organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o351-o352

2,2-Di­methyl-N-(4-methyl­pyridin-2-yl)propanamide

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cDepartment of Chemistry, College of Science for Women, University of Babylon, Babylon, Iraq
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

(Received 6 February 2014; accepted 18 February 2014; online 26 February 2014)

In the title compound, C11H16N2O, the dihedral angle between the mean plane of the 4-methypyridine group and the plane of the amide link is 16.7 (1)°, and there is a short intra­molecular C—H⋯O contact. Hydrogen bonding (N—H⋯O) between amide groups forms chains parallel to the b axis. Pairs of methyl­pyridine groups from mol­ecules in adjacent chains are parallel but there is minimal ππ inter­action.

Related literature

For biological applications of related compounds, see: de Candia et al. (2013[Candia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696-8711.]); Thorat et al. (2013[Thorat, S. A., Kang, D. W., Ryu, H. C., Kim, M. S., Kim, H. S., Ann, J., Ha, T., Kim, S.-E., Son, K., Choi, S., Blumberg, P. M., Frank, R., Bahrenberg, G., Schiene, K., Christoph, T. & Lee, J. (2013). Eur. J. Med. Chem. 64, 589-602.]); Abdel-Megeed et al. (2012[Abdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252-2258.]). For convenient routes for modifying pyridine derivatives, see: Smith et al. (2013[Smith, K., El-Hiti, G. A. & Alshammari, M. B. (2013). Synthesis, 45, 3426-3434.]); Smith et al. (2012[Smith, K., El-Hiti, G. A., Fekri, A. & Alshammari, M. B. (2012). Heterocycles, 86, 391-410.]); El-Hiti (2003[El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837-841.]); Joule & Mills (2000[Joule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. England: Blackwell Science Publishers.]); Smith et al. (1994[Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197-216.], 1995[Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79-95.], 1999[Smith, K., El-Hiti, G. A., Pritchard, G. J. & Hamilton, A. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2299-2303.]); Turner (1983[Turner, J. A. (1983). J. Org. Chem. 48, 3401-3408.]). For the X-ray structures of related compounds, see: Mazik & Sicking (2004[Mazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117-3121.]); Mazik et al. (2004[Mazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448-7462.]); Hodorowicz et al. (2007[Hodorowicz, M., Stadnicka, K., Trzewik, B. & Zaleska, B. (2007). Acta Cryst. E63, o4115.]); Koch et al. (2008[Koch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.]); Liang et al. (2008[Liang, D., Gao, L.-X., Gao, Y., Xu, J. & Wang, W. (2008). Acta Cryst. E64, o201.]); Seidler et al. (2011[Seidler, T., Gryl, M., Trzewik, B. & Stadnicka, K. (2011). Acta Cryst. E67, o1507.]).

[Scheme 1]

Experimental

Crystal data
  • C11H16N2O

  • Mr = 192.26

  • Orthorhombic, P b c a

  • a = 10.7954 (3) Å

  • b = 10.1809 (2) Å

  • c = 20.8390 (5) Å

  • V = 2290.35 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 296 K

  • 0.27 × 0.19 × 0.14 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]) Tmin = 0.930, Tmax = 0.957

  • 5219 measured reflections

  • 2253 independent reflections

  • 1808 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.154

  • S = 1.08

  • 2253 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.22 3.0644 (17) 168
C5—H5⋯O1 0.93 2.28 2.842 (2) 118
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (CambridgeSoft, 2001[CambridgeSoft (2001). CHEMDRAW Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Structural commentary top

Synthetic and naturally occurring pyridine derivatives have a broad range of biological activities (Thorat et al., 2013) including anti­cancer and anti­microbial (Abdel-Megeed et al., 2012) and anti­coagulant (de Candia et al., 2013) properties. Hence, pyridine derivatives are important compounds (Joule and Mills, 2000) and some synthetic approaches involve li­thia­tion of 2-acyl­amino­pyridines (Smith et al., 1995; Turner, 1983). The structures of a number of 2-acyl­amino­pyridines have been determined (Mazik & Sicking, 2004; Mazik et al., 2004; Hodorowicz et al., 2007; Koch et al., 2008; Liang et al., 2008; Seidler et al., 2011). During research focused on new synthetic routes towards novel substituted pyridine derivatives (Smith et al., 1994; Smith et al., 1995; Smith et al., 1999; El-Hiti, 2003; Smith et al., 2012; Smith et al., 2013) we have synthesized the title compound in high yield. In the 4-methyl-2-pivaloyl­amino­pyridine molecule (Figure 1), the least squares plane through the 4-methypyridine group makes a dihedral angle of 16.7 (1)° with the plane through the amide link and a short intra­molecular C5—H5···O1 contact is observed (Table 1). In the crystal structure (Figure 2) N—H···O hydrogen bonding between amide groups forms chains parallel to the b axis. Pairs of methyl-pyridine groups in molecules from adjacent chains are parallel but there is minimal π-π inter­action. The ring nitro­gen is not involved in strong hydrogen bonding.

Synthesis and crystallization top

To a cooled solution (0 °C) of 2-amino-4-methyl­pyridine (5.41 g, 50.0 mmol) and tri­ethyl­amine (10 ml) in di­chloro­methane (DCM, 80 ml) pivaloyl chloride (6.63 g, 55.0 mmol) was slowly added in a drop-wise manner over 10 min. The reaction mixture was stirred at 0 °C for an extra 1 h. The mixture was poured into H2O (100 ml) and the organic layer was separated, washed with H2O (2 × 50 ml), dried (MgSO4) and evaporated under reduced pressure to remove the solvent. The solid obtained was purified by crystallization from Et2O–hexane (2:1) to give 4-methyl-2-pivaloyl­amino­pyridine (9.04 g, 47.0 mmol; 94%) as colourless crystals, m.p. 103–104 °C [lit. 96–98 °C (hexane); Turner (1983)]. 1H NMR (500 MHz, CDCl3, δ, p.p.m.) 8.11–8.10 (br, 2 H, H-3 and H-6), 8.05 (br, exch., 1 H, NH), 6.85 (m, 1 H, H-5), 2.34 (s, 3 H, CH3), 1.31 [s, 9 H, C(CH3)3]. 13CNMR (125 MHz, CDCl3, δ, p.p.m.) 177.2 (s, C=O), 151.5 (s, C-4), 149.9 (s, C-2), 147.2 (d, C-6), 120.9 (d, C-5), 114.5 (d, C-3), 39.8 [s, C(CH3)3], 27.5 [q, C(CH3)3]), 21.4 (q, CH3). EI+–MS (m/z, %): 192 (M+, 43), 177 (5), 149 (11), 135 (25), 108 (100), 92 (15), 81 (15), 57 (25). HRMS (EI+): Calculated for C11H16N2O [M] 192.1263; found, 192.1260.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 times Ueq for the atom they are bonded to except for the methyl groups where 1.5 times Ueq was used with free rotation about the C—C bond.

Related literature top

For biological applications of related compounds, see: de Candia et al. (2013); Thorat et al. (2013); Abdel-Megeed et al. (2012). For convenient routes for modifying pyridine derivatives, see: Smith et al. (2013); Smith et al. (2012); El-Hiti (2003); Joule & Mills (2000); Smith et al. (1994, 1995, 1999); Turner (1983). For the X-ray structures of related compounds, see: Mazik & Sicking (2004); Mazik et al. (2004); Hodorowicz et al. (2007); Koch et al. (2008); Liang et al. (2008); Seidler et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (CambridgeSoft, 2001).

Figures top
[Figure 1] Fig. 1. A molecule showing atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal structure packing showing NH..O hydrogen bonds as green dotted lines with the rest of the hydrogen atoms omitted for clarity.
2,2-Dimethyl-N-(4-methylpyridin-2-yl)propanamide top
Crystal data top
C11H16N2ODx = 1.115 Mg m3
Mr = 192.26Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 1808 reflections
a = 10.7954 (3) Åθ = 4.2–74.0°
b = 10.1809 (2) ŵ = 0.58 mm1
c = 20.8390 (5) ÅT = 296 K
V = 2290.35 (10) Å3Block, colourless
Z = 80.27 × 0.19 × 0.14 mm
F(000) = 832
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1808 reflections with I > 2σ(I)
Radiation source: sealed X-ray tubeRint = 0.017
ω scansθmax = 74.0°, θmin = 4.2°
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
h = 713
Tmin = 0.930, Tmax = 0.957k = 128
5219 measured reflectionsl = 2520
2253 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0734P)2 + 0.4299P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.154(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.16 e Å3
2253 reflectionsΔρmin = 0.14 e Å3
132 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0037 (5)
Crystal data top
C11H16N2OV = 2290.35 (10) Å3
Mr = 192.26Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 10.7954 (3) ŵ = 0.58 mm1
b = 10.1809 (2) ÅT = 296 K
c = 20.8390 (5) Å0.27 × 0.19 × 0.14 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
2253 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
1808 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.957Rint = 0.017
5219 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.08Δρmax = 0.16 e Å3
2253 reflectionsΔρmin = 0.14 e Å3
132 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro (Agilent, 2014): Numerical absorption correction based on Gaussian integration over a multifaceted crystal model. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90730 (14)0.81479 (14)0.59591 (7)0.0489 (4)
C21.0228 (2)0.6963 (2)0.52600 (11)0.0816 (6)
H21.03450.62010.50210.098*
C31.1102 (2)0.7922 (2)0.52141 (11)0.0792 (6)
H31.17860.78110.49480.095*
C41.09637 (16)0.90571 (19)0.55651 (9)0.0632 (5)
C50.99149 (14)0.91744 (16)0.59451 (8)0.0552 (4)
H50.97790.99290.61860.066*
C61.1912 (2)1.0138 (3)0.55444 (12)0.0922 (7)
H6A1.24091.01070.59260.138*
H6B1.14991.09720.55200.138*
H6C1.24311.00250.51750.138*
C70.74226 (15)0.91931 (14)0.66136 (8)0.0515 (4)
C80.62472 (16)0.88824 (16)0.69967 (9)0.0606 (5)
C90.6598 (2)0.8017 (2)0.75696 (11)0.0851 (7)
H9A0.72350.84420.78150.128*
H9B0.68950.71850.74180.128*
H9C0.58820.78830.78350.128*
C100.5677 (2)1.0158 (2)0.72312 (13)0.0997 (9)
H10A0.62511.06000.75090.149*
H10B0.49290.99700.74630.149*
H10C0.54901.07090.68700.149*
C110.53133 (19)0.8146 (3)0.65810 (13)0.0933 (8)
H11A0.45780.79760.68260.140*
H11B0.56680.73290.64420.140*
H11C0.51070.86700.62130.140*
N10.92138 (14)0.70437 (14)0.56251 (8)0.0654 (4)
N20.79937 (12)0.81473 (12)0.63366 (7)0.0554 (4)
H2A0.76540.73940.64000.067*
O10.78283 (12)1.03049 (11)0.65664 (7)0.0699 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0475 (8)0.0469 (8)0.0523 (8)0.0056 (6)0.0003 (6)0.0012 (6)
C20.0788 (13)0.0735 (12)0.0924 (14)0.0131 (10)0.0224 (11)0.0152 (11)
C30.0626 (11)0.0889 (14)0.0861 (13)0.0180 (10)0.0226 (10)0.0029 (11)
C40.0481 (9)0.0720 (11)0.0694 (10)0.0027 (8)0.0020 (7)0.0171 (9)
C50.0518 (9)0.0531 (9)0.0607 (9)0.0001 (7)0.0028 (7)0.0032 (7)
C60.0587 (11)0.1052 (17)0.1126 (18)0.0166 (11)0.0083 (11)0.0244 (15)
C70.0533 (8)0.0390 (7)0.0622 (8)0.0022 (6)0.0061 (7)0.0009 (6)
C80.0592 (10)0.0478 (8)0.0749 (10)0.0016 (7)0.0190 (8)0.0021 (7)
C90.0969 (16)0.0788 (13)0.0798 (13)0.0035 (12)0.0275 (12)0.0104 (10)
C100.1026 (17)0.0605 (12)0.136 (2)0.0135 (11)0.0640 (16)0.0025 (12)
C110.0548 (11)0.1121 (19)0.1129 (18)0.0056 (11)0.0126 (12)0.0159 (15)
N10.0646 (9)0.0546 (8)0.0770 (9)0.0056 (7)0.0107 (7)0.0124 (7)
N20.0551 (8)0.0401 (7)0.0711 (8)0.0038 (5)0.0153 (6)0.0040 (6)
O10.0673 (8)0.0389 (6)0.1034 (10)0.0010 (5)0.0213 (7)0.0030 (6)
Geometric parameters (Å, º) top
C1—N11.3310 (19)C7—N21.3590 (19)
C1—C51.385 (2)C7—C81.532 (2)
C1—N21.406 (2)C8—C101.518 (2)
C2—N11.336 (3)C8—C111.526 (3)
C2—C31.361 (3)C8—C91.531 (3)
C2—H20.9300C9—H9A0.9600
C3—C41.376 (3)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.387 (2)C10—H10A0.9600
C4—C61.503 (3)C10—H10B0.9600
C5—H50.9300C10—H10C0.9600
C6—H6A0.9600C11—H11A0.9600
C6—H6B0.9600C11—H11B0.9600
C6—H6C0.9600C11—H11C0.9600
C7—O11.2177 (18)N2—H2A0.8600
N1—C1—C5123.45 (15)C11—C8—C9108.85 (18)
N1—C1—N2112.76 (13)C10—C8—C7109.09 (14)
C5—C1—N2123.78 (14)C11—C8—C7110.66 (15)
N1—C2—C3124.35 (19)C9—C8—C7108.69 (15)
N1—C2—H2117.8C8—C9—H9A109.5
C3—C2—H2117.8C8—C9—H9B109.5
C2—C3—C4119.33 (18)H9A—C9—H9B109.5
C2—C3—H3120.3C8—C9—H9C109.5
C4—C3—H3120.3H9A—C9—H9C109.5
C3—C4—C5117.68 (17)H9B—C9—H9C109.5
C3—C4—C6121.72 (19)C8—C10—H10A109.5
C5—C4—C6120.60 (19)C8—C10—H10B109.5
C1—C5—C4118.87 (16)H10A—C10—H10B109.5
C1—C5—H5120.6C8—C10—H10C109.5
C4—C5—H5120.6H10A—C10—H10C109.5
C4—C6—H6A109.5H10B—C10—H10C109.5
C4—C6—H6B109.5C8—C11—H11A109.5
H6A—C6—H6B109.5C8—C11—H11B109.5
C4—C6—H6C109.5H11A—C11—H11B109.5
H6A—C6—H6C109.5C8—C11—H11C109.5
H6B—C6—H6C109.5H11A—C11—H11C109.5
O1—C7—N2122.06 (15)H11B—C11—H11C109.5
O1—C7—C8122.14 (14)C1—N1—C2116.32 (16)
N2—C7—C8115.80 (13)C7—N2—C1127.83 (13)
C10—C8—C11109.58 (19)C7—N2—H2A116.1
C10—C8—C9109.95 (18)C1—N2—H2A116.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.223.0644 (17)168
C5—H5···O10.932.282.842 (2)118
Symmetry code: (i) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.223.0644 (17)168
C5—H5···O10.932.282.842 (2)118
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the research group project RGP-VPP-239.

References

First citationAbdel-Megeed, M. F., Badr, B. E., Azaam, M. M. & El-Hiti, G. A. (2012). Bioorg. Med. Chem. 20, 2252–2258.  Web of Science CAS PubMed Google Scholar
First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.  Google Scholar
First citationCambridgeSoft (2001). CHEMDRAW Ultra. CambridgeSoft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationCandia, M. de, Fiorella, F., Lopopolo, G., Carotti, A., Romano, M. R., Lograno, M. D., Martel, S., Carrupt, P.-A., Belviso, B. D., Caliandro, R. & Altomare, C. (2013). J. Med. Chem. 56, 8696–8711.  Web of Science PubMed Google Scholar
First citationEl-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHodorowicz, M., Stadnicka, K., Trzewik, B. & Zaleska, B. (2007). Acta Cryst. E63, o4115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJoule, J. A. & Mills, K. (2000). Heterocyclic Chemistry, 4th ed. England: Blackwell Science Publishers.  Google Scholar
First citationKoch, P., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o2216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiang, D., Gao, L.-X., Gao, Y., Xu, J. & Wang, W. (2008). Acta Cryst. E64, o201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMazik, M., Radunz, W. & Boese, R. (2004). J. Org. Chem. 69, 7448–7462.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMazik, M. & Sicking, W. (2004). Tetrahedron Lett. 45, 3117–3121.  Web of Science CSD CrossRef CAS Google Scholar
First citationSeidler, T., Gryl, M., Trzewik, B. & Stadnicka, K. (2011). Acta Cryst. E67, o1507.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95.  CAS Google Scholar
First citationSmith, K., El-Hiti, G. A. & Alshammari, M. B. (2013). Synthesis, 45, 3426–3434.  Web of Science CrossRef CAS Google Scholar
First citationSmith, K., El-Hiti, G. A., Fekri, A. & Alshammari, M. B. (2012). Heterocycles, 86, 391–410.  Web of Science CrossRef CAS Google Scholar
First citationSmith, K., El-Hiti, G. A., Pritchard, G. J. & Hamilton, A. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2299–2303.  Web of Science CrossRef Google Scholar
First citationSmith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.  CAS Google Scholar
First citationThorat, S. A., Kang, D. W., Ryu, H. C., Kim, M. S., Kim, H. S., Ann, J., Ha, T., Kim, S.-E., Son, K., Choi, S., Blumberg, P. M., Frank, R., Bahrenberg, G., Schiene, K., Christoph, T. & Lee, J. (2013). Eur. J. Med. Chem. 64, 589–602.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, J. A. (1983). J. Org. Chem. 48, 3401–3408.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages o351-o352
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds