organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o366-o367

Methyl (2Z)-2-{(2Z)-3-[(cyclo­pentyl­­idene)amino]-4-oxo-2-phenyl­imino-1,3-thia­zol­idin-5-yl­­idene}acetate

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and eKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

(Received 19 February 2014; accepted 20 February 2014; online 26 February 2014)

In the title compound, C17H17N3O3S, the thia­zole ring is nearly planar [maximum deviation = 0.015 (1) Å for the ring N atom] and the cyclo­pentane ring has a twist conformation. The mol­ecular conformation is stabilized by a hypervalent inter­action between the S atom and the ester group carbonyl O atom, with an S⋯O distance of 2.7931 (10) Å. In the crystal, C—H⋯O inter­actions generate chains of mol­ecules propagating along [110] and ππ stacking inter­actions [centroid–centroid distance = 3.4677 (7) Å] between the thia­zole rings organize these chains into (001) layers.

Related literature

For the synthesis and similar structures, see: Akkurt et al. (2009[Akkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009-o1010.]); Li et al. (2011[Li, Y.-M., Li, J.-Y., Wang, Q., Hao, A.-Y. & Sun, T. (2011). Acta Cryst. E67, o3303.]); Mague et al. (2013[Mague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1401-o1402.]); Mohamed et al. (2013a[Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013a). Acta Cryst. E69, o1553-o1554.],b[Mohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013b). Acta Cryst. E69, o1844-o1845.]); Pomés Hernández et al. (1996[Pomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 1731-1733.]); Sundar et al. (2003[Sundar, T. V., Parthasarathi, V., García-Granda, S., Jain, A. & Pardasani, R. T. (2003). Acta Cryst. E59, o1967-o1969.]). For the general biological significance of thia­zolidinone scaffold compounds, see: Pfützner et al. (2007[Pfützner, A., Weber, M. M. & Forst, T. (2007). Expert Opin. Pharmacother. 8, 1985-98.]); Schianca et al. (2012[Schianca, G. P. C., Sola, D., Rossi, L., Fra, G. P. & Bartoli, E. (2012). ISRN Endocrinology, Article ID 601380, 1-6.]); Jain et al. (2012[Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378-95.]); Lant (1986[Lant, A. (1986). Drugs, 31, 40-55.]); Rock et al. (1991[Rock, D. R., McLean, M. J., Macdonald, R. L., Catterall, W. A. & Taylor, C. P. (1991). Epilepsy Res. 8, 197-203.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17N3O3S

  • Mr = 343.41

  • Monoclinic, P 21 /c

  • a = 9.9684 (2) Å

  • b = 9.9657 (2) Å

  • c = 16.9818 (3) Å

  • β = 105.9290 (6)°

  • V = 1622.23 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.96 mm−1

  • T = 100 K

  • 0.17 × 0.16 × 0.09 mm

Data collection
  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.76, Tmax = 0.84

  • 17510 measured reflections

  • 2951 independent reflections

  • 2769 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.08

  • 2951 reflections

  • 218 parameters

  • 61 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.99 2.57 3.2889 (17) 130
C11—H11A⋯O1i 0.99 2.58 3.2547 (16) 125
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Diversity in the biological response profile of thiazolidinone and analogous scaffolds has attracted much attention to the exploration of this skeleton for a variety of therapeutic applications. Thus, the successful pharmaceutical applications of pioglitazone as a hypoglycemic agent (Pfützner et al., 2007; Schianca et al., 2012), thiazolidomycin activity against streptomyces species (Jain et al., 2012), etozoline as an antihypertensive (Lant, 1986), and ralitoline as a potent anti-convulsant (Rock et al., 1991) have established the wide spectrum potential of the thiazolidinone moiety. As part of our ongoing program of drug design and discovery, we report the synthesis and crystal structure of the title compound.

As shown in Fig. 1, the thiazole ring (S1/N1/C1–C3) of the title compound (I) is nearly planar with a maximum deviation of 0.015 (1) Å for N1. The cyclopentane ring (C7–C11) is twisted around the C9—C10 bond. The dihedral angle between the thiazole and phenyl rings is 53.84 (6)°. The C1–C3–C4–C5, C3–C4–C5–O2, C3–C4–C5–O3, C4–C5–O3–C6 and O2–C5–O3–C6 torsion angles are 178.90 (12), 6.7 (2), -174.42 (12), -178.11 (11) and 2.99 (19)°, respectively. All the bond lengths in (I) are comparable to those observed in similar structures (Akkurt et al., 2009; Li et al., 2011; Mague et al., 2013; Mohamed et al., 2013a,b; Pomés Hernández et al., 1996; Sundar et al., 2003).

Molecular conformation of (I) is stabilized by a short intramolecular (hypervalent) contact between the S1 atom and the ester group carbonyl O2 atom of 2.7931 (10) Å. In the crystal packing, the C—H···O interactions (Table 1, Fig. 2) with H···O distance of 2.57 - 2.58 Å generate chains of molecules propagating along the [110] direction. Furthermore, π-π stacking interactions [Cg1···Cg1 (1 - x, 1 - y, 1 - z) = 3.4677 (7) Å; where Cg1 is a centroid of the S1/N1/C1–C3 ring] between the thiazole rings organize these chains into the (001) layers.

Related literature top

For the synthesis and similar structures, see: Akkurt et al. (2009); Li et al. (2011); Mague et al. (2013); Mohamed et al. (2013a,b); Pomés Hernández et al. (1996); Sundar et al. (2003). For the general biological significance of thiazolidinone scaffold compounds, see: Pfützner et al. (2007); Schianca et al. (2012); Jain et al. (2012); Lant (1986); Rock et al. (1991).

Experimental top

A solution of 1 mmol (233 mg) 2-cyclopentylidene-N-phenylhydrazinecarbothioamide in 15 ml ethanol was added dropwise to a solution of 1 mmol (142 mg) dimethyl but-2-ynedioate in 10 ml ethanol. The reaction mixture was stirred and refluxed at 351 K. The reaction progress was monitored by TLC until completion. On cooling a solid yellow product was precipitated, filtered off under vacuum and recrystallized from ethanol to furnish block-shaped yellow crystals (m.p. 541–543 K).

Refinement top

All H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.95 Å (aromatic H), 0.98 Å (methyl H) and 0.99 Å (methylene H), with Uiso(H) = 1.5 Uiso(C) for methyl H atoms and Uiso(H) = 1.2 Uiso(C) for the others. The components of the displacement parameters in the direction of the bond between non-hydrogen atoms were restrained to be equal within an effective standard deviation of 0.01 (DELU instruction).

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis. Only hydrogen atoms involved in C-H···O interactions (dashed lines) are shown.
Methyl (2Z)-2-{(2Z)-3-[(cyclopentylidene)amino]-4-oxo-2-phenylimino-1,3-thiazolidin-5-ylidene}acetate top
Crystal data top
C17H17N3O3SF(000) = 720
Mr = 343.41Dx = 1.406 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9943 reflections
a = 9.9684 (2) Åθ = 4.4–68.3°
b = 9.9657 (2) ŵ = 1.96 mm1
c = 16.9818 (3) ÅT = 100 K
β = 105.9290 (6)°Block, yellow
V = 1622.23 (5) Å30.17 × 0.16 × 0.09 mm
Z = 4
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2951 independent reflections
Radiation source: INCOATEC IµS micro-focus source2769 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 68.2°, θmin = 4.6°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1112
Tmin = 0.76, Tmax = 0.84l = 2020
17510 measured reflections
Refinement top
Refinement on F261 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.038P)2 + 0.6771P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2951 reflectionsΔρmax = 0.30 e Å3
218 parametersΔρmin = 0.21 e Å3
Crystal data top
C17H17N3O3SV = 1622.23 (5) Å3
Mr = 343.41Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.9684 (2) ŵ = 1.96 mm1
b = 9.9657 (2) ÅT = 100 K
c = 16.9818 (3) Å0.17 × 0.16 × 0.09 mm
β = 105.9290 (6)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2951 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
2769 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.84Rint = 0.023
17510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02961 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.08Δρmax = 0.30 e Å3
2951 reflectionsΔρmin = 0.21 e Å3
218 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49073 (3)0.41667 (3)0.35998 (2)0.0187 (1)
O10.66547 (10)0.71951 (9)0.49052 (6)0.0244 (3)
O20.72709 (10)0.25889 (9)0.37200 (6)0.0258 (3)
O30.93931 (9)0.30447 (9)0.45742 (6)0.0238 (3)
N10.44614 (11)0.65036 (10)0.41830 (6)0.0190 (3)
N20.36915 (11)0.75447 (11)0.44449 (7)0.0214 (3)
N30.24379 (11)0.55652 (11)0.33548 (7)0.0204 (3)
C10.58785 (13)0.63691 (13)0.44889 (8)0.0193 (3)
C20.37387 (13)0.54855 (12)0.36801 (8)0.0184 (3)
C30.63174 (13)0.50466 (13)0.42232 (7)0.0186 (3)
C40.76427 (13)0.46352 (13)0.44650 (8)0.0202 (4)
C50.80432 (13)0.33216 (13)0.42077 (8)0.0207 (4)
C60.98665 (15)0.17461 (14)0.43752 (9)0.0276 (4)
C70.36894 (13)0.86381 (13)0.40585 (8)0.0202 (4)
C80.43371 (17)0.89572 (14)0.33790 (9)0.0298 (4)
C90.41616 (18)1.04928 (15)0.32757 (11)0.0364 (5)
C100.28241 (16)1.07780 (14)0.35110 (9)0.0300 (4)
C110.29241 (14)0.98521 (13)0.42434 (8)0.0241 (4)
C120.17495 (13)0.45669 (13)0.27910 (8)0.0209 (3)
C130.05398 (14)0.39885 (14)0.28986 (9)0.0249 (4)
C140.01893 (15)0.30450 (15)0.23424 (9)0.0283 (4)
C150.02709 (15)0.26783 (14)0.16740 (9)0.0291 (4)
C160.14570 (15)0.32725 (16)0.15559 (9)0.0300 (4)
C170.21879 (14)0.42310 (14)0.21052 (8)0.0252 (4)
H40.833200.519700.480600.0240*
H6A0.942600.103800.461800.0410*
H6B1.088200.168800.459400.0410*
H6C0.961200.163500.377900.0410*
H8A0.384600.848500.286800.0360*
H8B0.533500.870200.353100.0360*
H9A0.496301.097100.364300.0440*
H9B0.407301.076400.270300.0440*
H10A0.199401.056200.305500.0360*
H10B0.277601.173100.366600.0360*
H11A0.345201.028500.476000.0290*
H11B0.198500.960500.428700.0290*
H130.021300.424000.335300.0300*
H140.101000.264800.242100.0340*
H150.022400.202300.129900.0350*
H160.177400.302500.109700.0360*
H170.298400.465500.201200.0300*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0170 (2)0.0147 (2)0.0233 (2)0.0017 (1)0.0036 (1)0.0023 (1)
O10.0223 (5)0.0191 (5)0.0305 (5)0.0023 (4)0.0053 (4)0.0060 (4)
O20.0216 (5)0.0233 (5)0.0304 (5)0.0028 (4)0.0037 (4)0.0056 (4)
O30.0179 (5)0.0226 (5)0.0294 (5)0.0051 (4)0.0040 (4)0.0028 (4)
N10.0194 (5)0.0141 (5)0.0238 (5)0.0017 (4)0.0063 (4)0.0014 (4)
N20.0222 (6)0.0160 (5)0.0274 (6)0.0036 (4)0.0092 (4)0.0026 (4)
N30.0181 (5)0.0181 (5)0.0245 (6)0.0016 (4)0.0051 (4)0.0009 (4)
C10.0200 (6)0.0176 (6)0.0211 (6)0.0003 (5)0.0072 (5)0.0012 (5)
C20.0210 (6)0.0146 (6)0.0206 (6)0.0016 (5)0.0076 (5)0.0014 (5)
C30.0210 (6)0.0161 (6)0.0191 (6)0.0013 (5)0.0063 (5)0.0000 (5)
C40.0188 (6)0.0193 (7)0.0218 (6)0.0009 (5)0.0043 (5)0.0006 (5)
C50.0178 (6)0.0219 (7)0.0223 (6)0.0016 (5)0.0054 (5)0.0016 (5)
C60.0247 (7)0.0240 (7)0.0329 (7)0.0085 (6)0.0060 (6)0.0022 (6)
C70.0170 (6)0.0182 (7)0.0239 (6)0.0004 (5)0.0032 (5)0.0041 (5)
C80.0371 (8)0.0209 (7)0.0371 (8)0.0065 (6)0.0197 (7)0.0048 (6)
C90.0487 (10)0.0221 (8)0.0451 (9)0.0068 (7)0.0243 (8)0.0076 (7)
C100.0359 (8)0.0185 (7)0.0347 (8)0.0058 (6)0.0084 (6)0.0005 (6)
C110.0253 (7)0.0172 (7)0.0302 (7)0.0034 (5)0.0084 (5)0.0032 (5)
C120.0180 (6)0.0174 (6)0.0247 (6)0.0037 (5)0.0015 (5)0.0024 (5)
C130.0220 (7)0.0241 (7)0.0281 (7)0.0000 (5)0.0062 (6)0.0009 (6)
C140.0235 (7)0.0249 (7)0.0336 (8)0.0032 (6)0.0029 (6)0.0028 (6)
C150.0286 (7)0.0230 (7)0.0295 (7)0.0002 (6)0.0025 (6)0.0017 (6)
C160.0280 (7)0.0351 (8)0.0242 (7)0.0060 (6)0.0024 (6)0.0035 (6)
C170.0200 (7)0.0279 (7)0.0262 (7)0.0016 (5)0.0038 (5)0.0005 (6)
Geometric parameters (Å, º) top
S1—C21.7861 (13)C13—C141.388 (2)
S1—C31.7461 (13)C14—C151.385 (2)
O1—C11.2148 (16)C15—C161.385 (2)
O2—C51.2091 (16)C16—C171.393 (2)
O3—C51.3471 (16)C4—H40.9500
O3—C61.4489 (17)C6—H6A0.9800
N1—N21.4320 (15)C6—H6B0.9800
N1—C11.3713 (17)C6—H6C0.9800
N1—C21.3929 (16)C8—H8A0.9900
N2—C71.2717 (17)C8—H8B0.9900
N3—C21.2648 (18)C9—H9A0.9900
N3—C121.4201 (17)C9—H9B0.9900
C1—C31.4968 (18)C10—H10A0.9900
C3—C41.3358 (19)C10—H10B0.9900
C4—C51.4696 (18)C11—H11A0.9900
C7—C81.503 (2)C11—H11B0.9900
C7—C111.5086 (19)C13—H130.9500
C8—C91.545 (2)C14—H140.9500
C9—C101.520 (2)C15—H150.9500
C10—C111.530 (2)C16—H160.9500
C12—C131.393 (2)C17—H170.9500
C12—C171.3924 (19)
C2—S1—C391.01 (6)O3—C6—H6A109.00
C5—O3—C6115.04 (10)O3—C6—H6B109.00
N2—N1—C1122.50 (10)O3—C6—H6C109.00
N2—N1—C2119.15 (11)H6A—C6—H6B109.00
C1—N1—C2117.82 (11)H6A—C6—H6C110.00
N1—N2—C7112.69 (11)H6B—C6—H6C109.00
C2—N3—C12119.89 (11)C7—C8—H8A111.00
O1—C1—N1125.42 (12)C7—C8—H8B111.00
O1—C1—C3125.44 (12)C9—C8—H8A111.00
N1—C1—C3109.14 (11)C9—C8—H8B111.00
S1—C2—N1110.15 (9)H8A—C8—H8B109.00
S1—C2—N3128.67 (10)C8—C9—H9A111.00
N1—C2—N3121.19 (12)C8—C9—H9B111.00
S1—C3—C1111.82 (9)C10—C9—H9A111.00
S1—C3—C4126.58 (10)C10—C9—H9B111.00
C1—C3—C4121.59 (12)H9A—C9—H9B109.00
C3—C4—C5120.56 (12)C9—C10—H10A111.00
O2—C5—O3124.08 (12)C9—C10—H10B111.00
O2—C5—C4124.60 (12)C11—C10—H10A111.00
O3—C5—C4111.32 (11)C11—C10—H10B111.00
N2—C7—C8129.59 (12)H10A—C10—H10B109.00
N2—C7—C11120.60 (12)C7—C11—H11A111.00
C8—C7—C11109.79 (11)C7—C11—H11B111.00
C7—C8—C9103.75 (12)C10—C11—H11A111.00
C8—C9—C10103.62 (13)C10—C11—H11B111.00
C9—C10—C11103.58 (12)H11A—C11—H11B109.00
C7—C11—C10103.79 (11)C12—C13—H13120.00
N3—C12—C13118.49 (12)C14—C13—H13120.00
N3—C12—C17121.86 (12)C13—C14—H14120.00
C13—C12—C17119.47 (12)C15—C14—H14120.00
C12—C13—C14120.09 (13)C14—C15—H15120.00
C13—C14—C15120.46 (14)C16—C15—H15120.00
C14—C15—C16119.58 (14)C15—C16—H16120.00
C15—C16—C17120.43 (14)C17—C16—H16120.00
C12—C17—C16119.90 (13)C12—C17—H17120.00
C3—C4—H4120.00C16—C17—H17120.00
C5—C4—H4120.00
C3—S1—C2—N11.19 (9)O1—C1—C3—C43.2 (2)
C3—S1—C2—N3179.13 (13)N1—C1—C3—S11.81 (13)
C2—S1—C3—C10.35 (10)N1—C1—C3—C4177.24 (12)
C2—S1—C3—C4178.65 (12)S1—C3—C4—C50.00 (19)
C6—O3—C5—O22.99 (19)C1—C3—C4—C5178.90 (12)
C6—O3—C5—C4178.11 (11)C3—C4—C5—O26.7 (2)
C1—N1—N2—C784.66 (15)C3—C4—C5—O3174.42 (12)
C2—N1—N2—C7103.83 (13)N2—C7—C8—C9171.37 (15)
N2—N1—C1—O111.7 (2)C11—C7—C8—C910.31 (16)
N2—N1—C1—C3168.71 (10)N2—C7—C11—C10164.51 (13)
C2—N1—C1—O1176.71 (13)C8—C7—C11—C1014.00 (15)
C2—N1—C1—C32.90 (15)C7—C8—C9—C1030.79 (16)
N2—N1—C2—S1169.23 (8)C8—C9—C10—C1139.85 (15)
N2—N1—C2—N310.49 (18)C9—C10—C11—C733.10 (14)
C1—N1—C2—S12.68 (14)N3—C12—C13—C14177.64 (13)
C1—N1—C2—N3177.61 (12)C17—C12—C13—C142.6 (2)
N1—N2—C7—C81.4 (2)N3—C12—C17—C16178.17 (13)
N1—N2—C7—C11179.58 (11)C13—C12—C17—C163.2 (2)
C12—N3—C2—S15.62 (19)C12—C13—C14—C150.5 (2)
C12—N3—C2—N1174.72 (11)C13—C14—C15—C160.9 (2)
C2—N3—C12—C13130.97 (14)C14—C15—C16—C170.2 (2)
C2—N3—C12—C1754.06 (18)C15—C16—C17—C121.9 (2)
O1—C1—C3—S1177.80 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.992.573.2889 (17)130
C11—H11A···O1i0.992.583.2547 (16)125
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.992.573.2889 (17)130
C11—H11A···O1i0.992.583.2547 (16)125
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

Manchester Metropolitan University, Tulane University and Erciyes University are gratefully acknowledged for supporting this study as is the support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer.

References

First citationAkkurt, M., Karaca, S., Cihan, G., Çapan, G. & Büyükgüngör, O. (2009). Acta Cryst. E65, o1009–o1010.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–95.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLant, A. (1986). Drugs, 31, 40–55.  CrossRef CAS PubMed Google Scholar
First citationLi, Y.-M., Li, J.-Y., Wang, Q., Hao, A.-Y. & Sun, T. (2011). Acta Cryst. E67, o3303.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMague, J. T., Akkurt, M., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1401–o1402.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Mague, J. T., Hassan, A. A. & Albayati, M. R. (2013b). Acta Cryst. E69, o1844–o1845.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013a). Acta Cryst. E69, o1553–o1554.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationPfützner, A., Weber, M. M. & Forst, T. (2007). Expert Opin. Pharmacother. 8, 1985–98.  Web of Science PubMed Google Scholar
First citationPomés Hernández, R., Duque Rodríguez, J., Novoa de Armas, H. & Toscano, R. A. (1996). Acta Cryst. C52, 1731–1733.  CSD CrossRef IUCr Journals Google Scholar
First citationRock, D. R., McLean, M. J., Macdonald, R. L., Catterall, W. A. & Taylor, C. P. (1991). Epilepsy Res. 8, 197–203.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSchianca, G. P. C., Sola, D., Rossi, L., Fra, G. P. & Bartoli, E. (2012). ISRN Endocrinology, Article ID 601380, 1–6.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundar, T. V., Parthasarathi, V., García-Granda, S., Jain, A. & Pardasani, R. T. (2003). Acta Cryst. E59, o1967–o1969.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o366-o367
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds