metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

mer-Hydridotris(tri­methyl­phosphane-κP)(D-valinato-κ2N,O)iridium hexa­fluorido­phosphate di­chloro­methane 0.675-solvate

aDepartment of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
*Correspondence e-mail: jmerola@vt.edu

(Received 21 January 2014; accepted 29 January 2014; online 5 February 2014)

The title compound, [Ir(C5H10NO2)H(C3H9P)3]PF6·0.675CH2Cl2, an iridium compound with a meridional arrangement of PMe3 groups, O,N-bidentate coordination of D-valine and with a hydride ligand trans to the N atom is compared with the L-valine complex reported previously. As expected, the complexes from the corresponding L and D isomers of valine crystallize in enanti­omorphic space groups (P43 and P41, respectively). In the crystal, N—H⋯O and N—H⋯F hydrogen bonding is observed, the N—H to carbonyl oxygen hydrogen bond producing a helical motif that proceeds along the 41 screw of the c axis.

Related literature

The structure of the related L-valine complex has been described by Roy et al. (2006[Roy, C. P., Huff, L. A., Barker, N. A., Berg, M. A. G. & Merola, J. S. (2006). J. Organomet. Chem. 691, 2270-2276.]). For studies of hydrogen-bonded lattice systems that lose crystallinity on loss of solvent and an analogous one that retains crystallinity, see: Parkin & Behrman (2009[Parkin, S. R. & Behrman, E. J. (2009). Acta Cryst. C65, o529-o533.], 2011[Parkin, S. R. & Behrman, E. J. (2011). Acta Cryst. C67, o324-o328.]). An analysis of the geometric paramaters for hydrogen bonds is given by Wood et al. (2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]).

[Scheme 1]

Experimental

Crystal data
  • [Ir(C5H10NO2)H(C3H9P)3]PF6·0.675CH2Cl2

  • Mr = 739.86

  • Tetragonal, P 41

  • a = 14.04454 (17) Å

  • c = 14.2657 (3) Å

  • V = 2813.89 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.15 mm−1

  • T = 100 K

  • 0.17 × 0.05 × 0.05 mm

Data collection
  • Oxford Diffraction Xcalibur2 (Eos, Gemini ultra) diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.449, Tmax = 0.774

  • 39354 measured reflections

  • 9371 independent reflections

  • 7266 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.046

  • S = 0.81

  • 9371 reflections

  • 301 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack parameter determined using 3004 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.021 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F1 0.92 (6) 2.39 (6) 3.157 (7) 140 (5)
N1—H1B⋯O2i 0.83 (6) 2.02 (6) 2.848 (7) 172 (6)
Symmetry code: (i) [y, -x, z-{\script{1\over 4}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Both the D– and L-Valine complexes of the type [HIr(AA)(PMe3)3][PF6] crystallize in primitive tetragonal space groups, with the L–valine complex in P43 and the D-valine complex in the enantiomorphic group P41. The former structure was measured at room temperature on a Siemens P4 diffractometer while the latter was measured on an Oxford Diffraction instrument at 100 K. Accounting for room temperature vs. 100 K, the unit-cell parameters are essentially the same. Figure 1 shows a thermal ellipsoid plot of the asymmetric unit of the title compound. N—H to carbonyl oxygen hydrogen bonding produces a helical motif that proceeds along the 41 screw of the c axis. The helical motif for the H-bonding is shown in figure 2. Hydrogen bonding also occurs between the second N—H atom and a fluorine atom of the PF6- anion. Table 1 lists the hydrogen bonding parameters for the hydrogen bonds N1—H1A···F1 and N1—H1B···O2. With an H···O distance of 2.02 (6) Å and an N—H···O angle of 172 (6)°, the N1—H1B···O bond is a strong hydrogen bond while the N—H···F bond is not as strong based on geometric parameters, but still not a "weak" H-bond (Wood et al., 2009).

In addition to the overall quality improvement of the structure of the D compound reported here at 100 K compared with the L–valine compound at RT, the issue of lattice solvent is an interesting one. In the previous report, the crystals were isolated and handled in air at room temperature for a period of days before mounting them and collecting data at room temperature. The L–valine complex showed very large voids (573 Å3) with negligible residual electron density. The current D–valine complex clearly shows dichloromethane within the structure, but each dichloromethane site is only ~68% occupied. Here, it would appear that dichloromethane of solvation is partially lost.

Often, for molecular compounds, loss of solvent of crystallization results in the collapse of the crystal lattice. The D–valine complex with partial loss and the L-valine with complete solvent loss maintain the crystal lattice structural integrity. Figure 3 shows a view of both the D– and L–valine space filling packing diagrams that show, the CH2Cl2 in the title compound and the empty space in the L–valine structure reported previously. The loss of solvent with preservation of the crystal lattice is the norm for metal-organic framework (MOF) compounds, but those involve strong coordination bonds between metals and linking ligands. Maintaining the crystal lattice solely with hydrogen bonding is not new, but it is somewhat rare. For another example, see Parkin and Behrman (2011).

Related literature top

The structure of the related L–valine complex has been described by Roy et al. (2006). For studies of hydrogen-bonded lattice systems that lose crystallinity on loss of solvent and an analogous one that retains crystallinity, see: Parkin & Behrman (2009, 2011). An analysis of the geometric paramaters for hydrogen bonds is given by Wood et al. (2009). [Scheme show incorrect ligand, not D-valine]

Experimental top

For a detailed description of the synthetic procedure for all of the tris-trimethylphosphine iridium amino acid complexes, see (Roy et al., 2006). The title compound was recrystallized by the layering of diethyl ether over a dichloromethane solution. After several days of slow diffusion, suitable single crystals grew at the interface.

Refinement top

The H-atoms on the amine nitrogen were located from the residual electron density map and the positions refined independently. The N—H bonds are 0.92 (6) and 0.83 (6) Å. The displacement parameters were fixed at Uiso(H)=1.2Ueq(N1). The hydride was located in the residual electron density map, the distance restrained to 1.57 (2) Å, and the displacement parameter fixed at Uiso(H1)=1.5Ueq(Ir1). After locating the iridium hydride salt, additional strong residual electron density peaks were modeled as a partially occupied CH2Cl2 molecule with occupancy that refined to 0.675 (6).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound showing the ellipsoids at the 50% probability level. The dichloromethane of solvation has a site occupancy of ~68%.
[Figure 2] Fig. 2. A view of the hydrogen-bonded extended helical lattice of the title compound. Ellipsoids are shown at the 50% probability level and hydrogen atoms as well as phosphorus methyl atoms are omitted for clarity.
[Figure 3] Fig. 3. A space filling model of both the D– and L– valine iridium complexes packed from -0.5 1.0 along a, -0.5 1.0 along b, and -0.5 1.0 along c. The L–valine structure (left) shows a void while the D–valine structure (right) shows the dichloromethane in the lattice (68% occupancy). Spheres are shown at full van der Waals radii.
mer-Hydridotris(trimethylphosphane-κP)(D-valinato-κ2N,O)iridium hexafluoridophosphate dichloromethane 0.675-solvate top
Crystal data top
[Ir(C5H10NO2)H(C3H9P)3]PF6·0.675CH2Cl2Dx = 1.746 Mg m3
Mr = 739.86Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P41Cell parameters from 12856 reflections
a = 14.04454 (17) Åθ = 3.5–31.4°
c = 14.2657 (3) ŵ = 5.15 mm1
V = 2813.89 (9) Å3T = 100 K
Z = 4Needle, colourless
F(000) = 14570.17 × 0.05 × 0.05 mm
Data collection top
Oxford Diffraction Xcalibur2 (Eos, Gemini ultra)
diffractometer
9371 independent reflections
Radiation source: Enhance (Mo) X-ray Source7266 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 16.0122 pixels mm-1θmax = 31.5°, θmin = 3.5°
ω scansh = 1920
Absorption correction: gaussian
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2020
Tmin = 0.449, Tmax = 0.774l = 2020
39354 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0129P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 0.81Δρmax = 0.70 e Å3
9371 reflectionsΔρmin = 0.61 e Å3
301 parametersAbsolute structure: Flack parameter determined using 3004 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.021 (4)
Crystal data top
[Ir(C5H10NO2)H(C3H9P)3]PF6·0.675CH2Cl2Z = 4
Mr = 739.86Mo Kα radiation
Tetragonal, P41µ = 5.15 mm1
a = 14.04454 (17) ÅT = 100 K
c = 14.2657 (3) Å0.17 × 0.05 × 0.05 mm
V = 2813.89 (9) Å3
Data collection top
Oxford Diffraction Xcalibur2 (Eos, Gemini ultra)
diffractometer
9371 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Oxford Diffraction, 2010)
7266 reflections with I > 2σ(I)
Tmin = 0.449, Tmax = 0.774Rint = 0.069
39354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.046Δρmax = 0.70 e Å3
S = 0.81Δρmin = 0.61 e Å3
9371 reflectionsAbsolute structure: Flack parameter determined using 3004 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
301 parametersAbsolute structure parameter: 0.021 (4)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.35067 (2)0.06307 (2)0.87490 (2)0.01215 (4)
H0.423 (3)0.057 (4)0.946 (3)0.018*
O10.2567 (3)0.1552 (3)0.9483 (3)0.0147 (9)
O20.1109 (3)0.2137 (3)0.9557 (3)0.0185 (9)
N10.2309 (4)0.0780 (4)0.7763 (4)0.0167 (11)
H1A0.243 (4)0.127 (4)0.735 (4)0.020*
H1B0.221 (4)0.023 (5)0.758 (4)0.020*
C10.1714 (4)0.1635 (4)0.9161 (4)0.0139 (12)
C20.1437 (4)0.1072 (4)0.8295 (4)0.0131 (12)
H20.11410.04690.85290.016*
C30.0677 (4)0.1561 (4)0.7699 (4)0.0161 (12)
H30.01450.17280.81340.019*
C40.0260 (5)0.0889 (5)0.6968 (4)0.0288 (16)
H4A0.07540.07170.65120.043*
H4B0.02680.12050.66430.043*
H4C0.00260.03120.72770.043*
C50.1009 (4)0.2493 (4)0.7263 (4)0.0249 (15)
H5A0.13370.28760.77370.037*
H5B0.04560.28450.70260.037*
H5C0.14460.23580.67440.037*
P10.28924 (11)0.05993 (12)0.96794 (11)0.0148 (3)
C60.2254 (5)0.0111 (5)1.0676 (4)0.0281 (17)
H6A0.26410.03851.09730.042*
H6B0.21260.06191.11300.042*
H6C0.16510.01651.04630.042*
C70.2042 (5)0.1472 (4)0.9273 (4)0.0255 (15)
H7A0.14380.11560.91260.038*
H7B0.19380.19490.97640.038*
H7C0.22890.17850.87090.038*
C80.3778 (4)0.1308 (5)1.0273 (4)0.0287 (16)
H8A0.41160.17030.98150.043*
H8B0.34670.17181.07370.043*
H8C0.42330.08881.05900.043*
P20.44500 (11)0.02850 (12)0.78431 (11)0.0161 (3)
C90.4335 (5)0.1576 (4)0.7880 (4)0.0230 (13)
H9A0.46490.18530.73300.034*
H9B0.36600.17490.78770.034*
H9C0.46360.18190.84510.034*
C100.4244 (4)0.0090 (4)0.6599 (4)0.0190 (14)
H10A0.42850.05920.64610.028*
H10B0.36090.03250.64300.028*
H10C0.47260.04330.62340.028*
C110.5723 (4)0.0150 (5)0.8001 (4)0.0252 (15)
H11A0.60590.04910.75020.038*
H11B0.59080.04120.86110.038*
H11C0.58890.05270.79760.038*
P30.42554 (11)0.20679 (11)0.83341 (11)0.0156 (3)
C120.4899 (4)0.2255 (5)0.7248 (4)0.0246 (15)
H12A0.51810.28930.72490.037*
H12B0.44600.21960.67170.037*
H12C0.54050.17780.71900.037*
C130.5114 (5)0.2398 (5)0.9217 (4)0.0294 (17)
H13A0.56310.19290.92280.044*
H13B0.48030.24160.98320.044*
H13C0.53750.30280.90710.044*
C140.3453 (5)0.3082 (5)0.8334 (6)0.037 (2)
H14A0.38210.36700.82590.056*
H14B0.31040.31020.89280.056*
H14C0.30010.30200.78140.056*
P40.29616 (12)0.22465 (12)0.48790 (11)0.0201 (4)
F10.2682 (3)0.1526 (3)0.5708 (3)0.0469 (12)
F20.4001 (3)0.1782 (3)0.4853 (3)0.0322 (9)
F30.3308 (3)0.2988 (3)0.5639 (3)0.0554 (14)
F40.3246 (3)0.2950 (3)0.4063 (3)0.0439 (12)
F50.2601 (3)0.1496 (3)0.4133 (3)0.0426 (11)
F60.1918 (3)0.2709 (3)0.4920 (3)0.0353 (10)
C150.5610 (11)0.3894 (9)0.4795 (10)0.066 (4)0.675 (6)
H15A0.50700.35780.44750.080*0.675 (6)
H15B0.57300.35460.53870.080*0.675 (6)
Cl10.6642 (3)0.3794 (2)0.4068 (3)0.0708 (15)0.675 (6)
Cl20.5294 (4)0.4995 (4)0.5055 (7)0.157 (3)0.675 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01075 (12)0.01395 (12)0.01177 (7)0.00014 (11)0.00084 (10)0.00094 (10)
O10.015 (2)0.015 (2)0.014 (2)0.0025 (18)0.0022 (17)0.0019 (16)
O20.016 (2)0.023 (2)0.017 (2)0.0037 (19)0.0020 (17)0.0052 (18)
N10.020 (3)0.013 (3)0.017 (3)0.001 (2)0.004 (2)0.002 (2)
C10.016 (3)0.012 (3)0.014 (3)0.001 (2)0.005 (2)0.004 (2)
C20.010 (3)0.012 (3)0.017 (3)0.003 (2)0.000 (2)0.000 (2)
C30.010 (3)0.024 (3)0.015 (3)0.003 (2)0.003 (2)0.001 (3)
C40.022 (4)0.032 (4)0.033 (4)0.015 (3)0.010 (3)0.010 (3)
C50.020 (4)0.029 (4)0.025 (3)0.011 (3)0.002 (3)0.006 (3)
P10.0151 (9)0.0175 (9)0.0118 (7)0.0009 (7)0.0008 (6)0.0031 (6)
C60.037 (4)0.024 (4)0.023 (4)0.001 (3)0.011 (3)0.006 (3)
C70.029 (4)0.025 (4)0.023 (3)0.010 (3)0.005 (3)0.004 (3)
C80.020 (4)0.038 (4)0.029 (4)0.004 (3)0.003 (3)0.013 (3)
P20.0127 (8)0.0188 (9)0.0166 (8)0.0015 (7)0.0005 (6)0.0011 (7)
C90.026 (4)0.019 (4)0.024 (3)0.000 (3)0.002 (3)0.006 (3)
C100.018 (3)0.021 (3)0.017 (3)0.006 (3)0.005 (2)0.001 (2)
C110.014 (3)0.034 (4)0.027 (4)0.004 (3)0.002 (3)0.002 (3)
P30.0137 (8)0.0155 (8)0.0177 (8)0.0013 (7)0.0004 (6)0.0013 (6)
C120.028 (4)0.026 (4)0.019 (3)0.011 (3)0.003 (3)0.006 (3)
C130.036 (4)0.027 (4)0.025 (4)0.010 (3)0.010 (3)0.001 (3)
C140.023 (4)0.018 (4)0.072 (6)0.000 (3)0.005 (4)0.004 (4)
P40.0213 (9)0.0208 (9)0.0180 (8)0.0069 (7)0.0001 (7)0.0002 (7)
F10.049 (3)0.049 (3)0.043 (3)0.026 (2)0.021 (2)0.025 (2)
F20.026 (2)0.039 (3)0.031 (2)0.0158 (19)0.0018 (17)0.0012 (19)
F30.061 (3)0.048 (3)0.058 (3)0.019 (2)0.034 (3)0.028 (2)
F40.040 (3)0.046 (3)0.046 (3)0.002 (2)0.004 (2)0.021 (2)
F50.039 (3)0.039 (3)0.049 (3)0.003 (2)0.008 (2)0.015 (2)
F60.032 (2)0.042 (3)0.031 (2)0.017 (2)0.0028 (18)0.0063 (19)
C150.089 (12)0.036 (8)0.074 (11)0.011 (7)0.013 (9)0.001 (7)
Cl10.084 (3)0.047 (2)0.082 (3)0.0090 (19)0.017 (2)0.0030 (18)
Cl20.140 (5)0.061 (4)0.270 (8)0.039 (4)0.095 (7)0.018 (4)
Geometric parameters (Å, º) top
Ir1—H1.44 (3)P2—C91.821 (6)
Ir1—O12.124 (4)P2—C101.820 (5)
Ir1—N12.203 (6)P2—C111.811 (6)
Ir1—P12.3430 (16)C9—H9A0.9800
Ir1—P22.2537 (16)C9—H9B0.9800
Ir1—P32.3517 (16)C9—H9C0.9800
O1—C11.288 (7)C10—H10A0.9800
O2—C11.240 (6)C10—H10B0.9800
N1—H1A0.92 (6)C10—H10C0.9800
N1—H1B0.83 (6)C11—H11A0.9800
N1—C21.499 (7)C11—H11B0.9800
C1—C21.518 (7)C11—H11C0.9800
C2—H21.0000P3—C121.813 (6)
C2—C31.528 (7)P3—C131.805 (6)
C3—H31.0000P3—C141.816 (7)
C3—C41.524 (8)C12—H12A0.9800
C3—C51.522 (8)C12—H12B0.9800
C4—H4A0.9800C12—H12C0.9800
C4—H4B0.9800C13—H13A0.9800
C4—H4C0.9800C13—H13B0.9800
C5—H5A0.9800C13—H13C0.9800
C5—H5B0.9800C14—H14A0.9800
C5—H5C0.9800C14—H14B0.9800
P1—C61.815 (6)C14—H14C0.9800
P1—C71.807 (6)P4—F11.605 (4)
P1—C81.805 (6)P4—F21.599 (4)
C6—H6A0.9800P4—F31.580 (4)
C6—H6B0.9800P4—F41.578 (4)
C6—H6C0.9800P4—F51.582 (4)
C7—H7A0.9800P4—F61.604 (4)
C7—H7B0.9800C15—H15A0.9900
C7—H7C0.9800C15—H15B0.9900
C8—H8A0.9800C15—Cl11.789 (15)
C8—H8B0.9800C15—Cl21.651 (13)
C8—H8C0.9800
O1—Ir1—H97 (2)H8A—C8—H8C109.5
O1—Ir1—N177.43 (17)H8B—C8—H8C109.5
O1—Ir1—P186.61 (11)C9—P2—Ir1120.0 (2)
O1—Ir1—P2174.55 (11)C10—P2—Ir1112.3 (2)
O1—Ir1—P383.06 (11)C10—P2—C999.4 (3)
N1—Ir1—H174 (2)C11—P2—Ir1116.7 (2)
N1—Ir1—P198.66 (15)C11—P2—C9100.9 (3)
N1—Ir1—P297.88 (14)C11—P2—C10105.2 (3)
N1—Ir1—P395.69 (15)P2—C9—H9A109.5
P1—Ir1—H80 (2)P2—C9—H9B109.5
P1—Ir1—P3160.05 (5)P2—C9—H9C109.5
P2—Ir1—H88 (2)H9A—C9—H9B109.5
P2—Ir1—P196.93 (5)H9A—C9—H9C109.5
P2—Ir1—P394.74 (6)H9B—C9—H9C109.5
P3—Ir1—H85 (2)P2—C10—H10A109.5
C1—O1—Ir1117.2 (3)P2—C10—H10B109.5
Ir1—N1—H1A110 (4)P2—C10—H10C109.5
Ir1—N1—H1B104 (4)H10A—C10—H10B109.5
H1A—N1—H1B122 (6)H10A—C10—H10C109.5
C2—N1—Ir1109.1 (4)H10B—C10—H10C109.5
C2—N1—H1A106 (4)P2—C11—H11A109.5
C2—N1—H1B106 (4)P2—C11—H11B109.5
O1—C1—C2118.8 (5)P2—C11—H11C109.5
O2—C1—O1121.8 (5)H11A—C11—H11B109.5
O2—C1—C2119.4 (5)H11A—C11—H11C109.5
N1—C2—C1110.2 (5)H11B—C11—H11C109.5
N1—C2—H2106.1C12—P3—Ir1124.2 (2)
N1—C2—C3114.3 (5)C12—P3—C14101.3 (3)
C1—C2—H2106.1C13—P3—Ir1110.1 (2)
C1—C2—C3113.5 (5)C13—P3—C12103.1 (3)
C3—C2—H2106.1C13—P3—C14102.3 (3)
C2—C3—H3106.3C14—P3—Ir1113.3 (2)
C4—C3—C2111.8 (5)P3—C12—H12A109.5
C4—C3—H3106.3P3—C12—H12B109.5
C5—C3—C2113.7 (5)P3—C12—H12C109.5
C5—C3—H3106.3H12A—C12—H12B109.5
C5—C3—C4111.8 (5)H12A—C12—H12C109.5
C3—C4—H4A109.5H12B—C12—H12C109.5
C3—C4—H4B109.5P3—C13—H13A109.5
C3—C4—H4C109.5P3—C13—H13B109.5
H4A—C4—H4B109.5P3—C13—H13C109.5
H4A—C4—H4C109.5H13A—C13—H13B109.5
H4B—C4—H4C109.5H13A—C13—H13C109.5
C3—C5—H5A109.5H13B—C13—H13C109.5
C3—C5—H5B109.5P3—C14—H14A109.5
C3—C5—H5C109.5P3—C14—H14B109.5
H5A—C5—H5B109.5P3—C14—H14C109.5
H5A—C5—H5C109.5H14A—C14—H14B109.5
H5B—C5—H5C109.5H14A—C14—H14C109.5
C6—P1—Ir1110.3 (2)H14B—C14—H14C109.5
C7—P1—Ir1124.2 (2)F2—P4—F189.1 (2)
C7—P1—C6100.4 (3)F2—P4—F6179.2 (2)
C8—P1—Ir1114.8 (2)F3—P4—F189.1 (3)
C8—P1—C6100.5 (3)F3—P4—F290.2 (2)
C8—P1—C7103.4 (3)F3—P4—F5178.9 (3)
P1—C6—H6A109.5F3—P4—F689.4 (2)
P1—C6—H6B109.5F4—P4—F1179.5 (2)
P1—C6—H6C109.5F4—P4—F290.4 (2)
H6A—C6—H6B109.5F4—P4—F390.9 (3)
H6A—C6—H6C109.5F4—P4—F590.1 (2)
H6B—C6—H6C109.5F4—P4—F690.3 (2)
P1—C7—H7A109.5F5—P4—F189.8 (2)
P1—C7—H7B109.5F5—P4—F290.3 (2)
P1—C7—H7C109.5F5—P4—F690.1 (2)
H7A—C7—H7B109.5F6—P4—F190.3 (2)
H7A—C7—H7C109.5H15A—C15—H15B107.5
H7B—C7—H7C109.5Cl1—C15—H15A108.5
P1—C8—H8A109.5Cl1—C15—H15B108.5
P1—C8—H8B109.5Cl2—C15—H15A108.5
P1—C8—H8C109.5Cl2—C15—H15B108.5
H8A—C8—H8B109.5Cl2—C15—Cl1115.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F10.92 (6)2.39 (6)3.157 (7)140 (5)
N1—H1B···O2i0.83 (6)2.02 (6)2.848 (7)172 (6)
Symmetry code: (i) y, x, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F10.92 (6)2.39 (6)3.157 (7)140 (5)
N1—H1B···O2i0.83 (6)2.02 (6)2.848 (7)172 (6)
Symmetry code: (i) y, x, z1/4.
 

Acknowledgements

We thank the National Science Foundation for funds (grant CHE-01311288)) for the purchase of the Oxford Diffraction Xcalibur2 single-crystal diffractometer.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationParkin, S. R. & Behrman, E. J. (2009). Acta Cryst. C65, o529–o533.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParkin, S. R. & Behrman, E. J. (2011). Acta Cryst. C67, o324–o328.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRoy, C. P., Huff, L. A., Barker, N. A., Berg, M. A. G. & Merola, J. S. (2006). J. Organomet. Chem. 691, 2270–2276.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds