6)C24—C251.388 (6)
C5—H50.9500C24—H240.9500
C6—H60.9500C25—C261.374 (6)
C8—C131.402 (6)C25—H250.9500
C8—C91.415 (6)C26—H260.9500
C7—N1—C8128.5 (4)C13—C12—C11121.9 (4)
C7—N1—H1N115.8C13—C12—H12119.1
C8—N1—H1N115.8C11—C12—H12119.1
O2—N2—O3121.3 (4)C12—C13—C8120.9 (4)
O2—N2—C9120.5 (4)C12—C13—H13119.5
O3—N2—C9118.1 (4)C8—C13—H13119.5
C20—N3—C21129.4 (4)C15—C14—C19122.1 (4)
C20—N3—H3N115.3C15—C14—Br2119.6 (3)
C21—N3—H3N115.3C19—C14—Br2118.3 (3)
O6—N4—O5121.7 (4)C16—C15—C14118.6 (4)
O6—N4—C22117.7 (4)C16—C15—H15120.7
O5—N4—C22120.6 (4)C14—C15—H15120.7
C6—C1—C2121.5 (4)C15—C16—C17120.8 (4)
C6—C1—Br1119.4 (3)C15—C16—H16119.6
C2—C1—Br1119.0 (3)C17—C16—H16119.6
C1—C2—C3118.7 (4)C16—C17—C18119.5 (4)
C1—C2—H2120.6C16—C17—C20117.1 (4)
C3—C2—H2120.6C18—C17—C20123.4 (4)
C2—C3—C4121.0 (4)C19—C18—C17120.1 (4)
C2—C3—H3119.5C19—C18—H18120.0
C4—C3—H3119.5C17—C18—H18120.0
C5—C4—C3118.8 (4)C14—C19—C18118.8 (4)
C5—C4—C7124.4 (4)C14—C19—H19120.6
C3—C4—C7116.7 (4)C18—C19—H19120.6
C6—C5—C4120.1 (4)O4—C20—N3123.4 (4)
C6—C5—H5119.9O4—C20—C17121.5 (4)
C4—C5—H5119.9N3—C20—C17115.1 (4)
C1—C6—C5119.7 (4)N3—C21—C26122.7 (4)
C1—C6—H6120.1N3—C21—C22121.8 (4)
C5—C6—H6120.1C26—C21—C22115.4 (4)
O1—C7—N1123.6 (4)C23—C22—C21122.3 (4)
O1—C7—C4122.3 (4)C23—C22—N4116.4 (4)
N1—C7—C4114.2 (4)C21—C22—N4121.4 (4)
N1—C8—C13122.8 (4)C24—C23—C22120.3 (4)
N1—C8—C9121.2 (4)C24—C23—H23119.8
C13—C8—C9116.0 (4)C22—C23—H23119.8
C10—C9—C8122.5 (4)C23—C24—C25119.1 (4)
C10—C9—N2115.5 (4)C23—C24—H24120.4
C8—C9—N2122.0 (4)C25—C24—H24120.4
C11—C10—C9119.3 (4)C26—C25—C24121.2 (4)
C11—C10—H10120.4C26—C25—H25119.4
C9—C10—H10120.4C24—C25—H25119.4
C10—C11—C12119.4 (4)C25—C26—C21121.7 (4)
C10—C11—H11120.3C25—C26—H26119.2
C12—C11—H11120.3C21—C26—H26119.2
O2—O2—N2—O30.0 (3)N1—C8—C13—C12178.8 (3)
O2—O2—N2—C90.0 (4)C9—C8—C13—C121.0 (5)
O5—O5—N4—O60.0 (12)C19—C14—C15—C160.1 (6)
O5—O5—N4—C220.0 (13)Br2—C14—C15—C16179.0 (3)
C6—C1—C2—C30.3 (6)C14—C15—C16—C170.2 (6)
Br1—C1—C2—C3178.7 (3)C15—C16—C17—C180.3 (6)
C1—C2—C3—C40.8 (6)C15—C16—C17—C20178.0 (4)
C2—C3—C4—C51.4 (6)C16—C17—C18—C191.1 (6)
C2—C3—C4—C7179.6 (3)C20—C17—C18—C19177.1 (4)
C3—C4—C5—C61.5 (6)C15—C14—C19—C180.9 (6)
C7—C4—C5—C6179.6 (3)Br2—C14—C19—C18179.8 (3)
C2—C1—C6—C50.4 (6)C17—C18—C19—C141.4 (5)
Br1—C1—C6—C5178.6 (3)C21—N3—C20—O46.5 (6)
C4—C5—C6—C11.0 (6)C21—N3—C20—C17172.1 (3)
C8—N1—C7—O12.2 (6)C16—C17—C20—O49.4 (6)
C8—N1—C7—C4176.8 (3)C18—C17—C20—O4168.8 (4)
C5—C4—C7—O1166.6 (4)C16—C17—C20—N3172.0 (3)
C3—C4—C7—O111.5 (6)C18—C17—C20—N39.8 (5)
C5—C4—C7—N114.3 (5)C20—N3—C21—C263.4 (6)
C3—C4—C7—N1167.5 (3)C20—N3—C21—C22178.0 (4)
C7—N1—C8—C134.4 (6)N3—C21—C22—C23176.4 (3)
C7—N1—C8—C9175.5 (4)C26—C21—C22—C232.3 (5)
N1—C8—C9—C10178.5 (3)N3—C21—C22—N44.3 (5)
C13—C8—C9—C101.4 (6)C26—C21—C22—N4177.0 (3)
N1—C8—C9—N20.1 (6)O6—N4—C22—C238.7 (5)
C13—C8—C9—N2179.9 (3)O5—N4—C22—C23170.6 (3)
O2—N2—C9—C10172.0 (4)O5—N4—C22—C23170.6 (3)
O2—N2—C9—C10172.0 (4)O6—N4—C22—C21170.6 (3)
O3—N2—C9—C106.2 (5)O5—N4—C22—C2110.1 (5)
O2—N2—C9—C86.7 (6)O5—N4—C22—C2110.1 (5)
O2—N2—C9—C86.7 (6)C21—C22—C23—C240.7 (6)
O3—N2—C9—C8175.1 (4)N4—C22—C23—C24178.6 (3)
C8—C9—C10—C111.1 (6)C22—C23—C24—C250.8 (6)
N2—C9—C10—C11179.8 (3)C23—C24—C25—C260.6 (6)
C9—C10—C11—C120.5 (6)C24—C25—C26—C211.1 (6)
C10—C11—C12—C130.2 (6)N3—C21—C26—C25176.2 (3)
C11—C12—C13—C80.5 (6)C22—C21—C26—C252.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.952.653.378 (5)134
C16—H16···O2ii0.952.643.349 (5)132
C19—H19···O1iii0.952.523.262 (5)135
C3—H3···O5iv0.952.583.299 (5)133
C23—H23···O6v0.952.563.334 (5)139
N1—H1N···O20.881.922.615 (5)134
N3—H3N···O50.881.922.628 (5)136
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i0.952.653.378 (5)134.0
C16—H16···O2ii0.952.643.349 (5)132.0
C19—H19···O1iii0.952.523.262 (5)134.9
C3—H3···O5iv0.952.583.299 (5)133.0
C23—H23···O6v0.952.563.334 (5)139
N1—H1N···O20.881.922.615 (5)134.4
N3—H3N···O50.881.922.628 (5)135.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y1, z; (iv) x, y+1, z; (v) x1, y, z+1.
 

Acknowledgements

RMF thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAytemir, M. D., Hider, R. C., Erol, D. D., Ozalp, M. & Ekizoglu, M. (2003). Turk. J. Chem. 27, 445–452.  CAS Google Scholar
First citationBisson, A. P., Carver, F. J., Eggleston, D. S., Haltiwanger, R. C., Hunter, C. A., Livingstone, D. L., McCabe, J. F., Rotger, C. & Rowan, A. E. (2000). J. Am. Chem. Soc. 122, 8856–8868.  Web of Science CSD CrossRef CAS Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Azcárate, A., Kennedy, A. R., Gilmour, D. & De Almeida Santos, R. H. (2013). Acta Cryst. E69, o1592.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSripet, W., Chantrapromma, S., Ruanwas, P. & Fun, H.-K. (2012). Acta Cryst. E68, o1234.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds