metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m94-m95

Bis(1-benzyl-1H-benzimidazole-κN3)di­chlorido­zinc

aCentre Composites Nanocomposites, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat Design Center, Rue Mohamed Al Jazouli-Madinat Al Irfane, Rabat 10100, Morocco, bLaboratoire de Chimie Organique Hétérocyclique, URAC 21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: em_essassi@yahoo.fr

(Received 6 February 2014; accepted 7 February 2014; online 12 February 2014)

In the title compound, [ZnCl2(C14H12N2)2], the ZnII atom exhibits a distorted tetra­hedral coordination geometry involving two chloride anions and two N-atom donors from 1-benzyl-1H-benzimidazole ligands. In both ligands, the benzyl and benzimidazole rings are nearly perpendicular [dihedral angles = 81.7 (2) and 81.5 (2)°]. The two benzimidazole systems are essentially planar [maximum deviations = 0.015 (3) and 0.020 (2) Å] and form a dihedral angle of 78.09 (8)°. In the crystal, centrosymmetrically related mol­ecules are linked by pairs of C—H⋯Cl hydrogen bonds into chains parallel to the a axis.

Related literature

For background to the biochemical properties of benzimidazole derivatives, see: Mann et al. (2001[Mann, J., Baron, A., Opoku-Boahen, Y., Johansson, E., Parkinson, G., Kelland, L. R. & Neidle, S. (2001). J. Med. Chem. 44, 138-144.]); Naithani et al. (1990[Naithani, P. K., Srivastava, V. K., Saxena, A. K., Barthwal, J. P., Gupta, T. K. & Shanker, K. (1990). Indian J. Exp. Biol. 28, 1145-1148.]); Goudgaon et al. (2004[Goudgaon, N. M., Dhondiba, V. & Vijayalaxmi, A. (2004). Indian J. Heterocycl. Chem. 13, 271-272.]). For the structures of related compounds see: Abdel-Ghani & Mansour (2011[Abdel-Ghani, N. T. & Mansour, A. M. (2011). J. Mol. Struct. 991, 108-126.], 2012[Abdel-Ghani, N. T. & Mansour, A. M. (2012). Eur. J. Med. Chem. 47, 399-411.]); Ahuja & Prasad (1976[Ahuja, I. S. & Prasad, I. (1976). Inorg. Nucl. Chem. Lett. 12, 777-784.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C14H12N2)2]

  • Mr = 552.78

  • Triclinic, [P \overline 1]

  • a = 9.9819 (4) Å

  • b = 10.0564 (4) Å

  • c = 13.6641 (6) Å

  • α = 99.539 (2)°

  • β = 92.087 (2)°

  • γ = 99.122 (2)°

  • V = 1332.79 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 296 K

  • 0.37 × 0.32 × 0.26 mm

Data collection
  • Bruker X8 APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.840

  • 30968 measured reflections

  • 7403 independent reflections

  • 5928 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.06

  • 7403 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cl1i 0.93 2.81 3.660 (2) 153
C28—H28⋯Cl1ii 0.93 2.80 3.502 (2) 133
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazole derivatives are important pharmacophores in drug discovery, possessing pharmacological properties including antitumor (Mann et al., 2001), anti-Parkinson (Naithani et al., 1990) and antimicrobial (Goudgaon et al., 2004) activities. A considerable number of metal benzimidazole complexes including Cr, Mn, Fe, Co, Ni, Zn, Pd, Pt, Au, and Re has been reported (Abdel-Ghani & Mansour, 2011, 2012). Metal complexes of biologically important ligands were sometimes more effective than the free ligands (Ahuja & Prasad, 1976).

The crystal structure of the title compound, show that the ZnII ion adopts a distorted tetrahedral coordination arising from two N-atom donors from organic ligands and a two Cl- anions (Fig. 1). The fused five- and six-membered rings are nearly coplanar with dihedral angles between them of 1.0 (2)° and 1.6 (2)° respectively. The dihedral angle between the two benzimidazole systems is of 78.09 (8)°. Each benzyl ring (C1–C6 and C15–C20) is virtually perpendicular to the benzimidazole system belonging to the same molecule (N1/N2/C8–C14 and N3/N4/C22–C28) as indicated by the dihedral angles between them of 81.7 (2)° and 81.5 (2)°, respectively. In the crystal, centrosymmetrically-related molecules are linked by C—H···Cl hydrogen bonds (Table 1) into chains running parallel to the a axis.

Related literature top

For background to the biochemical properties of benzimidazole derivatives, see: Mann et al. (2001); Naithani et al. (1990); Goudgaon et al. (2004). For the structures of related compounds see: Abdel-Ghani & Mansour (2011, 2012); Ahuja & Prasad (1976).

Experimental top

The title compound was prepared by the reaction of ZnCl2 (164 mg, 1.2 mmol) in water (10 ml) and 1-benzyl-1H-benzimidazole (500 mg, 2.4 mmol) in ethanol (10 ml). The mixture was stirred for 12 h, filtered and set aside to crystallize at ambient temperature for several days, giving colourless single crystals on slow evaporation of the solvent.

Refinement top

H atoms were located in a difference Fourier map and treated as riding with C—H = 0.93–0.97 Å (methylene), and with Uiso(H) = 1.2 Ueq(C). Three outliers (0 0 1, 1 0 0, 0 1 0) were omitted in the last cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles.
Bis(1-benzyl-1H-benzimidazole-κN3)dichloridozinc top
Crystal data top
[ZnCl2(C14H12N2)2]V = 1332.79 (10) Å3
Mr = 552.78Z = 2
Triclinic, P1F(000) = 568
Hall symbol: -p 1Dx = 1.377 Mg m3
a = 9.9819 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0564 (4) ŵ = 1.15 mm1
c = 13.6641 (6) ÅT = 296 K
α = 99.539 (2)°Block, colourless
β = 92.087 (2)°0.37 × 0.32 × 0.26 mm
γ = 99.122 (2)°
Data collection top
Bruker X8 APEX
diffractometer
7403 independent reflections
Radiation source: fine-focus sealed tube5928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 29.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.682, Tmax = 0.840k = 1313
30968 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3641P]
where P = (Fo2 + 2Fc2)/3
7403 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[ZnCl2(C14H12N2)2]γ = 99.122 (2)°
Mr = 552.78V = 1332.79 (10) Å3
Triclinic, P1Z = 2
a = 9.9819 (4) ÅMo Kα radiation
b = 10.0564 (4) ŵ = 1.15 mm1
c = 13.6641 (6) ÅT = 296 K
α = 99.539 (2)°0.37 × 0.32 × 0.26 mm
β = 92.087 (2)°
Data collection top
Bruker X8 APEX
diffractometer
7403 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5928 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.840Rint = 0.026
30968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.58 e Å3
7403 reflectionsΔρmin = 0.24 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7633 (4)0.8525 (3)0.4366 (3)0.1008 (11)
H10.77910.93010.40720.121*
C20.8206 (5)0.8556 (4)0.5311 (3)0.1210 (14)
H20.87540.93500.56410.145*
C30.7979 (4)0.7450 (5)0.5757 (2)0.1088 (13)
H30.83790.74770.63870.131*
C40.7162 (4)0.6296 (4)0.5281 (3)0.1052 (12)
H40.69850.55370.55930.126*
C50.6591 (4)0.6246 (3)0.4331 (2)0.0826 (8)
H50.60360.54510.40100.099*
C60.6835 (2)0.7356 (2)0.38635 (17)0.0602 (5)
C70.6298 (3)0.7325 (3)0.28114 (18)0.0675 (6)
H7A0.61990.82470.27330.085 (9)*
H7B0.69620.70310.23590.084 (9)*
C80.3754 (2)0.6587 (2)0.29074 (15)0.0539 (5)
C90.3381 (3)0.7496 (3)0.36933 (17)0.0692 (6)
H90.40180.81810.40710.083*
C100.2033 (4)0.7334 (3)0.3883 (2)0.0799 (8)
H100.17540.79140.44110.096*
C110.1069 (3)0.6330 (3)0.3312 (2)0.0775 (7)
H110.01630.62550.34650.093*
C120.1428 (3)0.5448 (3)0.25247 (19)0.0644 (6)
H120.07800.47840.21380.077*
C130.2792 (2)0.5583 (2)0.23266 (15)0.0510 (4)
C140.4755 (2)0.5385 (2)0.17551 (15)0.0538 (5)
H140.54320.50850.13690.065*
C150.2428 (3)0.2655 (3)0.2558 (2)0.0821 (8)
H150.16170.31810.24370.099*
C160.2920 (5)0.2837 (4)0.3495 (2)0.1078 (12)
H160.24210.34580.40100.129*
C170.4137 (4)0.2106 (5)0.3665 (2)0.1047 (13)
H170.44920.22710.42850.126*
C180.4834 (3)0.1131 (4)0.2925 (2)0.0917 (10)
H180.56480.06130.30490.110*
C190.4329 (2)0.0915 (3)0.19898 (18)0.0638 (6)
H190.47970.02430.14900.077*
C200.3139 (2)0.1694 (2)0.18024 (15)0.0487 (4)
C210.26224 (18)0.1483 (2)0.07709 (15)0.0491 (4)
H21A0.30580.06000.04070.059*
H21B0.28620.21820.04180.059*
C220.04380 (18)0.06922 (18)0.12376 (13)0.0409 (4)
C230.0871 (2)0.0469 (2)0.16412 (17)0.0570 (5)
H230.17880.08020.16780.068*
C240.0132 (3)0.1098 (2)0.1982 (2)0.0688 (6)
H240.01130.18780.22610.083*
C250.1510 (3)0.0600 (2)0.19231 (18)0.0638 (6)
H250.21570.10560.21660.077*
C260.1940 (2)0.0551 (2)0.15140 (15)0.0510 (4)
H260.28580.08780.14720.061*
C270.09351 (18)0.11926 (18)0.11694 (12)0.0393 (3)
C280.02314 (18)0.24853 (19)0.05074 (14)0.0447 (4)
H280.04610.31760.01910.054*
N10.49942 (19)0.6426 (2)0.25291 (13)0.0562 (4)
N20.34613 (17)0.48349 (18)0.16007 (13)0.0515 (4)
N30.10356 (15)0.23339 (16)0.07047 (12)0.0443 (3)
N40.11488 (15)0.15456 (16)0.08096 (12)0.0425 (3)
Zn10.26873 (2)0.35268 (2)0.034848 (16)0.04370 (8)
Cl10.18906 (5)0.46699 (5)0.07679 (4)0.05779 (14)
Cl20.43183 (5)0.23659 (6)0.01957 (4)0.05514 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.128 (3)0.0754 (18)0.082 (2)0.0178 (19)0.027 (2)0.0067 (16)
C20.147 (4)0.105 (3)0.085 (2)0.009 (2)0.049 (2)0.015 (2)
C30.131 (3)0.130 (3)0.0621 (17)0.044 (3)0.0313 (19)0.005 (2)
C40.139 (3)0.101 (2)0.081 (2)0.032 (2)0.024 (2)0.0289 (19)
C50.105 (2)0.0691 (16)0.0702 (16)0.0086 (15)0.0213 (15)0.0133 (13)
C60.0603 (13)0.0638 (13)0.0514 (11)0.0031 (10)0.0037 (10)0.0035 (10)
C70.0673 (14)0.0725 (15)0.0551 (12)0.0147 (12)0.0033 (11)0.0164 (11)
C80.0656 (13)0.0573 (11)0.0423 (10)0.0116 (10)0.0011 (9)0.0186 (8)
C90.0940 (19)0.0659 (14)0.0497 (12)0.0184 (13)0.0031 (12)0.0124 (10)
C100.107 (2)0.0841 (18)0.0608 (14)0.0472 (17)0.0141 (15)0.0157 (13)
C110.0728 (16)0.094 (2)0.0791 (17)0.0406 (15)0.0165 (14)0.0269 (15)
C120.0562 (12)0.0737 (15)0.0688 (14)0.0189 (11)0.0059 (11)0.0198 (12)
C130.0550 (11)0.0539 (11)0.0479 (10)0.0116 (9)0.0019 (8)0.0177 (8)
C140.0516 (11)0.0620 (12)0.0454 (10)0.0021 (9)0.0040 (8)0.0136 (9)
C150.090 (2)0.0796 (18)0.0657 (15)0.0004 (15)0.0121 (14)0.0051 (13)
C160.128 (3)0.124 (3)0.0638 (18)0.033 (3)0.0048 (19)0.0162 (18)
C170.099 (2)0.178 (4)0.0517 (15)0.064 (3)0.0180 (16)0.0198 (19)
C180.0571 (15)0.161 (3)0.0696 (17)0.0273 (18)0.0195 (13)0.045 (2)
C190.0406 (10)0.0944 (17)0.0597 (12)0.0133 (11)0.0059 (9)0.0199 (12)
C200.0455 (10)0.0543 (11)0.0502 (10)0.0158 (8)0.0057 (8)0.0124 (8)
C210.0338 (8)0.0610 (11)0.0525 (10)0.0051 (8)0.0037 (7)0.0129 (9)
C220.0399 (8)0.0422 (9)0.0400 (8)0.0031 (7)0.0006 (7)0.0099 (7)
C230.0510 (11)0.0547 (11)0.0668 (13)0.0035 (9)0.0029 (9)0.0267 (10)
C240.0727 (15)0.0575 (13)0.0822 (16)0.0032 (11)0.0030 (12)0.0387 (12)
C250.0673 (14)0.0640 (13)0.0676 (14)0.0189 (11)0.0075 (11)0.0279 (11)
C260.0440 (10)0.0595 (11)0.0519 (10)0.0106 (8)0.0034 (8)0.0160 (9)
C270.0400 (8)0.0402 (8)0.0375 (8)0.0043 (7)0.0002 (6)0.0092 (7)
C280.0408 (9)0.0429 (9)0.0539 (10)0.0070 (7)0.0038 (8)0.0182 (8)
N10.0570 (10)0.0648 (11)0.0434 (8)0.0043 (8)0.0011 (7)0.0144 (8)
N20.0464 (9)0.0572 (10)0.0502 (9)0.0023 (7)0.0031 (7)0.0129 (7)
N30.0377 (7)0.0442 (8)0.0539 (9)0.0042 (6)0.0031 (6)0.0189 (7)
N40.0359 (7)0.0451 (8)0.0479 (8)0.0051 (6)0.0031 (6)0.0140 (6)
Zn10.03618 (11)0.04504 (13)0.05179 (14)0.00320 (8)0.00320 (8)0.01722 (9)
Cl10.0506 (3)0.0594 (3)0.0722 (3)0.0134 (2)0.0037 (2)0.0330 (3)
Cl20.0428 (2)0.0630 (3)0.0643 (3)0.0156 (2)0.0044 (2)0.0178 (2)
Geometric parameters (Å, º) top
C1—C61.373 (4)C15—H150.9300
C1—C21.386 (5)C16—C171.365 (6)
C1—H10.9300C16—H160.9300
C2—C31.347 (6)C17—C181.368 (5)
C2—H20.9300C17—H170.9300
C3—C41.359 (5)C18—C191.387 (4)
C3—H30.9300C18—H180.9300
C4—C51.388 (4)C19—C201.372 (3)
C4—H40.9300C19—H190.9300
C5—C61.370 (4)C20—C211.512 (3)
C5—H50.9300C21—N41.461 (2)
C6—C71.509 (3)C21—H21A0.9700
C7—N11.461 (3)C21—H21B0.9700
C7—H7A0.9700C22—N41.382 (2)
C7—H7B0.9700C22—C231.387 (3)
C8—N11.381 (3)C22—C271.395 (2)
C8—C91.393 (3)C23—C241.372 (3)
C8—C131.394 (3)C23—H230.9300
C9—C101.369 (4)C24—C251.398 (4)
C9—H90.9300C24—H240.9300
C10—C111.389 (4)C25—C261.382 (3)
C10—H100.9300C25—H250.9300
C11—C121.373 (4)C26—C271.384 (3)
C11—H110.9300C26—H260.9300
C12—C131.387 (3)C27—N31.393 (2)
C12—H120.9300C28—N31.321 (2)
C13—N21.398 (3)C28—N41.336 (2)
C14—N21.316 (3)C28—H280.9300
C14—N11.344 (3)N2—Zn12.0225 (17)
C14—H140.9300N3—Zn12.0048 (15)
C15—C201.380 (3)Zn1—Cl22.2292 (5)
C15—C161.382 (4)Zn1—Cl12.2503 (5)
C6—C1—C2120.4 (3)C17—C18—C19120.1 (3)
C6—C1—H1119.8C17—C18—H18120.0
C2—C1—H1119.8C19—C18—H18120.0
C3—C2—C1120.9 (3)C20—C19—C18120.0 (3)
C3—C2—H2119.6C20—C19—H19120.0
C1—C2—H2119.6C18—C19—H19120.0
C2—C3—C4119.6 (3)C19—C20—C15119.6 (2)
C2—C3—H3120.2C19—C20—C21119.6 (2)
C4—C3—H3120.2C15—C20—C21120.8 (2)
C3—C4—C5120.2 (3)N4—C21—C20111.42 (16)
C3—C4—H4119.9N4—C21—H21A109.3
C5—C4—H4119.9C20—C21—H21A109.3
C6—C5—C4120.7 (3)N4—C21—H21B109.3
C6—C5—H5119.6C20—C21—H21B109.3
C4—C5—H5119.6H21A—C21—H21B108.0
C5—C6—C1118.3 (3)N4—C22—C23131.75 (17)
C5—C6—C7122.6 (2)N4—C22—C27105.86 (15)
C1—C6—C7119.2 (2)C23—C22—C27122.35 (17)
N1—C7—C6114.19 (19)C24—C23—C22116.2 (2)
N1—C7—H7A108.7C24—C23—H23121.9
C6—C7—H7A108.7C22—C23—H23121.9
N1—C7—H7B108.7C23—C24—C25121.9 (2)
C6—C7—H7B108.7C23—C24—H24119.0
H7A—C7—H7B107.6C25—C24—H24119.0
N1—C8—C9132.6 (2)C26—C25—C24121.8 (2)
N1—C8—C13106.03 (19)C26—C25—H25119.1
C9—C8—C13121.4 (2)C24—C25—H25119.1
C10—C9—C8116.9 (3)C25—C26—C27116.63 (19)
C10—C9—H9121.6C25—C26—H26121.7
C8—C9—H9121.6C27—C26—H26121.7
C9—C10—C11122.0 (3)C26—C27—N3130.31 (17)
C9—C10—H10119.0C26—C27—C22121.08 (17)
C11—C10—H10119.0N3—C27—C22108.59 (15)
C12—C11—C10121.3 (3)N3—C28—N4113.13 (16)
C12—C11—H11119.4N3—C28—H28123.4
C10—C11—H11119.4N4—C28—H28123.4
C11—C12—C13117.7 (3)C14—N1—C8107.04 (18)
C11—C12—H12121.2C14—N1—C7125.4 (2)
C13—C12—H12121.2C8—N1—C7127.1 (2)
C12—C13—C8120.7 (2)C14—N2—C13105.48 (18)
C12—C13—N2130.8 (2)C14—N2—Zn1123.26 (15)
C8—C13—N2108.46 (19)C13—N2—Zn1129.57 (14)
N2—C14—N1113.0 (2)C28—N3—C27105.30 (14)
N2—C14—H14123.5C28—N3—Zn1124.79 (12)
N1—C14—H14123.5C27—N3—Zn1129.89 (12)
C20—C15—C16120.0 (3)C28—N4—C22107.12 (15)
C20—C15—H15120.0C28—N4—C21126.89 (16)
C16—C15—H15120.0C22—N4—C21125.84 (15)
C17—C16—C15120.2 (3)N3—Zn1—N2107.29 (7)
C17—C16—H16119.9N3—Zn1—Cl2113.31 (5)
C15—C16—H16119.9N2—Zn1—Cl2107.21 (5)
C16—C17—C18120.1 (3)N3—Zn1—Cl1104.56 (5)
C16—C17—H17119.9N2—Zn1—Cl1110.42 (5)
C18—C17—H17119.9Cl2—Zn1—Cl1113.88 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1i0.932.813.660 (2)153
C28—H28···Cl1ii0.932.803.502 (2)133
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···Cl1i0.932.813.660 (2)153
C28—H28···Cl1ii0.932.803.502 (2)133
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationAbdel-Ghani, N. T. & Mansour, A. M. (2011). J. Mol. Struct. 991, 108–126.  CAS Google Scholar
First citationAbdel-Ghani, N. T. & Mansour, A. M. (2012). Eur. J. Med. Chem. 47, 399–411.  CAS PubMed Google Scholar
First citationAhuja, I. S. & Prasad, I. (1976). Inorg. Nucl. Chem. Lett. 12, 777–784.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoudgaon, N. M., Dhondiba, V. & Vijayalaxmi, A. (2004). Indian J. Heterocycl. Chem. 13, 271–272.  CAS Google Scholar
First citationMann, J., Baron, A., Opoku-Boahen, Y., Johansson, E., Parkinson, G., Kelland, L. R. & Neidle, S. (2001). J. Med. Chem. 44, 138–144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNaithani, P. K., Srivastava, V. K., Saxena, A. K., Barthwal, J. P., Gupta, T. K. & Shanker, K. (1990). Indian J. Exp. Biol. 28, 1145–1148.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 3| March 2014| Pages m94-m95
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds