metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m114-m115

trans-Di­aqua­bis­­(pyridazine-3-carboxyl­ato-κ2N2,O)copper(II)

aDepartamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad de País Vasco (UPV/EHU), PO Box 644, E-48080 Bilbao, Spain
*Correspondence e-mail: juanma.zorrilla@ehu.es

(Received 18 February 2014; accepted 25 February 2014; online 28 February 2014)

In the title compound, [Cu(C5H3N2O2)2(H2O)2], the CuII ion, located on an inversion center, exhibits an octa­hedral coordination geometry. The equatorial plane is defined by two trans-related N,O-bidentate pyridazine-3-carboxyl­ate ligands and the axial positions are occupied by two water mol­ecules. In the crystal, mol­ecules are connected by O—H⋯O hydrogen bonds between the water mol­ecules and the noncoordinating carboxyl­ate O atoms, forming layers parallel to the bc plane. The layers are stacked along the a axis by further O—H⋯O hydrogen bonds between the water mol­ecules and the coordinating carboxyl­ate O atoms. Weak C—H⋯O hydrogen bonds are also observed between the pyridazine rings and the water mol­ecules and between the pyridazine rings and the non-coordinating carboxyl­ate O atoms.

Related literature

For the isotypic zinc complex, see: Gryz et al. (2004[Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481-m1483.]). For a related cobalt(II) complex which contains two non-coordin­ating water mol­ecules, see: Artetxe et al. (2013[Artetxe, B., Reinoso, S., San Felices, L., Martín-Caballero, J. & Gutiérrez-Zorrilla, J. M. (2013). Acta Cryst. E69, m420-m421.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H3N2O2)2(H2O)2]

  • Mr = 345.76

  • Monoclinic, P 21 /c

  • a = 5.4014 (1) Å

  • b = 11.5633 (3) Å

  • c = 9.6283 (2) Å

  • β = 101.837 (3)°

  • V = 588.58 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.89 mm−1

  • T = 100 K

  • 0.19 × 0.09 × 0.06 mm

Data collection
  • Agilent SuperNova diffractometer

  • Absorption correction: numerical (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.772, Tmax = 0.898

  • 2532 measured reflections

  • 1216 independent reflections

  • 1077 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.065

  • S = 1.06

  • 1216 reflections

  • 105 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.9792 (15)
Cu1—N2 1.9822 (18)
Cu1—O1W 2.4207 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1i 0.87 (2) 1.99 (2) 2.865 (2) 175 (2)
O1W—H1WB⋯O2ii 0.87 (1) 2.03 (2) 2.878 (2) 165 (3)
C4—H4⋯O1Wiii 0.93 2.52 3.403 (3) 158
C6—H6⋯O2iv 0.93 2.39 3.141 (3) 138
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Inc., Santa Clara, CA, USA.]); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The metal ion, the pyridazine ring and carboxylate atoms are coplanar. As expected, the Cu—O and Cu—N distances (Table 1) are similar to the Zn(II) and Co(II) analogue compounds (Gryz et al., 2004; Artetxe et al., 2013). Table 2 summarizes the geometrical parameters of the O—H···O and C—H···O hydrogen bonding interactions.

Related literature top

For an isotypic zinc(II) complex, see: Gryz et al. (2004). For a related cobalt(II) complex which contains two non-coordinating water molecules, see: Artetxe et al. (2013).

Experimental top

To a solution of CuCl2.2H2O (34 mg, 0.2 mmol) in water (10 mL) 3-pyridazine carboxylic acid (48 mg, 0.4 mmol) was dropwise added and the resulting solution was stirred for 1 h at 80 °C. Blue prismatic crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the resulting solution after six days.

Refinement top

H atoms of the water molecules were located in a Fourier difference map and refined isotropically with O—H bond lengths restrained to 0.88 (1) Å. All H atoms of the pyridazine ring were positioned geometrically and refined using a riding model with standard SHELXL parameters.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing atom labelling and 50% probability displacement ellipsoids. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Left: View of the crystal packing along the b axis. Right: Projection of a layer along the a axis (O—H···O hydrogen bonds represented as dotted red lines and weak C—H···O interactions as dotted green lines).
trans-Diaquabis(pyridazine-3-carboxylato-κ2N2,O)copper(II) top
Crystal data top
[Cu(C5H3N2O2)2(H2O)2]F(000) = 350
Mr = 345.76Dx = 1.951 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1663 reflections
a = 5.4014 (1) Åθ = 2.8–28.4°
b = 11.5633 (3) ŵ = 1.89 mm1
c = 9.6283 (2) ÅT = 100 K
β = 101.837 (3)°Prism, blue
V = 588.58 (2) Å30.19 × 0.09 × 0.06 mm
Z = 2
Data collection top
Agilent SuperNova
diffractometer
1216 independent reflections
Radiation source: Nova (Mo) X-ray micro-source1077 reflections with I > 2σ(I)
Multilayer optics monochromatorRint = 0.022
Detector resolution: 16.2439 pixels mm-1θmax = 26.5°, θmin = 2.8°
ω scansh = 66
Absorption correction: numerical
(CrysAlis PRO; Agilent, 2012)
k = 1314
Tmin = 0.772, Tmax = 0.898l = 129
2532 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0235P)2 + 0.6643P]
where P = (Fo2 + 2Fc2)/3
1216 reflections(Δ/σ)max < 0.001
105 parametersΔρmax = 0.44 e Å3
3 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C5H3N2O2)2(H2O)2]V = 588.58 (2) Å3
Mr = 345.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.4014 (1) ŵ = 1.89 mm1
b = 11.5633 (3) ÅT = 100 K
c = 9.6283 (2) Å0.19 × 0.09 × 0.06 mm
β = 101.837 (3)°
Data collection top
Agilent SuperNova
diffractometer
1216 independent reflections
Absorption correction: numerical
(CrysAlis PRO; Agilent, 2012)
1077 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.898Rint = 0.022
2532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0273 restraints
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.44 e Å3
1216 reflectionsΔρmin = 0.45 e Å3
105 parameters
Special details top

Experimental. IR (cm-1): 3554(s), 3315(s), 3233(s), 1628(s), 1571(m), 1578(s), 1365(w), 1231(w), 1152(w), 1091(w), 1072(w), 1039(w), 978(m), 851(m), 785(m), 722(m), 669(w), 536(w), 440(w).

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.4961 (4)0.27046 (19)0.4096 (2)0.0083 (4)
C40.4421 (4)0.15278 (19)0.3920 (2)0.0107 (4)
H40.51530.10710.33180.013*
C50.2754 (4)0.10781 (19)0.4680 (2)0.0106 (5)
H50.23130.030.46060.013*
C60.1737 (4)0.18136 (19)0.5564 (2)0.0111 (5)
H60.06320.15030.60890.013*
C70.6781 (4)0.33471 (19)0.3358 (2)0.0097 (4)
Cu10.50.50.50.00820 (13)
N10.2267 (3)0.29375 (16)0.5696 (2)0.0101 (4)
N20.3890 (3)0.33637 (16)0.49462 (18)0.0084 (4)
O10.7022 (3)0.44303 (13)0.36438 (16)0.0100 (3)
O20.7873 (3)0.28108 (13)0.25561 (17)0.0135 (4)
O1W0.1555 (3)0.53934 (14)0.30161 (17)0.0121 (3)
H1WA0.014 (3)0.514 (2)0.321 (3)0.024 (8)*
H1WB0.149 (6)0.6143 (9)0.292 (4)0.051 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0088 (10)0.0095 (11)0.0063 (10)0.0001 (8)0.0005 (8)0.0003 (8)
C40.0128 (11)0.0094 (11)0.0094 (10)0.0035 (9)0.0014 (9)0.0004 (8)
C50.0107 (10)0.0082 (11)0.0117 (11)0.0007 (8)0.0007 (9)0.0019 (8)
C60.0106 (10)0.0125 (11)0.0106 (11)0.0011 (9)0.0028 (9)0.0014 (9)
C70.0091 (10)0.0120 (11)0.0080 (10)0.0007 (8)0.0018 (9)0.0001 (9)
Cu10.0111 (2)0.0052 (2)0.0101 (2)0.00061 (14)0.00618 (15)0.00061 (14)
N10.0107 (9)0.0099 (9)0.0104 (9)0.0019 (7)0.0039 (8)0.0002 (7)
N20.0091 (9)0.0092 (9)0.0072 (9)0.0007 (7)0.0021 (7)0.0013 (7)
O10.0112 (7)0.0071 (8)0.0128 (8)0.0012 (6)0.0052 (6)0.0004 (6)
O20.0158 (8)0.0120 (8)0.0152 (8)0.0009 (6)0.0094 (7)0.0033 (6)
O1W0.0101 (8)0.0105 (8)0.0161 (8)0.0006 (6)0.0037 (7)0.0023 (7)
Geometric parameters (Å, º) top
C3—N21.334 (3)C7—C31.520 (3)
C3—C41.395 (3)Cu1—O1i1.9792 (15)
C3—C71.520 (3)Cu1—O11.9792 (15)
C4—C51.374 (3)Cu1—N21.9822 (18)
C4—H40.93Cu1—N2i1.9822 (18)
C5—C61.393 (3)Cu1—O1W2.4207 (16)
C5—H50.93Cu1—O1Wi2.4207 (16)
C6—N11.331 (3)N1—N21.339 (3)
C6—H60.93O1W—H1WA0.872 (10)
C7—O21.231 (3)O1W—H1WB0.872 (10)
C7—O11.283 (3)
N2—C3—C4121.7 (2)O1i—Cu1—N2i82.52 (7)
N2—C3—C7114.28 (19)N2—Cu1—N2i180
C4—C3—C7124.0 (2)O1—Cu1—O1W88.90 (6)
C5—C4—C3116.6 (2)O1i—Cu1—O1W91.10 (6)
C5—C4—H4121.7N2—Cu1—O1W88.82 (6)
C3—C4—H4121.7N2i—Cu1—O1W91.18 (6)
C4—C5—C6118.6 (2)O1—Cu1—O1Wi91.10 (6)
C4—C5—H5120.7O1i—Cu1—O1Wi88.90 (6)
C6—C5—H5120.7N2—Cu1—O1Wi91.18 (6)
N1—C6—C5123.4 (2)N2i—Cu1—O1Wi88.82 (6)
N1—C6—H6118.3O1W—Cu1—O1Wi180
C5—C6—H6118.3C6—N1—N2117.37 (19)
O2—C7—O1125.8 (2)C3—N2—N1122.33 (19)
O2—C7—C3119.1 (2)C3—N2—Cu1113.24 (15)
O1—C7—C3115.06 (19)N1—N2—Cu1124.43 (14)
O1i—Cu1—O1180C7—O1—Cu1114.89 (13)
O1—Cu1—N282.52 (7)Cu1—O1W—H1WA109.8 (19)
O1i—Cu1—N297.48 (7)Cu1—O1W—H1WB106 (2)
O1—Cu1—N2i97.48 (7)H1WA—O1W—H1WB109 (2)
N2—C3—C4—C50.8 (3)O1W—Cu1—N2—C389.46 (15)
C7—C3—C4—C5179.22 (19)O1Wi—Cu1—N2—C390.54 (15)
C3—C4—C5—C60.2 (3)O1—Cu1—N2—N1179.32 (17)
C4—C5—C6—N11.1 (3)O1i—Cu1—N2—N10.68 (17)
C5—C6—N1—N20.9 (3)O1W—Cu1—N2—N191.63 (16)
C4—C3—N2—N11.0 (3)O1Wi—Cu1—N2—N188.37 (16)
C7—C3—N2—N1179.04 (18)O2—C7—O1—Cu1179.34 (18)
C4—C3—N2—Cu1179.92 (16)C3—C7—O1—Cu10.8 (2)
C7—C3—N2—Cu10.1 (2)N2—Cu1—O1i—C7i179.30 (15)
C6—N1—N2—C30.1 (3)N2—Cu1—O1—C70.70 (15)
C6—N1—N2—Cu1178.91 (15)O1W—Cu1—O1—C789.65 (15)
O1—Cu1—N2—C30.41 (14)O1Wi—Cu1—O1—C790.35 (15)
O1i—Cu1—N2—C3179.59 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1ii0.87 (2)1.99 (2)2.865 (2)175 (2)
O1W—H1WB···O2iii0.87 (1)2.03 (2)2.878 (2)165 (3)
C4—H4···O1Wiv0.932.523.403 (3)158
C6—H6···O2v0.932.393.141 (3)138
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x1, y+1/2, z+1/2.
Selected bond lengths (Å) top
Cu1—O11.9792 (15)Cu1—O1W2.4207 (16)
Cu1—N21.9822 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O1i0.874 (19)1.993 (19)2.865 (2)175 (2)
O1W—H1WB···O2ii0.872 (11)2.028 (15)2.878 (2)165 (3)
C4—H4···O1Wiii0.9302.523.403 (3)158
C6—H6···O2iv0.9302.393.141 (3)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported financially by Eusko Jaurlaritza/Gobierno Vasco (grant IT477–10). AP also thanks EJ/GV for predoctoral fellowships.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationArtetxe, B., Reinoso, S., San Felices, L., Martín-Caballero, J. & Gutiérrez-Zorrilla, J. M. (2013). Acta Cryst. E69, m420–m421.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m114-m115
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds